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Abstract: To prevent economic, social, and ecological damage, fire detection and
management at an early stage are significant yet challenging. Although computa-
tionally complex networks have been developed, attention has been largely
focused on improving accuracy, rather than focusing on real-time fire detection.
Hence, in this study, the authors present an efficient fire detection framework
termed E-FireNet for real-time detection in a complex surveillance environment.
The proposed model architecture is inspired by the VGG16 network, with signif-
icant modifications including the entire removal of Block-5 and tweaking of the
convolutional layers of Block-4. This results in higher performance with a
reduced number of parameters and inference time. Moreover, smaller convolu-
tional kernels are utilized, which are particularly designed to obtain the optimal
details from input images, with numerous channels to assist in feature discrimina-
tion. In E-FireNet, three steps are involved: preprocessing of collected data, detec-
tion of fires using the proposed technique, and, if there is a fire, alarms are
generated and transmitted to law enforcement, healthcare, and management
departments. Moreover, E-FireNet achieves 0.98 accuracy, 1 precision, 0.99 recall,
and 0.99 F1-score. A comprehensive investigation of various Convolutional
Neural Network (CNN) models is conducted using the newly created Fire Surveil-
lance SV-Fire dataset. The empirical results and comparison of numerous para-
meters establish that the proposed model shows convincing performance in
terms of accuracy, model size, and execution time.

Keywords: Deep learning; drone; embedded vision; emergency monitoring; fire
classification; fire detection; IoT; search and rescue

1 Introduction

In the last decade, drones have generated considerable attention as a remote sensing platform with a wide
application range, including traffic control, disaster response, crop protection, and satellite image analysis
[1,2]. Of late, incorporating a vision system, drone applications have been developed for monitoring,
perceiving, and analyzing active and passive threats at the incident sites, for example, fire detection, flood
threats, car accidents, and landslide-prone areas [3,4]. Additionally, drones can be rapidly deployed
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because their small size permits them to participate in mission-critical decisions, enabling better resource
allocation and risk reduction. Drones are expected to function in disaster-affected areas, where connection
to cloud services may not be effective and high-end equipment may not be readily accessible. To ensure
operational performance and real analysis, a high-level of autonomy is required. Therefore, autonomous
Unmanned Aerial Vehicles (UAVs), as well as Unmanned Ground Vehicles (UGVs), rely on their
onboard sensors and embedded microchips for performing tasks rather than sending the data to a central
control station. Furthermore, drones can cover a larger area within a shorter time span when combined
with automatic route planning techniques, with onboard visual sensors as well as autonomous navigation.
With the limited computational ability and power consumption, drones, however, present their own set of
challenges [5].

CNNs and Deep Learning (DL), in particular, have been widely recognized as popular solutions for a
broad range of applications based on computer vision, such as activity recognition, person recognition,
vehicle recognition, and classification [6–10]. In prior research, utilizing transfer learning, a pre-trained
CNN was used as a feature extricate, and certain layers have been added to perform classification for the
current job, learning techniques to outperform standard machine learning methods using handcrafted
features. Even though CNNs have proven to be more effective in classification, their inference time is
high due to their high-computational power requirements when embedded in low-power devices, such as
drones, which must perform multiple vision tasks simultaneously. For certain applications, a localized,
integrated approach is more desirable over cloud processing due to security and privacy concerns [11]. In
addition, tiny CNNs can ascertain the accuracy needed and the performance for specialized applications
where substantial information does not exist and computational resource limits are enforced. Moreover,
their training process is considerably easier, and they can be conveniently updated over air owing to their
computational efficiency.

Soft computing methods based on Traditional Fire Warning Systems (TFWSs) [12] and optical sensors
to prevent flames from spreading have been extensively researched and developed. Various scalar sensors,
including ocular sensors, inferno sensors, as well as smoke sensors closer to the blazing fire [13] have
been used in a TFWS for fire detection. However, scalar sensor-based solutions do not provide additional
information regarding the area coverage, level of burning, location of the fire, or size of the fire.
Additionally, the above-mentioned sensor systems require human intervention, such as a visit to the fire
site in the event of a disaster. To overcome these limitations, various visual sensor-based methods have
been proposed [14]. In surveillance systems, for the autonomous observation of fire catastrophes,
traditional, DL, and vision-driven techniques play a key role in fire detection [15,16]. These algorithms
offer a number of advantages such as rapid response, low-human-intervention requirements, cost-
effectiveness, and greater coverage. However, traditional fire detection is difficult and time-consuming to
process because it relies on hand-crafted feature extraction, and the procedures for constructing and
evaluating the features are tedious. In particular, the monitoring of early fire and alarm generation, in
traditional-based approaches is difficult because of the fluctuating lighting conditions, shadows,
reflections, and low-detection accuracy. This study applies CNN models motivated by their potential in
several areas, such as fire detection in surveillance footage [17]. However, DL includes an End-to-End
(E2E) process for identifying features, which is computationally intensive and needs a considerable
volume of training data. In this article, we have fine-tuned and proposed an efficient VGG-based (E-
FireNet) model that has improved detection accuracy, has fewer parameters and can be deployed in actual
scenarios. E-FireNet is not only capable of classifying fire and non-fire events but also looks for Object-
of-Interest (OoI) located in the image. If the input image depicts a building fire or car fire, the model
classifies it as a fire event on the specific object; if no fire is detected by the model, the resultant image is
classified as non-fire. Furthermore, the baseline methods use computationally complex models that are
not capable of being deployed on a drone, considering that a drone is a resource constraint device with

750 CSSE, 2023, vol.46, no.1



limited processing power. Therefore, a lightweight CNN model that can be deployed in drones is highly
desirable. The following are the significant contributions of this study:

� Early attempts for fire detection using pre-trained models with numerous parameters show limited
performance when the variation in the data was low. To address these problems, this study
presents a CNN-based framework for early fire detection in the images captured in diverse
surveillance environments. The proposed E-FireNet model shows convincing performance with
respect to the accuracy and time complexity for the Central Processing Unit (CPU) and Graphical
Processing Unit (GPU), i.e., 0.98, 22.17, and 30.58 Frames Per Second (FPS), compared to
renowned State-Of-The-Art (SOTA) models.

� As the existing fire datasets include limited scenarios and are monotonous, (i.e., considering only fire
and non-fire scenarios), the generalization of the model is poor. Consequently, this study acquired a
wide set of image samples containing real-world fire events such as building fire, car fire, and non-fire
from various web sources, including social media platforms, NEWS sources, Google images, and
YouTube videos.

� To verify the proposed method, this study conducted a comprehensive set of experiments over
numerous pre-trained models such as NASNetMobile, MobileNetV1, EfficientNetB0, VGG19, and
VGG16 using the newly generated Fire Surveillance (SV-Fire) dataset. Furthermore, to investigate
the effectiveness, this article compared the performance of the proposed E-FireNet with the SOTA
models with respect to the accuracy, parameters, and FPS.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature, Section
3 describes the proposed methodology, and Section 4 presents the experimental results. Finally, Section
5 summarizes the findings and suggests future directions.

2 Literature Review

Fire is an abnormal event that leads to serious injury and death, and affects precious resources within a
short duration. Several techniques were proposed to monitor and control fire events in cities for saving life
and property. However, fire detection in real-time is a challenging task. For instance, a CNN-based technique
was proposed in [18], which aims to improve the accuracy and reduce the false-alarm rate. For improving the
performance, a pre-trained model with fine-tuning of the uppermost layers was used. Furthermore,
experiments were conducted over benchmark datasets, and 94.43% accuracy was achieved. Another
technique was proposed [19], to realize a false-alarm system for a fire event. Through the transfer
learning technique, InceptionV3 achieved excellent performance on test data. Several researchers trained
models using satellite-captured images for the classification of fire and normal scenes. The main aim was
to extract the region of fire using a local binary pattern for the reduction of false detection rates, and 98%
accuracy was achieved.

The approach presented in [20] resolved the fire detection issue through classification and segmentation
mechanisms. An artificial neural network was built for the binary classification and 76% accuracy was
realized. Nevertheless, the segmentation method was applied to determine the fire border, whereas, for the
fire mask, U-Net was used for up and down-sampling to obtain 92% precision and 84% recall. The
technique introduced in [21] uses You-Look-Only-Once (YOLO) model for flame detection and extracts
the visual features from video data frames. To overcome the overfitting problem and achieve efficient
performance, augmentation techniques, such as rotation, flipping, and brightness adjustment were applied.
Another study [22] used a Faster Region-based CNN (Fast-RCNN) to detect fire and normal scenes in an
image, and later extracted the spatial features via a CNN; for temporal features, Long-Short Term
Memory (LSTM) was employed to classify the target scene.
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In a recent study [23], a fast and accurate algorithm was developed for extracting spatial features from
surveillance video data. Three different versions of SqueezeNet were analyzed to compare their classification
performances. In-depth experiments were conducted and 95.02%, 98.46%, and 98.52% accuracy were
obtained with SqueezeNet1, SqueezeNet2, and SqueezeNet3, respectively. The technique presented in
[24] applied different CNNs such as AlexNet, GoogLeNet, and VGG16 to recognize different events
(smoke, non-fire, flame). The experimental results exhibited that the VGG16 model achieved the best
performance. Similarly, in another approach [25], a lightweight CNN model was developed for flame
detection in real-time, which mainly monitored and controlled the fire scenario in the early stage. A
recent study [26] proposed a technique based on a deep saliency network for video-based smoke
detection and compared the obtained results with those of ML and DL methods. In addition, the saliency
network aimed to highlight the Region-of-Interest (RoI), i.e., the smoke area in the images. To further
improve the model performance, various augmentation techniques were applied to the samples.

Several researchers with diverse background studies have applied lightweight models to detect and
classify fire in real-time. For instance, [27] proposed a lightweight CNN for fire detection and
classification. Furthermore, they computed the execution time to verify the model’s adaptability in real-
time processing.

Similarly, [28] introduced a method that could detect fire in real-time in both indoor and outdoor
surveillance videos. A multi-expert system was first employed to collect data based on color, shape, and
motion analysis. The Bag-of-Words (BoW) approach was then applied for motion representation. In
addition, real-time and web scraping videos of fire were utilized in experiments where the proposed
model achieved better performance. Researchers in [29] introduced a real-time fire detection technique
using a fusion algorithm and several sensors (smoke, flame, and temperature) in indoor and outdoor
domains for fire incident detection. The included literature is summarized and then listed in Table 1.

Table 1: Summary of the included literature, where BD and CD denote benchmark and custom dataset

Ref No. Description Dataset/
Type

Architecture Scenario

[18] Authors proposed architecture of deep learning for
surveillance videos, inspired by GoogLeNet.

Foggia/BD CNN Outdoor
and indoor

[19] Authors proposed a novel method for forest fire
classification based on satellite images.

NASA
worldview/
CD

InceptionV3 Outdoor

[20] Authors classified the presence and absence of fire in
videos based on binary classification.

Fire flame/
CD

ANN Outdoor

[21] Authors applied the YOLO model for flame detection
and compare the results of YOLO with the SOTA
shallow learning method.

Fire flame/
CD

YOLO Indoor

[22] Authors used neural networks to detect fire and smoke
in indoor and outdoor scenes in real-time using video
data.

Fire and
smoke/CD

RCNN,
LSTM

Outdoor

[23] Authors concatenated manual features with DL
features to create fast and accurate smoke detection in
a forest.

Smoke/CD DL Outdoor

(Continued)
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As part of this study, a CNN architecture E-FireNet is employed, for detecting fire. Several scenarios
were examined in the custom SV-Fire dataset, such as a fire in a car, a fire in a building, and non-fire. In
this study, the outdoor fire conditions differ from those described in previous literature. In comparison,
prior studies targeted only wildfire scenarios, including fire, smoke, non-fire scenarios, and non-smoke
scenarios.

3 Proposed Methodology

The proposed framework involves three main steps. In the first step, the collected fire images are pre-
processed to increase the number of samples. In the second step, images of diverse classes are input to
the proposed efficient CNN model, which effectively detects and classifies the fire into the respective
class. In the final step, the model takes a decision based on the predicted label for the given input image.
If the predicted label is a fire in a building or fire in a vehicle, an alert is generated to the nearest
emergency response department to take early action. A detailed pictorial representation of the proposed
framework is depicted in subsection 3.2; the step-wise procedure is presented in Algorithm 1. In the
initialization step of Algorithm 1, the drone acquires a Video Stream (VS) and loads a pre-trained Fire
Detection Model (FDM). When the frame is read, the RoIS is extracted and checked for the presence of
fire. If it is a non-fire image, the next frame is selected; else, if a fire is detected in the frame, an alert is
generated and sent to the emergency department and disaster teams. Furthermore, in the following
sections, this article briefly discusses each step of the proposed framework.

Table 1 (continued)

Ref No. Description Dataset/
Type

Architecture Scenario

[24] Authors proposed a novel method to recognize video-
based fire and smoke using the DL technique.

Fire and
smoke/CD

CNN Outdoor

[25] Authors proposed a novel algorithm of CNN for real-
time flame detection by pre-processing the fire videos.

Bilkent Uni.
fire/BD

CNN Indoor and
outdoor

[26] Authors proposed a method for real-time smoke
detection in videos based on a deep saliency network.

Smoke/CD Saliency
Network

Indoor and
outdoor

[27] Authors presented a CNN architecture for fire
detection in a surveillance scenario and compared the
proposed method with SOTA techniques.

Foggia and
BoWFire/
BD

CNN Indoor and
outdoor

[28] Authors proposed a technique which is capable to
detect fire in an early stage in real-time.

Fire flame/
CD

Multi-
Expert
System

Indoor and
outdoor

[29] Authors developed a fire detection robot based on
sensors, such as smoke sensors, temperature
semiconductor sensors, and ultraviolet sensors.

N/A Multi-
Sensor IoT
System

Indoor
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Algorithm 1: Fire detection algorithm in a complex surveillance environment using E-FireNet.

Input: Drone Video Stream

Output: Return FireDetected

Initialization:

FDM ← Load Pre-Trained Fire Detection Model (FDM)

VS ← Acquire Video Stream

while VS do

| Frame ← Read (VS)

| RoIS ← FDM (Frame)

| if RoILabel is non-fire then

| | select next Frame; /* No action processing next frame */

| else

| | if RoILabel = fire then

| | | Send an emergency alert; /* Call disaster response team */

| | end

| end

end

Return: FireDetected

3.1 Pre-processing of the Collected Data

Pre-processing refers to all the alterations [30] performed on the raw data before being fed to the
proposed E-FireNet model. Which is an E2E model that detects fire in a complex surveillance
environment. To realize high-performance, DL models require immense training data; therefore, an
augmentation technique is applied to generate new samples for training. For augmentation, several
operations are performed, including different alignments, locales, and scales, as shown in Fig. 1. The
applied augmentation techniques are the most efficient and convenient position augmentation in terms of
upscaling the data samples. The experimental results before and after data augmentation are presented in
subsection 4.3.

Furthermore, geometric transformations are applied to a normal image to obtain additional images from
an input image. The input image was flipped horizontally and scaled. In addition, the input image was rotated
clockwise and counter-clockwise by 10 and −10 deg. CNN architectures have become more resilient because
of the usage of a large variety of samples, which improved the model classification capability. Thus, the
model must be familiar with objects of various sizes, their alignment, and all types of data compositions.
Therefore, a DL model must employ augmentation approaches for generating new images in order to deal
with all these different attributes. During the augmentation process, the DL model learns the same object
from different angles and viewpoints for better generalization.
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3.2 E-FireNet Framework

To monitor complex video surveillance, CNNs are often used for tasks such as activity and action
recognition, anomaly detection, classification, and object detection [31–35], as well as a wide range of
other identification, medical image diagnosis, video summarization, and segmentation applications
[36–40]. The CNN architecture comprises three main components: the Convolution Layer (CL), pooling
layer, and fully linked layer. A deep CNN includes a single input and a multitude of hidden, fully-linked,
and Softmax layers. To build feature maps using deep CNNs, a number of parameters, local receptive
fields, and various kernels are utilized that highlight the important characteristics of the objects in the
picture. For dimensionality reduction, the feature maps are sub-sampled with average, minimum, or
maximum pooling.

The selection of an appropriate CNN architecture for a certain situation is challenging in order to achieve
adequate results while balancing the computational complexity. Each CNN has its own set of advantages and
disadvantages based on the proposed architecture; for example, the design and development of AlexNet and
VGG16 architectures are easier. In the ImageNet contest, AlexNet architecture was showcased and has
become the benchmark architecture for DL. Increasing the number of CLs in a network is considered to
enhance performance, as confirmed by the VGG model. As a robust feature extractor that can cope
with large datasets and complex background identification tasks, the authors [24] suggested VGG16, a
16-layer architecture with the same filter size and considerable improvement in the classification.

Regardless of their numerous perks, VGG19 and VGG16 are not resource-friendly with respect to the
overall size and training parameters. Architectures such as the NASNetMobile, MobileNetV1, and
EfficientNetB0 CNN are resilient and considerably less costly, as MobileNetV1 and NASNetMobile have
been specifically developed for fast inference time. Considering real-world implementation, resource

Figure 1: A variety of geometric transformations were undertaken in order to increase the number of
samples in the dataset: (a) normal images, (b) horizontal flip, (c) scaling, and (d and e) rotation at various
degrees

CSSE, 2023, vol.46, no.1 755



computation cost, and repression of the constraints in present lightweight models, this study proposes an
efficient fire detection and classification model, E-FireNet. The proposed framework is presented in
Fig. 2. Initially, the performances of prominent ImageNet and pre-trained CNN architectures including
VGG16, ResNet50, MobileNetV1, and NASNetMobile before developing the new E-FireNet framework
are examined. This article particularly focuses on extracting fire zones using visually perceptible data
successfully. As a result, this article included a smaller version of the captured image, unlike previous
CNNs, to effectively recognize fire zones. This research entirely eliminated Block-5 of the VGG16 to
reduce the number of parameters and training time. Additionally, the model was able to achieve higher
accuracy when compared with other SOTA models despite a limited number of parameters and higher
FPS. Moreover, this approach employs a smaller input size to retrieve minute information. As a result,
the classifier can learn more characterized features.

The input image size for the proposed E-FireNet is 128 × 128 with 3 channels, and 32 distinct filters for
red, green, and blue. Deep feature extraction can be accomplished, but the scale of each filter increases with
respect to each progressive block. The filter sizes for the first, second, third, and fourth blocks were set as 64,
128, 256, and 512 respectively. In each layer of the proposed E-FireNet model, a linear function called
Rectified Linear Activation (ReLU) is applied, which produces a direct output if the input is positive,
otherwise, it produces zero. Subsequently, the input from the fourth block is forwarded to the pooling
layers where Global Average Pooling is applied and it is finally conveyed to the Softmax layer, which
provides a spread over the three class categories namely building fire, car fire, and non-fire. Table 5 In
subsection 4.3 the article lists the training parameters of the proposed model.

Figure 2: Proposed E-FireNet framework for fire detection and classification. Initially, pre-processing of the
collected data is performed, followed by fire detection using the proposed technique, and finally, in case of
fire detection, alarm generation to the law enforcement, healthcare, and management departments
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4 Experimental Results

This section investigates the assessment measures and evaluation metrics in detail and describes the
collected dataset and the graphical outcomes. The experimental setup and performance metrics are first
described, followed by a discussion on the SV-Fire dataset, and the evaluation of the results. All the
models, including the proposed E-FireNet, were trained using a total of 30 epochs with a low learning-
rate to ensure that the model retained most of the previously learned knowledge. The pre-trained model
progressively updates the learning parameters for optimum performance on the intended dataset. In
subsection 4.3 the article compares the proposed model with the SOTA models and lists the main hyper-
parameters utilized in these experiments. Based on the results, each model was retrained with its default
input size, with a batch size of 16, and the Stochastic Gradient Descent (SGD) optimizer was equipped
with a learning-rate and momentum of 1e-4 and 0.9, respectively. The experiments were conducted on an
NVIDIA RTX 2060 Super GPU with 32-GB of onboard memory, a Keras DL framework, and
TensorFlow for the back-end. As shown in the following equations, the performance of the proposed
model was assessed by utilizing multiple evaluation metrics, including accuracy, precision, recall, and F1-
score.

4.1 Evaluation Metrics

In the classification problem, accuracy is defined as the number of correct predictions produced by the
model over all the types of predictions made,

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN

� �
; (1)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.

Precision is a metric that indicates the percentage of the dataset labeled as fire truly contains fire. The
predicted positives (images predicted to be fire are TP and FP), and the photos with a fire scenario are TP.

Precision ¼ TP

TP þ FP

� �
; (2)

Recall is a metric that shows the percentage of observations in a dataset that were predicted as having a
fire by the model. The real positives and fire images predicted by the model are TP.

Recall ¼ TP

TP þ FN

� �
; (3)

The F1-score measures the precision and recall harmonically.

F1� score ¼ 2� Precision� Recall

Precisionþ Recall

� �
: (4)

4.2 Dataset Collection

Finding appropriate data for evaluation is a difficult and time-consuming process. The authors could not
find publicly accessible datasets for fire detection that satisfied the requirements for fire detection in buildings
and cars. Owing to the unique nature of the findings of this study, a novel SV-Fire dataset is developed by
collecting images from a variety of online sources. The major goal was to collect an image of a fire in a
building and a car. Different settings and lighting situations are depicted in these high-resolution pictures.
To make it more challenging, a new class of non-fire photos with an orange and red tint, as well as cars
painted with fire decals, were added to the dataset. The overall statistics of SV-Fire are listed in Table 2.
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This article presents several sample images as well as the general statistics of the newly created dataset.
The code and dataset are publicly available at the following link: (https://github.com/NaqqashDilshad/E-
FireNet). The total number of images in the SV-Fire dataset is 1500, while after augmentation the total
reaches 6000. There are three subgroups in the SV-Fire dataset: training, validation, and testing. The
training set comprises 70% of the total dataset, while the validation set comprises 20%, and the testing
set is only 10%. A few instances from the recently collected dataset are presented in Fig. 3.

4.3 Performance Comparison with SOTA

This article compared the proposed model with different pre-trained CNN-based architectures for fire
detection. The models were compared with respect to the number of parameters, precision, recall, F1-
score, and accuracy as shown in Tables 3 and 4. NASNetMobile and MobileNetV1 have the least
accuracy, whereas VGG16, VGG19, and the proposed E-FireNet model achieve high accuracies of 98%,
95%, and 98%, respectively. In addition, a comparison of the proposed model with MobileNetV1 shows
that although both models are computationally efficient, the main difference is the accuracy where E-
FireNet achieves approximately 21% higher accuracy than MobileNetV1.

Table 2: Overall statistics of the newly created SV-Fire dataset with a total of 1500 images: 1050 for
training, 150 for testing, and 300 for validation

Dataset Training Testing Validation Total

Before augmentation 1050 150 300 1500

After augmentation 4200 600 1200 6000

Figure 3: Sample images from our newly created SV-Fire dataset. The first, second, and third rows contain
building fire, car fire, and non-fire images, respectively. Each row has five pictures. To make it more
challenging, images with orange tint and fire look-alike are added
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A comparison of the proposed model with VGG16 indicates that the results of VGG16 are proximate to
those of the proposed model. However, the difference is the heavier weight, where VGG16 has
134.27 million parameters while E-FireNet has 7.63 million. The performance of the pre-trained models
is listed in Table 4. It can be observed that the pre-trained models achieve high performance with a low
false-alarm rate. However, the false prediction rate remains high and needs to be boosted. Therefore, this
research explored a fine-tuned and pre-trained convolution neural network architecture (E-FireNet) with

Table 3: Overview of the comparison of the input size and network training parameters of the proposed
E-FireNet with the SOTA models

Model Input size Batch size Parameters (million)

NASNetMobile 224 × 224 16 4.27

MobileNetV1 224 × 224 16 3.22

EfficientNetB0 224 × 224 16 4.04

VGG19 224 × 224 16 139.58

VGG16 224 × 224 16 134.27

E-FireNet 128 × 128 16 7.63

Table 4: Evaluation of the proposed model E-FireNet against the SOTA models utilizing the SV-Fire
dataset

Model Class Before augmentation After augmentation

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

NASNetMobile Car fire 0.55 0.54 0.55 0.59 0.64 0.44 0.52 0.59

Building fire 0.54 0.73 0.62 0.58 0.58 0.58

Non-fire 0.69 0.51 0.59 0.56 0.74 0.64

MobileNetV1 Car fire 0.59 0.54 0.57 0.62 0.75 0.77 0.76 0.77

Building fire 0.53 0.58 0.55 0.75 0.70 0.73

Non-fire 0.72 0.72 0.72 0.81 0.84 0.83

EfficientNetB0 Car fire 0.89 0.88 0.88 0.89 0.94 0.93 0.94 0.95

Building fire 0.84 0.91 0.87 0.92 0.94 0.93

Non-fire 0.93 0.88 0.90 0.98 0.97 0.97

VGG19 Car fire 0.92 0.92 0.92 0.92 0.99 0.88 0.93 0.95

Building fire 0.91 0.89 0.9 0.90 0.99 0.94

Non-fire 0.93 0.95 0.94 0.98 0.99 0.99

VGG16 Car fire 0.91 0.83 0.87 0.90 0.98 0.97 0.98 0.98

Building fire 0.84 0.91 0.87 0.96 0.98 0.97

Non-fire 0.95 0.95 0.95 0.99 0.99 0.99

E-FireNet Car fire 0.82 0.77 0.80 0.81 0.98 0.96 0.97 0.98

Building fire 0.71 0.78 074 0.95 0.99 0.97

Non-fire 0.89 0.88 0.88 1 0.99 0.99
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respect to accuracy and incorrect prediction. After tuning, E-FireNet attains the best performance among the
other models with fewer false predictions.

The confusion matrix for each SOTA model trained on the custom SV-Fire dataset is depicted in Fig. 4.
The red diagonal correlates with TP, whereas the saturation represents the accurate classification. The
proposed E-FireNet exhibits overall better classification accuracy compared to the SOTA models,
although some of the images in all three categories (building fire, car fire, and non-fire) are misclassified.
The training accuracy and training loss graphs are visualized in Fig. 5; the vertical axis represents the
accuracy and loss, whereas the horizontal axis shows the total number of epochs. It is evident from Fig. 5
that E-FireNet is effective for fire detection. As the number of iterations of the training and validation
processes increases, the training and validation accuracy line graph of the model change, as depicted in
Fig. 5a. The proposed E-FireNet converges on 27 epochs, and the training and validation accuracies reach
100% and 98%, correspondingly. Likewise, the training and validation loss values change and drop to
0.0 and 0.09 respectively, as depicted in Fig. 5b.

4.4 Time Complexity Analysis

To assess a deep model’s effectiveness, performance and deployment potential must be evaluated in real-
time across various devices, including a CPU and GPU. The specifications of the CPU and GPU employed
for analyzing the FPS of the proposed E-FireNet model are listed in Section 4. The criteria to assess the model
performance for real-time application is that the model achieving 30 or more FPS is considered optimal for
real-world scenarios. The FPS for the proposed E-FireNet model utilizing CPU and GPU is 22.17 and 30.58,

Table 5: The proposed E-FireNet summary with training parameters

Layer (type) Filter Kernel size Stride Parameters (million)

Conv_1 64 (3, 3) 1 0.001792

Conv_2 64 (3, 3) 1 0.036928

Max_Pool – (3, 3) 2 –

Conv_3 128 (3, 3) 1 0.073856

Conv_4 128 (3, 3) 1 0.147584

Max_Pool – (3, 3) 2 –

Conv_5 256 (3, 3) 1 0.295168

Conv_6 256 (3, 3) 1 0.59008

Conv_7 256 (3, 3) 1 0.59008

Max_Pool – (3, 3) 2 –

Conv_8 512 (3, 3) 1 1.18016

Conv_9 512 (3, 3) 1 2.359808

Conv_10 512 (3, 3) 1 2.359808

Max_Pool – (3, 3) 2 –

Global_Avg_Pool 512 – – –

Softmax (3) – – – 0.001539

Total parameters – – – 7.63

760 CSSE, 2023, vol.46, no.1



respectively. Fig. 6 compares the proposed E-FireNet model in terms of the FPS with several baseline
models.

Figure 5: The proposed E-FireNet training accuracy and training loss. (a) Model accuracy (b) model loss

Figure 4: Confusion matrices of the various CNN models against E-FireNet
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The experimental results show that employing the CPU and GPU, respectively, the FPS of the
NASNetMobile model is 15.23, and 18.96, EfficientNetB0 model is 18.28 and 23.73, the VGG19 model
is 6.81 and 25.32, VGG16 model is 7.68 and 26.42, and MobileNetV1 is 22.09 and 30.43. A comparison
of the time complexity of the E-FireNet model with those of the other baseline models indicates that the
performance of the proposed model is convincing. Thus, the proposed E-FireNet model is capable of
real-time processing and operation.

5 Conclusion

To reduce social, environmental, and financial damage, CNN-based smart monitoring systems have been
used to classify fire scenes in the early stages. Nevertheless, the research focuses on enhancing the accuracy,
and attention to the model computation and generalization is limited. Therefore, this study presented an
efficient framework (E-FireNet) that accurately classifies fire and non-fire images into their corresponding
classes. The proposed E-FireNet achieves the best validation accuracy of 0.98 with limited parameters in
comparison to the SOTA models. In addition, E-FireNet managed to achieve a precision of 1, a recall of
0.99, and an F1-score of 0.99. Furthermore, the SV-Fire dataset was collected since a dataset with diverse
scenarios was not available for evaluating the proposed method. A set of experiments were performed
using various CNN models and the proposed model, and their performances were compared in terms of
accuracy, parameters, and FPS over two local systems (CPU and GPU) using the test data. Future
research aims to expand the current dataset with new classes and apply vision transformers to fire detection.
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