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ABSTRACT

This methodology presented the unsteady three-dimensional laminar flow since Hall effects inducing the cross flow in z̃-axis. The boundary
layer and the low magnetic Reynolds number approximations are used to simplify the system of equations derived from the constitutive laws.
The upper-convected Maxwell (UCM) fluid model used for Hall effects with unsteady heat transfer, which passed through the infinite stretching
sheet. This flow model has intensified with the effects of magnetohydrodynamic (MHD), thermal radiation and heat generation-absorption. Here,
we selected the two-parameter Lie scaling transformations to convert the highly non-linear partial differential equations (PDEs) to the ordinary
differential equations (ODEs) which are studied numerically using the MATLAB bvp4c method. The main parameters are: Deborah number Deu,
Hartmann number Mu, Hall effects parameter mu, Prandtl number Pr, thermal radiation parameter δu and heat generation-absorption Qu. Hall
effects reduced the transport rate in the x̃-axis but increased the transport rate in the z̃-axis. On the other hand, the Hall parameter is extravagant to
transport the internal energy of the system.

Keywords: Hall effects; UCM; Stretching sheet; Two-parameter Lie scaling; thermal radiation.

1. INTRODUCTION

The advent of non-Newtonian fluid dynamics is based on the Newton’s
law of viscosity theory, which is not appropriate for the analysis of all
the rheological properties of the fluid. The non-Newtonian fluids were
not examined by a single constitutive equation. There are many consti-
tutive relationships for the discovery of the numerous properties of non-
Newtonian fluids. In addition , non-Newtonian fluids are categorized into
differential form, rate form and integral type. For reality, the major ap-
plications of non-Newtonian fluids in the fields of material production,
the chemical industry and bioengineering can be described Huang et al.
(2019). Examples include mercury amalgams in dental surgery, liquid
metals, plastic extrusions, paper coating process, lubricants and differ-
ent types of oils Ndlovu and Moitsheki (2018); Oosthuizen and Manna
(2019). Stress relaxation effects are the main characteristics of the model
of the rate type. Through this view, James Clerk Maxwell introduced
a model that did not have the capacity to shear dependent viscosity and
instead investigated the fluid elasticity.

Due to its large applications, Rajagopal and Gupta (1984) presented
an accurate analysis of the non-Newtonian fluid that passed through an in-
finite porous plate. Sadeghy et al. (2005) demonstrated the flow of UCM
to the Sakiadis. Jamil and Fetecau (2010) analyzed the UCM model be-
tween helical-flow coaxial cylinders. Mixed convection is used by Abbas
et al. (2010) for the Maxwell fluid with stagnation point flow and stretch-
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ing sheet. Furthermore, the exact solutions are provided by Zheng et al.
(2011) by choosing the Maxwell fluid model with an oscillatory channel.
The UCM fluid model is used by Hayat et al. (2012) for moving surface
with thermal transfer analysis. To extend this form of flow Abel et al.
(2012) proposed a heat transfer study of the MHD flow for the UCM fluid
model. In addition, Awais et al. (2014) advocated three-dimensional
fluid flow for the UCM model. The natural convection used by Zhao
et al. (2016) for the fractional Maxwell fluid model, which moves over the
vertical plate. Nonlinear thermal radiation, non-uniform heat generation-
absorption and fluid particle suspension effects are discussed by Gireesha
et al. (2018) for mixed convective Maxwell fluid. In addition , there are
numerous recent studies on the UCM fluid model Hussain et al. (2016);
Mahanthesh et al. (2017); Bilal et al. (2018); Kashyap et al. (2019); Fa-
rooq et al. (2019). The MHD study is essential in order to improve the
transport rate and the transport of internal energy within the system. The
MHD effect plays a vital role in a variety of fields, such as astrophysics,
solar storms, stellar dynamics, solar structures and galaxy studies Vijaya
and Ramana Reddy (2020). In this view, the Hall effect occurred as a re-
sult of the Lorentz force’s action. In the case of a conductor, a current is
passed and a magnetic field is applied perpendicularly Dharmaiah et al.
(2020). As a result, the electrical field potential of the system is developed
in both directions of the current and the magnetic field. The current study
of the Hall, first discussed by Edwin Hall and later provoked Hall et al.
(1879) as a new action of magnetic currents. To extend this theory, many
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writers have presented a vast literature to identify the physics behind the
MHD and the Hall effects ( Sato (1961), Jana and Datta (1977), Man-
dal and K. Mandal (1983), Nagy and Demendy (1995)). The Hall’s ef-
fects on the flow of internal energy have become more interesting for
researchers as it has various applications in all fields of science. It is
Raju et al. (2011) which combines the effects of unstable MHD, Hall
effects, continuous suction, oscillation and porous effects between two
stretching sheets. Free convection is performed by Maripala and Naikoti
(2015) with Hall effects and MHD flow for stretching sheets with viscous
dissipation. The MHD free convection fluid flow of Seth et al. (2016)
with Hall, thermal radiation and heat abortion effects is considered to be
a moving vertical plate. Again, Sreedevi et al. (2016) studied the thermal,
Hall and absorption effects of free convective flow through the stretching
surface. Also, the exponential effects on the stretching sheet advocated
by Srinivasacharya and Jagadeeshwar (2017) with the Hall and Joule
heating effects. In addition, MHD fluid flow with specific effects, such
as Hall, thermal radiation and heat generation-absorption, has been expe-
rienced by several researchers ( Reddy et al. (2018), Krishna and Jyothi
(2018), VeeraKrishna et al. (2018), Padma and Suneetha (2018),‘Veera
Krishna and Jyothi (2018)). Recently, ( Alkasasbeh et al. (2020), Zhou
et al. (2020), Kaprawi et al. (2019), Khoshrouye Ghiasi and Saleh (2018))
presented various effects for the non-Newtonian fluid. Moreover, Tu-
fail et al. (2020)applied group theoretic approached to analyzed the non-
Newtonian fluid with oscillation effects. Three-dimensional flow was
considered to be explored with Hall effects in the presence of an unsteady
UCM fluid model. This fluid model is enhanced by thermal radiation and
heat generation-absorption analysis. The law on the conservation of mass
, momentum and energy modeled the flow of fluids. The resulting highly
nonlinear PDEs are not easily addressed. So, two-parameter transfor-
mations of Lie scaling have been used. Two-parameter transformations
transform the PDEs into ODEs by reducing the three independent vari-
ables to one independent variable. The converted ODEs have been fixed
by bvp4c in MATLAB. The related parameters are provided in the graphs
and the validation of the model studied in the literature.

2. GEOMETRY OF THE PROBLEM

The primary flow along the x̃-axis as represented in (Figure 1) with ver-
tical stretching sheet in upward direction and the secondary flow is along
the z̃-axis. ỹ-axis is normal to the stretching sheet which is lie in x̃z̃-
plane. The velocity vector is Ṽ = (ũ(t̃, x̃, ỹ, z̃), ṽ(t̃, x̃, ỹ, z̃), w̃(t̃, x̃, ỹ, z̃)).
TheHy is the transverse magnetic field which is applied in parallel direc-
tion of y-axis. Initially, for t = 0 the surface and the fluid are at rest. The
transport of the internal energy is maintained at T̃ (t̃, x̃, ỹ, z̃) = T̃u. But,
for t̃ > 0 the surface is going to start move in its own plane with the veloc-
ity ũ(t̃, x̃, ỹ, z̃) = x̃

t
and the transfer of the internal energy is fixed with

T̃ (t̃, x̃, ỹ, z̃) = T̃∞ +
(
T̃h − T̃∞

)
x̃
t2

. Choose the magnetic Reynolds
number is very small then the induced magnetic field will become zero.
Due to assumption of the infinite length of the ỹ-axis, there is no flow
variations in this direction. The imposition of the Hall current generated
due to the strong magnetic field in the direction of the ỹ-axis in Figure 1.
After ignoring the ion slips, thermo electric, viscous and electrical dissi-
pation effects, we used the constitutive laws, generalized Ohm’s law and
Maxwell’s equations ( Harris (1977), Tie-Gang et al. (2009)) with Hall
effects:

∇ ·V = 0 (1)

ρau = ∇ ·T + JH (2)

and
J +

ωeτe
Hy

(J×H) = σ(E + V ×H) (3)

where J = (Jx, Jy, Jz) indicates the current density vector, V indicates
the velocity vector, E indicates the electric field vector, H = (0, Hy, 0)
indicates the magnetic induction vector, τe indicates the electron collision
time, ωe indicates cyclotron frequency of electron and σ = eeneτe

me
with

ỹ, ṽ
w̃, z̃

O

Primary flow

Secondary flow

Hy

ũ, x̃

Fig. 1 Flow diagram due to Hall effects

e indicates the charge of electron, ne indicates the number of density of
electron, me indicates the number of the electron) indicates the electrical
conductivity. In Eq. (2)

au =
dV

dt
=
∂V

∂t
+ (V.∇)V (4)

and for UCM, the Cauchy stress tensor is

T = −pI + S (5)

and S is defined as (
1 + λ

D

Dt

)
S = µA1 (6)

where λ indicates the relaxation time, µ indicates the dynamics viscosity
and A1 indicates the first Rivlin-Ericksen tensor which is defined as

A1 = L + LT
′
,L = ∇V (7)

Now, S indicated as a two rank tensor in Eq. (6), the relation can be
written as

DS

Dt
=
∂S

∂t
+ (V · ∇)S− LS− SLT

′
(8)

where T ′ indicates the transpose vector and the momentum equation for
UCM is

ρau = −∇p+∇ · S (9)

applying
(
1 + λ D

Dt

)
on both side of Eq. (9) then we get

ρ

(
1 + λ

D

Dt

)
au = −

(
1 + λ

D

Dt

)
∇p+

(
1 + λ

D

Dt

)
∇ · S+(

1 + λ
D

Dt

)
(J×H) (10)

By following Tie-Gang et al. (2009)

D

Dt
(∇.) = ∇.

(
D

Dt

)
(11)
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using the above relation in Eq. (11), we arrived at

ρ

(
1 + λ

D

Dt

)
au = −

(
1 + λ

D

Dt

)
∇p+∇ ·

(
1 + λ

D

Dt

)
S+(

1 + λ
D

Dt

)
(J×H) = −

(
1 + λ

D

Dt

)
∇p+ µ∇ ·A1+(

1 + λ
D

Dt

)
(J×H) (12)

After neglecting the pressure gradient term in Eq. (12) then the result is

ρ

(
1 + λ

D

Dt

)
au = µ∇ ·A1 +

(
1 + λ

D

Dt

)
(J×H) (13)

For Eq. (3), the term J + ωeτe
Hy

(J×H) indicates the electric field in the
moving frame. The law of conservation of current resulted as

∇.J = 0 (14)

Eq. (14) made the vector as J = (Jx, 0, Jz) i. e. Jy = 0 as the surface
is electrically non conducting every where in the fluid flow. Moreover,
Maxwell’s equations implies that

∇× E = 0 (15)

the Eq. (15) resulted as E = 0 in the right hand side of Eq. (3) which
indicates the drag electron on the ions. The second term V × H of the
right hand side of Eq. (3) indicates the contribution of Hall effects. After
using Eqs. (14)-(15) in Eq. (3), we arrived at the following results

Jx −muJz = −σHyw̃ (16)

Jz +muJx = σHyũ (17)

where mu = ωeτe indicates the Hall parameter and after solving Eqs.
(16)-(17) simultaneously, we get

Jx =
σHy

1 +m2
(muũ− w̃) (18)

Jz =
σHy

1 +m2
(ũ+muw̃) (19)

Now the system of boundary layer equations in terms of x̃ and z̃ are

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0 (20)

∂ũ

∂t̃
+ ũ

∂ũ

∂ỹ
+ ṽ

∂ũ

∂ỹ
+ λ

[
∂2ũ

∂t̃2
+ 2

(
ũ
∂2ũ

∂x̃∂t̃
+ ṽ

∂2ũ

∂ỹ∂t̃

)
+ ũ2 ∂

2ũ

∂x̃2
+

2ũṽ
∂2ũ

∂x̃∂ỹ
+ ṽ2 ∂

2ũ

∂ỹ2

]
= ν

∂2ũ

∂ỹ2
− 1

ρ

(
1 + λ

D

Dt

)
JzHy
t

(21)

∂w̃

∂t̃
+ ũ

∂w̃

∂ỹ
+ ṽ

∂w̃

∂ỹ
+ λ

[
∂2w̃

∂t̃2
+ 2

(
ũ
∂2w̃

∂x̃∂t̃
+ ṽ

∂2w̃

∂ỹ∂t̃

)
+

ũ2 ∂
2w̃

∂x̃2
+ 2ũṽ

∂2w̃

∂x̃∂ỹ
+ ṽ2 ∂

2w̃

∂ỹ2

]
= ν

∂2w̃

∂ỹ2
+

1

ρ

(
1 + λ

D

Dt

)
JxHy
t

(22)

and thermal boundary layer equation is

∂T̃

∂t̃
+ũ

∂T̃

∂x̃
+ṽ

∂T̃

∂ỹ
=

k

ρCP

∂2T̃

∂ỹ2
+

4γ2

ρCP t

(
T̃ − T̃∞

)
+

Q′0
ρCP t

(
T̃ − T̃∞

)
(23)

with time dependent boundary conditions ( Mahdy (2015), Bachok et al.
(2012), Palani et al. (2016))

t ≤ 0 :

{
ṽ(t̃, x̃, ỹ, z̃) = 0, ũ(t̃, x̃, ỹ, z̃) = 0, w̃(t̃, x̃, ỹ, z̃) = 0,

T̃ (t̃, x̃, ỹ, z̃) = T̃∞, at ỹ = 0
(24)

t > 0 :


ṽ(t̃, x̃, ỹ, z̃) = −

√
ν
t̃
, ũ(t̃, x̃, ỹ, z̃) = ũu = x̃

t̃
, w̃(t̃, x̃, ỹ, z̃) = 0,

T̃ (t̃, x̃, ỹ, z̃) = T̃∞ +
(
T̃u − T̃∞

)
x
t2
, at ỹ = 0

ṽ(t̃, x̃, ỹ, z̃)→ 0, ũ(t̃, x̃, ỹ, z̃)→ 0, w̃(t̃, x̃, ỹ, z̃)→ 0,

T̃ (t̃, x̃, ỹ, z̃)→ T̃∞, as ỹ →∞
(25)

The unknowns quantities in Eqs. (20)-(25) promoted as: t̃ indicates the
unsteadiness, ũ indicates the axial velocity in x̃-direction,w̃ indicates the
axial velocity in z̃-direction, ρ fluid density, k indicates the thermal con-
ductivity, CP indicates the specific heat at constant pressure, T̃ indicates
fluid temperature, T̃u indicates the referenced fluid temperature and T̃∞
indicates the free stream fluid temperature. Moreover, Uu indicates the
reference velocity and Lu indicates the reference length and by the use
of these two quantities, we have the following system

x =
x̃

Lu
, y =

ỹ

Lu
Re

1
2 , u =

ũ

Uu
, v =

ṽ

Uu
Re

1
2 , t =

Uut̃

Lu
, w =

w̃

Uu
,

θ =
T̃ − T̃∞
T̃u − T̃∞

. (26)

Now, the system of Eqs. (21)-(25) will be in dimensionless form after
using Eq. (26) as

∂u

∂x
+
∂v

∂y
= 0 (27)

∂u

∂t
+u

∂u

∂y
+v

∂u

∂y
+De∗u

[
∂2u

∂t2
+2

(
u
∂2u

∂x∂t
+ v

∂2u

∂y∂t

)
+u2 ∂

2u

∂x2
+

2uv
∂2u

∂x∂y
+ v2 ∂

2u

∂y2

]
=
∂2u

∂y2
− M2

u

(1 +m2
u) t

(u+mw)− M2
u

(1 +m2
u) t

De∗u

[
∂(u+mw)

∂t
+ v

∂u

∂y
+mu

∂w

∂x
+mv

∂w

∂y

]
(28)

∂w

∂t
+u

∂w

∂y
+v

∂w

∂y
+De∗u

[
∂2w

∂t2
+2

(
u
∂2w

∂x∂t
+ v

∂2w

∂y∂t

)
+u2 ∂

2w

∂x2
+

2uv
∂2w

∂x∂y
+ v2 ∂

2w

∂y2

]
=
∂2w

∂y2
+

M2
u

(1 +m2
u) t

(mu− w) +
M2
u

(1 +m2
u) t

De∗u

[
∂(mu− w)

∂t
+vm

∂u

∂y
+mu

∂u

∂x
−u∂w

∂x
−v ∂w

∂y
−mu∂w

∂x
+w

∂w

∂x

]
(29)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
+ (δu +Qu)

θ

t
(30)

with

u = ut =
x

t
, v = vu = −

√
1

t
, θ =

x

t2
at y = 0 (31)

u = 0 = w = v, θ → 0, as y →∞ (32)

the dimensionless parameters in Eqs. (27)-(32) are

Pr =
ρCP
k

,M2
u =

σH2
yLu

ρUu
, De∗u =

λUu
Lu

, δu =
4γ2

ρCP
, Qu =

Q′0
ρCP

Pr indicates the Prandtl number,Mu indicates the Hartmann number and
Deu indicates the Deborah number.

3. TWO-PARAMETER LIE SCALING TRANSFORMATIONS

There are numerous methods to solve the ODEs in literature. But here we
used the special class of the Lie scaling group of transformations. The
translation method discovered by Sophus Lie and the method was the re-
sult of the Invariance of differential equations in the continuous group of
symmetries. The applications of this theory are: topology, invariant the-
ory, classical mechanics, relativity, differential geometry, and many more.
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Fig. 2 Impact of x̃ velocity component for Mu

Fig. 3 Impact of x̃ velocity component for mu

Normally, scaling transformations are often referred to as one-parameter
transformations ( Mukhopadhyay and Bhattacharyya (2012), Megahed
et al. (2003), Ibrahim et al. (2005), Rosmila et al. (2012), Hamad et al.
(2012), Reddy (2013), Uddin et al. (2015), Rehman et al. (2018), Uddin
et al. (2016b), Uddin et al. (2016a), Rehman et al. (2017), Pal and Roy
(2018), Das et al. (2019)) This flow model has three independent vari-
ables, so we need to extend the Lie scaling theory from one-parameter to
two-parameter Lie scaling transformations. As, three independent vari-
ables are transformed to one independent variable. For this model, the
two-parameter Lie scaling transformations described as:

t̂ = tCΩ1 , x̂ = xDΠ1 , û = uCΩ2DΠ2 , v̂ = vCΩ3DΠ3 ,

ŷ = yCΩ4DΠ4 , θ̂ = θCΩ5DΠ5 , ŵ = wCΩ6DΠ6 (33)

whereC,D,Ωi,Πi(i = 1, 2, 3, 4, 5, 6) are arbitrary constants. The PDEs
(27)-(30) according to the boundary conditions (31) and (32) are solved
by using two-parameter scaling transformations as Eq. (33). As it is a
complex problem and difficult to get the exact solution so we represent
the numerical solution after getting the ODEs. Eq. (33) made the system

Fig. 4 Impact of x̃ velocity component for Deu

Fig. 5 Impact of z̃ velocity component for Mu

of Eqs. (27)-(32) as:

∂û

∂t̂
C−Ω2+Ω1D−Π2 + û

∂û

∂x̂
C−2Ω2D−2Π2+Π1 + v̂

∂û

∂ŷ
C−Ω2+Ω4−Ω3

D−Π4−Π3−Π2+De∗u

[
∂2û

∂t̂2
C2Ω1−Ω2D−Π2+2

(
û
∂2û

∂x̂∂t̂
CΩ1−2Ω2D−Π1−2Π2

+v̂
∂2û

∂ŷ∂t̂
C−Ω2+Ω1−Ω3+Ω4D−Π2−Π3+Π4

)
+û2 ∂

2û

∂x̂2
C−3Ω2D2Π1−3Π2

+2ûv̂
∂2û

∂x̂∂ŷ
C−2Ω2−Ω3+Ω4D−Π2+Π1+Π4−Π3+v̂2 ∂

2û

∂ŷ2
C−2Ω3−Ω2+2Ω4

D−2Π2+2Π4−Π2

]
=
∂2û

∂ŷ2
C2Ω4−Ω2D2Π4−Π2

− M2
u

(1 +m2
u) t̂C−Ω1

(
ûC−Ω2D−Π2 +mŵC−Ω6D−Π6

)
− M2

u

(1 +m2
u) t̂C−Ω1

De∗u

[
∂û

∂t̂
C−Ω2+Ω1D−Π2

+m
∂ŵ

∂t̂
C−Ω6+Ω1D−Π6 + v̂

∂û

∂ŷ
CΩ4−Ω3−Ω2DΠ4−Π3−Π2

+mû
∂ŵ

∂x̂
C−Ω6+Ω2DΠ1−Π2−Π2+mv̂

∂ŵ

∂ŷ
CΩ4−Ω3−Ω2DΠ4−Π3−Π6

]
(34)
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Fig. 6 Impact of z̃ velocity component for mu

Fig. 7 Impact of z̃ velocity component for Deu

∂ŵ

∂t̂
C−Ω6+Ω1D−Π2+û

∂ŵ

∂x̂
C−Ω2+Ω6D−Π2+Π1−Π6+v̂

∂ŵ

∂ŷ
C−Ω6+Ω4−Ω3

DΠ4−Π3−Π6+De∗u

[
∂2ŵ

∂t̂2
C2Ω1−Ω6D−Π6+2

(
û
∂2ŵ

∂x̂∂t̂
CΩ1−Ω6−Ω2DΠ1−Π2−Π6

+ v̂
∂2ŵ

∂ŷ∂t̂
CΩ1−Ω3−Ω6+Ω4DΠ4−Π3−Π6

)
+ û2 ∂

2ŵ

∂x̂2
C−2Ω2−Ω6

D−2Π1−2Π2−Π6 + 2ûv̂
∂2ŵ

∂x̂∂ŷ
C−Ω2−Ω3+Ω4−Ω6DΠ1−Π3−Π2+Π4

+v̂2 ∂
2ŵ

∂ŷ2
C−2Ω3−Ω6+2Ω4D−2Π3+2Π4−Π6

]
=
∂2ŵ

∂ŷ2
C2Ω4−Ω6D2Π4−Π6

+
M2
u

(1 +m2
u) t̂C−Ω1

(
mûC−Ω2D−Π2 − ŵC−Ω6D−Π6

)
+

M2
u

(1 +m2
u) t̂C−Ω1

De∗u

[
m
∂û

∂t̂
C−Ω2+Ω1D−Π2− ∂ŵ

∂t̂
C−Ω6+Ω1D−Π6

+mû
∂û

∂x̂
C−2Ω2DΠ1−2Π2−û ∂ŵ

∂x̂
C−Ω6−Ω2DΠ1−Π2−Π6+mv̂

∂û

∂ŷ
CΩ4−Ω3−Ω2

DΠ4−Π3−Π2 v̂
∂ŵ

∂ŷ
C−Ω2+Ω1D−Π2 −mû∂ŵ

∂x̂
C−Ω6−Ω2DΠ1−Π2−Π6

+ ŵ
∂ŵ

∂x̂
C−Ω6D−2Π6+Π1

]
(35)

Fig. 8 Impact of heat transfer θ(ξ) for Mu

Fig. 9 Impact of heat transfer θ(ξ) for mu

∂θ̂

∂t̂
CΩ1−Ω5D−Π5 +û

∂θ̂

∂x̂
C−Ω2−Ω5DΠ2−Π2−Π5 +v̂

∂θ̂

∂ŷ
CΩ4−Ω3−Ω5

DΠ4−Π3−Π5 =
1

Pr

∂2θ̂

∂ŷ2
C−Ω5+2Ω4D−Π5+2Π4+

(
δu+Qu

)
θ̂

t̂
CΩ1−Ω5D−Π5

(36)

with the following converted boundary conditions

ûC−Ω2D−Π2 =
x̂

t̂
CΩ1B−Π1 , v̂C−Ω3D−Π3 =

√
CΩ1

t̂
(37)

θ̂C−Ω5D−Π5 =
x̂

t̂2
C−2Ω1D−Π1 (38)

We arrived at the following results

Ω2 = −Ω1,Ω3 = −Ω1

2
,Ω5 = −2Ω1 (39)

Π2 = Π1,Π3 = 0,Π5 = Π1 (40)

From Eq. (27)

∂û

∂x̂
C−Ω2D−Π2+Π1 +

∂v̂

∂ŷ
C−Ω3+Ω4D−Π3+Π4 = 0 (41)
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Fig. 10 Impact of heat transfer θ(ξ) for Deu

Fig. 11 Impact of heat transfer θ(ξ) for δu

On comparing

Ω4 =
Ω1

2
,Π4 = 0,Ω6 = −Ω1,Π6 = Π1 (42)

Eq. (33) resulted as after using Eqs. (39)-(40) and (42)

t̂ = tCΩ1 , x̂ = xDΠ1 , û = uC−Ω1DΠ1 , v̂ = vC−
Ω1
2 ,

ŷ = yC
Ω1
2 , θ̂ = θC−2Ω1DΠ1 , ŵ = wC−Ω1DΠ1 (43)

3.1. Absolute Invariants

Eqs. (33) and (43) promoted to the following result:

ŷ

t̂
1
2

=
y

t
1
2

(44)

with the help of Eq. (44), the first absolute invariant is

ξ = ŷt̂
−1
2 (45)

and the remaining absolute invariants are:

dfu(ξ)

dξ
=
û

x̂
t̂, hu(ξ) =

v̂

t̂
1
2

, gu(ξ) =
ŵ

x̂t̂−1
, θ(ξ) =

θ̂

t̂−2x̂
(46)

where ξ is the similarity independent variable.

Fig. 12 Impact of heat transfer θ(ξ) for Qu

Fig. 13 Impact of heat transfer θ(ξ) for Pr

3.2. Reduced governing system

Introducing the stream function ψ(x, y, t) as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(47)

Eqs. (45)-(47), we arrived at the value of ψ(x, y, t)

ψ = −xt
−1
2 hu(ξ) (48)

where we get the value of hu

ψ = xt
−1
2

(
fu(ξ)− ξ dfu(ξ)

dξ

)
(49)

after comparing, the system of Eqs. (34)-(35) in terms of absolute invari-
ants Eq. (46)

hu(ξ) = −
(
fu(ξ)− ξ dfu(ξ)

dξ

)
(50)
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The system of Eqs. (34)-(38) in terms of absolute invariants Eq. (46)

− dfu(ξ)

dξ
− 1

2
ξ
d2fu(ξ)

dξ2
+

(
dfu(ξ)

dξ

)2

+ hu(ξ)
d2fu(ξ)

dξ2

=
d3fu(ξ)

dξ3
−Deu

[
2
dfu(ξ)

dξ
− 1

2

d2fu(ξ)

dξ2
+ ξ

d2fu(ξ)

dξ2
+

1

4
ξ2 d

3fu(ξ)

dξ3

+2

(
− dfu(ξ)

dξ

2

− 1

2

d2fu(ξ)

dξ2
− 3

2
hu(ξ)

d2fu(ξ)

dξ2
− 1

2
ξ
d3fu(ξ)

dξ3
hu(ξ)

)
+ 2hu(ξ)

dfu(ξ)

dξ
+ h2

u
d3fu(ξ)

dξ3

]
− M2

u

1 +m2
u

(
dfu(ξ)

dξ
+mgu(ξ)

)
− M2

u

1 +m2
u

Deu

[
− dfu(ξ)

dξ
+
d2fu(ξ)

dξ2
+m

(
−gu(ξ) + ξ

dgu(ξ)

dξ

)
+

hu(ξ)
d2fu(ξ)

dξ2
+mgu(ξ)

dfu(ξ)

dξ
+mhu(ξ)

dgu(ξ)

dξ

]
(51)

− gu(ξ)− 1

2
ξ
dgu(ξ)

dξ
+ gu(ξ)

dfu(ξ)

dξ
=
d2gu(ξ)

dξ2
−Deu

[
2gu(ξ)

+
7

4
ξ
dgu(ξ)

dξ
+

1

4
ξ2 d

2gu(ξ)

dξ2
+2

(
− dfu(ξ)

dξ
gu(ξ)− 1

2
ξ
dgu(ξ)

dξ
+

3

2
hu(ξ)

− 1

2
ξ
d2gu(ξ)

dξ2

)
+ 2hu(ξ)

dfu(ξ)

dξ

dgu(ξ)

dξ
+h2

u(ξ)
d2gu(ξ)

dξ2

]
+

M2
u

1 +m2
u(

mu
dfu(ξ)

dξ
−gu(ξ)

)
+

M2
u

1 +m2
u

Deu

[
−mu

dfu(ξ)

dξ
− 1

2
muξ

d2fu(ξ)

dξ2

+gu(ξ)−1

2
ξ
dgu(ξ)

dξ
+mu

(
dfu(ξ)

dξ

)2

−dfu(ξ)

dξ
gu(ξ)+muhu(ξ)

d2fu(ξ)

dξ2

+ hu(ξ)gu(ξ) + g2
u(ξ)

]
(52)

where Deu =
De∗u
t

−2θu(ξ)−1

2

dθu(ξ)

dξ
+θu(ξ)

dfu(ξ)

dξ
+hu(ξ)

dθu(ξ)

dξ
=

1

Pr

d2θu(ξ)

dξ2
+

(δu +Qu) θu(ξ) (53)

with boundary conditions in terms of absolute invariants

fu(ξ) = 1,
dfu(ξ)

dξ
= 1, gu(ξ) = 0, θu(ξ) = 1, at ξ = 0 (54)

fu(ξ) = 0, gu(ξ) = 0, θu(ξ) = 0 as ξ →∞ (55)

3.3. Verification

To verify the result, Eq. (51) reduce to Mukhopadhyay and Bhattacharyya
(2012), if we choose M = 1 and β = 0 after setting Deu = Mu = 0
and (h(ξ) → f(ξ), t → ∞). This approached to the validation of the
system which has been solved by two-parameter scaling transformations.

4. ANALYSIS

The ODEs (51)-(53) along with the unsteady boundary conditions (54)-
(55) are solved numerically by bvp4c in MATLAB. The numerical solu-
tion performed with the following criteria: 0.1 ≤Mu ≤ 1, 0.1 ≤ mu ≤
1, 1 ≤ Ru ≤ 4, 0.01 ≤ Deu ≤ 0.1, 0.1 ≤ Pr ≤ 0.4, 0.1 ≤ Qu ≤
1.5, 0.1 ≤ δu ≤ 1.5. Figures 2-13 are presented for the pertinent pa-
rameters like Deborah number Deu, Hartmann number Mu, Hall effects
parameter mu, Prandtl number Pr, thermal radiation parameter du and
heat generation-absorption Qu. For the Hartmann number Mu, Figures
2, 5 and 8 are plotted for the primary flow f ′(ξ), secondary flow g(ξ)

and transport of internal energy . It is the fact that the Lorentz force re-
duced the primary flow, while the secondary flow trend can be seen in
the reverse. The Lorentz force increases the temperature of the particles
and the transport of heat increases when the Hartmann number increases.
For the Hall parameter mu, Figures 3, 6 and 9 are plotted. The Hall pa-
rameter increased the primary flow at the center of the channel, but there
is no flow at the end of the channel. Secondary flow parabolically re-
sulted in Hall parameter and increased behavior throughout the channel.
Physically, the increase in the Hall parameter resulted in a decrease in the
capacitance of the fluid flow components. However, the transport of in-
ternal energy decreased due to the Hall effects. For the Deborah number
Deu, Figures 4, 7 and 10 are presented. Maxwell’s fluid properties in-
creased the primary and secondary flow, but the reversing behavior is seen
through the channel in the case of internal energy transport. There is the
value of the maximum Deu = 0.1 , which is the right value for showing
non-Newtonian fluid effects for this model since it behaved like a viscous
fluid for the low Deborah level. Thermal radiation graphed in Figure 11.
The transfer of internal energy in the channel was increased due to ther-
mal radiation. The heat generation-absorption and the Prandtl number
are listed in Figures 12-13. It can be observed that the internal energy
transfer is increased due to heat generation-absorption and Prandtl.

5. CONCLUSIONS

The present research is the contribution of the Hall effects to the time-
dependent UCM. This fluid flow has passed through the infinite length of
the stretching layer with thermal radiation and heat generation-absorption
influences. The governing system of equations is converted from PDEs
to ODEs with the help of two-parameter transformations. Then solved by
the MATLAB bvp4c and presented via the graphs. The following results
were described in the graphs as:

1. Primary velocity f ′u(ξ) having decreased behavior with magnetic
field parameter Mu increasing. Secondary velocity gu(ξ) parabolically
increased not only at the center of the wall, but also away from the center
when an increase occurred in Mu. The same behavior can be observed
for the temperature field θu(ξ).

2. Hall parametermu raised the primary velocity f ′u(ξ) at the center
of the channel, but there is no result on the boundary wall. Hall parameter
mu increased the secondary velocity gu(ξ) not only at the center of the
channel, but also at the boundary of the wall. Hall parametermu reduced
the transport of internal energy θu(ξ) through the channel.

3. Primary velocity f ′u(ξ) increased at the center of the channel
when the Deborah number Deu increased. Secondary velocity gu(ξ)
parabolically increased at the center of the channel, but there is no re-
sult at the boundary wall when the Deborah number Deu is increased.
Deborah number Deu decreased the transport of internal energy θu(ξ).

4. Thermal radiation and heat generation-absorption parameters in-
creased the transport of the internal energy θu(ξ) of the fluid model.
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NOMENCLATURE

A1 Rivlin-Eriksen tensor
au material acceleration ( m

s.s
)

C heat capacity (J/m3 · K)
Cp specific heat (J/kg · K)
De Deborah number
E electric field vector
Hy uniform magnetic field strength
J current density vector
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k thermal conductivity (W/m · K)
Lu reference length (m)
Mu Hartmann number
mu Hall parameter
Pr Prandtl number
Qu heat generation-absorption parmeter
S extra stress tensor
t time (s)
T temperature (K)
u interfacial velocity (m/s)
x coordinate (m)
Greek Symbols
δ thermal radiation parameter
ε total emissivity
ρ density (kg/m3)
σ Stefan-Boltzmann constant (W/m2 · K4)
Subscripts
u reference enviroment
e electron
∞ ambient enviroment
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