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ABSTRACT

This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching
sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current
are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary
ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal
homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields are analyzed
graphically and discussed in detail. The impact of hall current is reduced the temperature field whereas increase to the velocity and the
concentration fields. The present results are compared with the available results in the literature to check the legitimacy of the present semi-

analytical scheme and noted an excellent agreement for limiting cases.
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1. INTRODUCTION

Boundary layer flow of a viscous fluid due to an impulsive motion
over an elastic surface is involved in several areas of science and
technology such as “drawing, annealing, and tinning of copper wires,
rolling and manufacturing of plastic films, and artificial fibers,” etc.
In these application processes, the end product primarily depends on
the rate of stretching of the surface, which is very significant. The
pioneering work of Sakiadis (1961) considering stationary ambient
fluid over a moving plate has brought new dimensions to the
boundary layer theory. Crane (1970) obtained the closed-form of the
exact solution for the velocity distribution and examined the work of
Sakiadis (1961) by considering the velocity of the stretching sheet
which is proportional to the distance from the slit. Rajagopal et al.
(1984) made a comparative analysis between viscoelastic fluid and
viscous fluid and examined the rate of cooling of viscoelastic fluid
flow over a stretching sheet. Grubka and Bobba (1985) and Lawrence
and Rao (1992) extended the work of Rajagopal et al. (1984) for heat
transfer characteristics. Further, several researchers have examined
the stretching sheet geometry problems for two-dimensional flows
(Ganji et al. (2014); Parand et al. (2017); Rahimi et al. (2017) and
three-dimensional flows (Hayat et al. (2012); Nadeem et al. (2013);
Weidman and Ishak (2015)).

All the above studies confined their examinations to two-
dimensional/three-dimensional flows over linearly stretched sheets.
On the other hand, the demands of the technological industries and
previously mentioned applications are not only confined to a linearly
stretched sheet but also to the non-linearly extruded sheet. The
stretching of the sheet exponentially is one of the prominent methods
to meet the nonlinear requirements of the industry. Given this,
Magyari and Keller (1999) and Elbashbeshy (2001) analyzed the
flow pattern due to an exponentially continuous stretching sheet.Sajid
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and Hayat (2008) and Bidin and Nazar (2009) employed
HAM/Keller-box method to obtain the analytical/numerical solution
to examine the impact of thermal radiation on the flow using
exponentially stretching sheet. Further, Swati Mukhopadhyay (2013)
investigated that the slip effects over a magnetic flow field with
suction/blowing are prominent. Of late, Fazle er al. (2017) and
Srinivasacharya and Jagadeeshwar (2017) extended the work of
Magyari and Keller (1999) and Swati Mukhopadhyay (2013) by
considering radiation effects.

In recent advancement, the nanotechnology is an attractive area
of discussion owing to its enriching characteristics of controlling the
thermal conductivity. A blend (Solid-Liquid) of very small-sized
nanoparticle (<100 nm) and base fluid is known as nanofluid. The
colloids of the base fluids are usually made up of metal and oxides,
which enhance both the conduction and convection coefficient and
also improve significantly the heat transfer rates of the coolants. The
nanofluids have emerged as special kinds of many applications in
heat transfer such as nuclear reactor cooling, solar water heating,
domestic refrigerators, drag reduction, and thermal energy storage,
etc. Choi (1995) has initially experimented on the base fluid, which is
the addition of the mixture of metal oxides to the base fluid and
observed the enhancement of the thermal properties in the fluid.
Buongiorno (2006) proposed a most conventional model to describe
the convective transport based on the mechanism of Brownian
motion with thermophoretic diffusion and remarked that the heat
transfer performance has a vital role in the nanofluid. Further, Tiwari
and Das (2007) examined two-sided lid-driven differentially heated
square cavity filled with nanofluids model which different form
conventional Buongiorno (2006) model and explained behavior of
particle size, momentum/thermal diffusivity, and temperature. Some
recent attempts to describe in this direction are Mustafa et al. (2016);,
Hayat et al. (2017); Animasaun et al. (2019); Prasad et al. (2018);,
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Vaidya et al. (2019a, 2019b); Majdi et al. (2019); Puroshotaman et
al.(2019) and Amini et al. (2020).

Inspired by subsequent developments in the available literature,
our main objective of the present investigation is to analyze the three-
dimensional rotating flow of a UCM nanoliquid over an
exponentially stretchable surface. Rotating flows usually involve in
an anticyclone flow circulation, geological stretching of tectonic plate
beneath the rotating ocean, centrifugal filtration process, in rotor-
stator systems, and cooling of skins of high-speed aircraft. The
analysis is carried out in the presence of hall effect, velocity slip,
convective boundary condition, and zero mass flux nanoparticle
concentration. Here, the local similarity equations are derived and
solved analytically for varying values of embedded parameters by the
semi-analytical technique known as OHAM (see for details, Liao
(2010); Marinca and Herisanu (2015); and Van Gorder (2019)). The
impacts of different physical parameters on velocity, temperature,
and concentration profiles are analyzed graphically. In addition to
this, estimations of skin friction, local Nusselt number, and local
Sherwood number are presented in the analysis, which is very
important from the industrial application point of view.

2. MATHEMATICAL FORMULATION AND
PHYSICAL DESCRIPTION OF THE STUDIED
FLOW PROBLEM
Let’s consider a steady three-dimensional (3D) rotating flow of a
viscous incompressible Upper Convected Maxwell (UCM)
nanoliquid by an exponentially stretchable surface subjected to the
slip velocity, convective boundary condition and zero mass flux
concentration. The Cartesian coordinate system is adopted in such a
way that the surface is aligned with xand y -axes and the fluid is
taken in the space z >0 (see Fig. 1).
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Fig. 1 Geometry of the Maxwell nanoliquid flow model.

The fluid is rotating about z-axis with constant angular velocity €2 .
The fluid is considered electrically conducting, and a transverse
magnetic field B, is applied in the z-direction. Further, the hall

current effect is taken into account. In general, the hall current and
electrically conducting fluid affect the flow in the presence of a
strong magnetic field. The effect of hall current gives rise to a force
in the 7 -direction, and hence the flow becomes three dimensional.
The generalized Ohm's law with hall current is defined as

1 1
J=0|E+VxB-—JxB+—Ap, (1)
en, en,
where J =(Jx, Jy,Jz) is the current density vector, O is the

electrical conductivity, E is the induced electric field resulting from
the charge separation, v — (2, v, w) is the wvelocity vector,

=(0,0, Bo)is the magnetic induction vector, €is the electric

charge, n,is the electron number density and p, is the electronic
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pressure. Furthermore, there is no applied or polarization voltage is
imposed on the flow E =(0,0,0) . For weakly ionized gases, ion slip

effect and the electron pressure gradient are ignored. The generalized
ohm’s law under the above-mentioned conditions for electrically
non-conducting sheet J_ =0 . Hence the Eq. (1) becomes

B B,
—0-7“2)(mu—v),Jy ( g

X_(l+m 72)(

u+my). 2)

l+m

Here, the following assumptions are considered.
a) Joule heating is neglected.

b) The wall is impermeable (i.e.,vW = 0) .
¢) The sheet is stretchable with a variable velocity and slip velocity is

given by (x)[: U™ + k, alj, where U is the reference
v oz

velocity, L is the characteristic length, & is the slip constant. The

physical problem under consideration includes the connections of
momentum, energy, and mass. These relations can be condensed as
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with the following realistic boundary condltlons (BCs)
u=u,(x)=Ue""+k ou ,v=0,
oz
w=0,— e (T, -T) . Da—c by or at z=0, ®)
oz oz T, oz
u—>0, v>0, T->T, , C->C, as z — oo,
Here u,vandware the fluid velocity components along

the x, yand z -direction, respectively. Further, V is the kinematic
viscosity, 4, is the relaxation time, p is the density of the fluid,

mis the hall effect parameter, 7 is the temperature, « is the
thermal diffusivity, 7 is the ratio of the effective heat capacity of the
nanoparticle material and heat capacity of the fluid, p,is the
C
is the thermophoresis diffusion coefficient, 7 is

Brownian diffusion coefficient, is the concentration of
nanoparticles, p,
the ambient fluid temperature, & is the thermal conductivity, /4 is
the heat transport coefficient, 7, is the hot fluid temperature. The

magnetic field B, is considered to be uniform.
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2.1 Similarity variables and dimensionless governing
equations
To simplify the mathematical analysis of the model by the following
similarity variables (see details Hayat et al. (2017)) are evoked,

u=Ue""f1¢), v=Ue""g(() ,w= *\/%@M’ (f+¢1),

T=T,+(T,-T,)0(), where(T,~T,)=Te""*" 9)
C=C,+(C,-C,)¢(¢) ,where(C,-C,)= Ce®™, ¢ =2 ZU—OLe(““’.

v,
where the prime superscripts represent the differentiation

concerning ¢ .

Using the above transformations, the continuity equation given by Eq.
(3) is automatically verified, while Egs. (4) - (7) are reduced to

S -2 A(4g 28 ('S g))
B

_E(4fv3+f-me_é/fdfn_6ﬁ'|f'n) (10)
—L[f ~Lmg(recr )f"j ~o,
(l +m )
o g 2f'g+4ﬂ[—f'+ﬂ(—f'2—g2 —%gg'%ﬁ“j]
—7(4f"g rig+fg"-61'g)) an
__Mn (B, Nl g |
(1+m2)[ S (f+¢1g g] 0,
0"+ Pr(f0'~ Af'0+ NbO'¢'+ Nt 6 )=0, (12)
" [ 1 & " _
"+ Sc(f¢ Bf¢)+Nb9 0. (13)
the corresponding BCs Eq. (8) is altered to
1(0)=g(0)=0, f'(0)=1+K,1"(0),
0'(0)=-Bi(1-60(0)),  Nbg'(0)+ Nt6'(0) =0, (14)
fl(©) >0, g(0)—=>0, 6(0)—>0, ¢(0)—0.
In the above expression, Ais the rotation parameter, Ais the

Deborah number, Pris Prandtl
number, A is the temperature exponent, Nb is the Brownian motion

Mnis the magnetic parameter,

parameter, Nt is the thermophoresis motion parameter, Sc is the

Schmidt number, B is concentration exponent, K, is velocity slip

parameter, Bi is the Biots number and defined as follow

? D, (C,-C
QL B ﬂ,lun Mn 720‘BL ’ Pr—l,Nb: B( / ac),
uw,’ uRe, a v
(15)
D, (T, —T) v

f © , Se =—, K] :kl ﬂe(yn), Bl:ﬁ %
VI, Dy V2vL K\ U,

o

2.2 Skin-friction, heat and mass transfer coefficients

The local skin-friction coefficients (CA,C ) and the local Nusselt

number Nu_are defined formally as

VT VT, xq
C,=Ytw ¢ =—"andNu, =—— "9 _ (16)
AT T (7,-17.)

where 7, and 7, are the skin-friction (at wall) along xand y axis,

and ¢ is the heat flux from the plate are defined as

T, = (814 j > Ty = [—avj andg = [—6Tj 17)
0z ). ’ 0z )., 0z ).,
in terms of non-dimensional quantities are obtained as
[ ou j [ ov j
v A\l v T~ \J
C. = 0z ). _ S "(0) C. = 0z ). o _ g 0)

" u’ J2Re, " ul  J2Re.’

w
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orT
- oz _x |Re,
Nu, =——F 20 { 0'(0). (18)
(Tf me) L
Particularly, for zero nanoparticles mass flux condition, the
dimensionless mass flux denoted by the local Sherwood number
Sh.is identically zero, where Re =u L /v represents the local

Reynolds number.

3. SOLUTION METHODOLOGY BY MEANS OF
OHAM

In this section, we solve Egs. (10) - (13) with BCs. (14) by a
productive semi-analytical algorithm known as Optimal Homotopy
Analysis Method (see for details, Liao (2010); Marinca and Herisanu
(2015); and Van Gorder (2019)). Consequently, a nonlinear problem
is changed into an infinite number of linear sub-problems. In the
frame of OHAM, we have an incredible opportunity to pick initial
approximation and auxiliary linear operators and are picke as

K& = (1-e%) L5, (0)=0.

1+K, . (19)
90(§)=1+Ble’l ¢o(§)=—lf;i(%Je”',
L(&)=s"f"L({)=g"g. o0

Lg(é’):ﬁ"fe,LlI,(é’):(/ﬁ"*gb.

It is worth noting here that the auxiliary linear operators in Eq. (20)
satisfy the properties

Ly (4 + A + 4,°)=0,
L, (A4e§ + A5e’4) =0,

; ; @n
Ly (4" + 4 ) =0,
L(Ae” + 4 )=
where 4,'s(i =1-9) are arbitrary constants.
In the present procedure, we construct the following zero™-order
deformation equations are given by
(1=a)L, [ 7(¢:a)=1(¢) =0t ()1, N, [ (¢:0).£(¢20)].
(1-9)L,[2(¢:) 0 (¢)J=H, (1N, [/ (£:0).£(20) | o
(1-0),[0(5:)-6,(¢) | =0, ()N, [ ] (6:6).0(539).9(¢:0)
(-1 [3(630)-4(€)] =g, D1, T (€30).8(¢:0)dl650)
with the following BCs
1(0:9)=0, f'(0:)=1+K,f"(0) ,
J(0:9) =0, 8(0:9)=0, &(039) =0,
(23)

é'(O;q) = —Bi[l —é(O;q)} , é(w;q) =0,
Nb@'(0:q)+ Ned'(0:4) =0, §(o03q)=0,

where g €[0,1] is an embedding parameter, (7 ,,%,,h,,h,) are the
convergence control parameter and N N> Ny, N, are non-linear

operators defined as

Ny =/"(¢a)+ 1 (a) /(¢ )—2f‘2(§,q)
+2(42(¢.0)-28(7(0.0)8'(¢.0)+ 1" (6.0)3(¢a) |
ﬂrf%cw f(:w 7"(¢.q) ] 24
£1%(¢.0)/"(¢.0)-67(¢.0)1'(¢.9)"(¢29)
Mn

{f@q> ()l (ca) £ )|

N
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=8"(¢.0)+/(6.0)8'(¢.9)-2/"(6.9)8(¢.9)
*(¢.0)-8(¢.9)
L A )

B[47°(60)E(¢a) =67 (¢0)8 (¢ a) ]

20+/7(¢.9)8"(¢.9)-67(£.9) [(¢.9)8'(¢.9)
Mn

‘(1+mz)[—gM.f"(C»LJ)(f(M)+(f“(&q))é"(é,q)—é(é,q)j,

+4/1[ f(§ q)+,8[

(25

N,="(¢.q)+Pr (26)

.f(§,q)é'(§,q)—A.f'(m)é(m)J
#NBO'(£,9)8(C.q)+ NP (Lq) |

M) eSe 1(¢.9)8'(¢.q) Mg,
N, =¢"(¢.q)+S [—Bf’({,q);ﬁ({,q)] 50 (¢.9)- 7)

Methodologically, we choose the auxiliary function as

H ({)=H,({)=H,({)=H,(S)=e* (28)

Hence, by setting ¢g=0and g=1, in Eq. (22) then we get the

solutions as follows

{f(ao) ME). (£:0)=8,(6).0(£:0)=6,(0). 4(£:0)=4(£).
Fe)=7(0). &(60)=2(2). B(¢1)=0(5). d(&:1)=(0).

From Eq. (28), it is clear that
,f(;',q),g(g“,q),é(g’,q) and é(;,q) vary from the
guesses f, (é’),go({),go (&) andg, (é’) to the final solutions
f(£).2(¢).0(¢)andg(S) of Egs. (10) - (13) with BCs. (14),

when the parameter ¢ oscillates between 0 to 1. Moreover, the

(29)

initial

sought  solutions f({,q), g({,q),é(g,q) and é((,q) can  be
approximated accurately ~ for ~ the  variable g by higher-
order expansions with the help of Taylor’s series as follows
B () = S , _1d"f(Sq)
F(:a)= 1)+ 21, () 1,(0)=~LL5
P p! d¢& 40
_1d"g(¢q)
(g’ ng &y g)_p! dé/p y
d’0(¢3q) ) G0
< 1d70(¢35q
( pzz q > p ) E dé/p »
A * d? ;
cia) =€)+ T (), 4,(0)- LT

where the convergence of the above series strongly depends
upont i, ,h,and%, . Considering that the control parameter

(hiyhy,1,,hy) are chosen in such a manner that Eq. (22) converges

at ¢ =1.Then, we have

HE)=AE)FTA(0): 8(6)=8(¢)+28,(¢)
(£)+26,(6). #(0)=h(2)+ 24,(¢)

The p- order deformation equations and their corresponding BCs are

(E1))

L) =2, £,4(6) =1, RUE)L[ 8, ()= 7,2, (£)] =1 RE(S) .
L,[6,(£)-7,0,1(¢)]= R0 (€).L,[,(£) = 2,8,4(¢)] = h,RE(&)
£,(0)=0, 1',(0)-K,1,"(0)=0, f",(*)=0

g,(0)=0, g,( )=0 (33)

0',(0)=-Bi(1-6,(0)), ,()=0
Nbg,'(0) + Nt6',(0)=0, ¢, () =0
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Where
-1
m +z,lkf" zzf,lkfk
k=0

+ /1(4ng[( - ZﬂZf,kH; g'/;_ 2ﬂ§zgp—1—k f"kj

’B4pz_‘4(fplkfk/)fl+l (plkfw) | (34)
’ _gi(f 1Afk1)f“ 6p7(fplkf’lxl)f"

Ll

Mn , 7& £ . .
(1+m2)[fpk/ ngpkl[kofplkf +§pruf ]]

R‘—g"P,(§)+ Soan & 22/{1 1-k 8k
pl( plkf)zgpugk
+42 1", Z el
EZ) p1- Agk+51‘z:(:].fp—lfkf"k
i 4i(f'p,1,kf'k,l)g, pZ( p-1- kf'kfl)g'[
_E p-l p-l
+Z(f, lkfkl)gl 62( plkfkl)gl

__ Mn _E . X , . )
(l+mz)( me ,7—k—|[§fp—lfkgk+§;f plkglcj g,,“] 35)

p-1
= 0";,71 (é/) + Prz(e'pflfk fk - Aep—lfkf'k)
k=0

p-1 -1
+ kaz(;e'p,l,kqs'ﬁ the'p,l,ke'k (36)
p-l t
Ry =", () +Se X (8 fi = Byrnf )+ 0" (6) 37
k=0
0,p<1
= 38
L {1 ,p>1 (38)
The general solutions of the p™ -order deformation equations are
given by
fp (é’) = f,j (g) + Al + Aze; + A3e_c
gp(é’)—g: (§)+A4+Aseg+Aée’4 (39)
0,()=6,()+ e + Ae
,(£) =0, (&) + Ae” + Age

in which (£,(¢), g,(£), 6,(£).¢,(£)) denote the special solutions.

»
The expressions of exact residual errors are written as follows

B () :j[zvf :g,f;{(q),fjgk ¢ )Dsz

08 C8) T )| P
(1) :k=0 k=0 i (40)
En-fn[Sr@fe@ )]«
B -f[n[EreSa0 ]|«
In practice the evaluation of the residual errors are

(Elj (n), E%(n), E°(n),E? (h)) consumed a large amount of time.

So, instead of computing the exact residual errors, it is feasible to
handle the accuracy of the problem using the average residual errors
defined by
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(-3 (S0 ]

B3 S )’Zg“)lm]z

+1i= =0 =0
> (4D
Y 1 P P P P
Ep(h)=——2| No| 2/ (£). 20,2 4(&)
P+1i= n=0 n=0 n=0 .
2
A~ 1 P LI P P
ES(h)=——=>| N,| 2 £(£).2.0(£). 2 4(&)
P+1i3 n=0 n=0 n=0 conse
E=E/+ES+E)+E* (42)
where £ ;} represents  the  total  squared  residual error,

§=no¢ =k/P,k=0,1,2..,P.
Now we minimize the error function £7 (7)., £2 (n),ES (7)

and £?(n) and record the optimal values of (h_/,hg,hg,h» . For the

required order approximation, the optimal values of (h ol hyh ¢)
corresponding to the functions (1, g, 9, ¢) are obtained by utilizing

the following mathematical restrictions

o fre £o fo
de, () _ o, 4Es () _ o, 9E, (n) _ 0, 9E; () _, (43)
dh dh dh dh
The convergent series solutions correspond to
. ~F _ . a _ . ~0 _ . "¢ _
]171£130E,§ (n)=0, ]lllilchﬁ(h) =0, lim £) (n)=0, lim £ (7)=0 (44)

Table 1 and 2 provide the results obtained for the individual average
squared residual error and total residual error by considering

(1ol h ) =—(1.18152,1.29527,1.30537,1 46363) as the optimal values

which have been analyzed by minimizing the averaged residual error
and total residual error at 12™-order approximation. It can be
observed that the averaged squared residual error, and total residual
errors are consistently reduced as increases the order of
approximations. Further, the average squared residual error and total
residual error of each governing equations are found in the
diminishing function of the order of approximation, as shown in Fig.
2(a-b).

Table 1 The individual average squared residual error as a function
of the number of iterations and CPU time is also listed. Physical
parameters are Pr=1.09,Sc=m=1,Nb=Mn=Bi=0.5, Nt=1=0.1,

A=B=p=K, =02, fixed and CPU time is also listed. We obtain

the optimal values of convergence control parameters
are i, =-1.18152,h, =-1.29527,h, = -1.30537, h, = —1.46363.

p E/ E? EY E’ CPU time
2 6.09x10* 2.86x 107 2.57x 105 3.53x 106 3.51s

4 3.59%10° 3.89x10* 8.28x 107 6.19x 107  34.59 s
6 4.96x10° 9.74x 10° 4.40x 10° 8.93x 10° 263.18s
8 1.17x10° 3.55x 105 1.31x10° 1.69x 10® 1261.57s
10 4.16x107 1.67x10° 1.11x10° 5.52x 10° 4898.92s
12 1.97x107 929x10°¢ 3.21x0'° 227x 10° 24101.19s

Table 2 Total averaged squared residual error with no. of iteration
and CPU time(s). Physical parameters are Pr=1.09,Sc=m=1,

Nb=Mn=Bi=05,Nt=41=0.1,A=B= =K, =0.2, fixed and
recorded as CPU time (in sec).

f I g 70 ) Tt
P k! —hf R h* E

» CPU time
2 096748 1.17805 1.21602 1.39283 1.05x 102  1.81s

4 1.05049 1.24464 1.20643 1.49248 9.36 x 103  7.86s
6 1.10042 126462 1.17431 1.52095 1.75 x10*  15.46s
8 1.13393 1.27572 0.95993 1.50951 3.38 x10° 170.42s
10 1.15996 1.28557 0.81760 1.48142 2.52 x10° 318.52s
12 1.18152 1.29527 0.71537 1.46363 1.39 x10° 526.91s
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Fig. 2(a) Residual error vs Order of approximation
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Fig. 2(b) Total residual error vs. no. of iteration p.

4. MODEL VALIDATION

Here, we present the exact solutions in certain special cases. These
solutions have much importance due to they provide as a baseline for
the comparison with the obtained results in the literature through the
numerical solutions. In the absence of somenon-dimensional
parameters, (i.e.,(ﬂ,Mn,m,K,,A,B):(0,0,0,0,0,0)) , Egs. (10) - (13) and
BCs. (14) are reduced to those treated by Mustafa et al. (2016),
which are

I =2 40g =0, (45)

g'+ fg'-2f'g—4Af"'=0, (46)

0"+ Pr(f0'+ NbO'$'+ Nt6”)=0, 47
Nt

"+Sc f¢'+ —0"=0, 48

o Se [+ (48)

with boundary conditions are

£(0)=g(0)=0, £'(0)=1, 6'(0) ==Bi(1-6(0)), Nbp'(0) + Nt6'(0) = 0
f(©)—>0, g(©)—>0, 6O(x)—>0, ¢wx)—>0

To authenticate and validate the exactness of the proposed OHAM
procedure, the present outcomes are compared with those reported by

(49)
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Hayat et al. (2017) for some special cases. The correctness found to
be in superior agreement (see Table 3).

Table 3 Comparison results of local Nusselt number and local

Sherwood number for various values of fandA when
Mn=m=K =Bi=0.
Hayateral. (2017) Prgsjrgﬁﬁ\jhs
B A
-0'0)  -¢'0) -0'(0) -¢4'(0)
0.0 0.5323  0.5040 0.532478 0.504141
0.1 0.1 05239 0.4943 0.524068 0.494511
0.2 0.5172  0.4858 0.519813 0.490602
0.0 0.5358  0.5107 0.536286 0.512786
0.1 0.1  0.5239  0.4943 0.525566 0.498645
0.2 0.4988  0.4609 0.500721 0.465365

5. RESULTS AND DISCUSSION

The obtained numerical results by means of solving the transformed
Egs. (10) - (13) which are coupled and non-linear are treated with
OHAM technique. Thus obtained are analyzed with the help of
figures and tables. The results for the horizontal velocity profiles

f'(&), transverse velocity profiles g({), temperature profiles
0(¢)and concentration profiles @(¢)are presented for various
pertinent flow parameters such as rotation parameter (1), Deborah
number (f), magnetic parameter (Mn), hall current parameter
(m), Prandtl number (Pr), temperature exponent (A), Brownian
motion parameter (Nb), thermophoresis parameter (Nt), Schmidt
number (Sc), concentration exponent (B), velocity slip parameter
(K,) and Biots number (Bi) in Figs. 3 - 7. The computed numerical
values for the skin-friction coefficient /"(0)and g'(0), the local
Nusselt number 8'(0), and the local Sherwood number ¢'(0)are

tabulated in Table 4.
Figure 3(a) through 3(d) elucidates the graphical representation

of the profiles f'({),2(¢),0(¢)and@(S) for different values of
Aand S . Figure 3(a) depicts that the suppressed horizontal velocity
field f'({) for the rising values of both Aand . The rotation

parameter A decreases the velocity profile g({) within the range
0< ¢ <2 and then enhances gradually in the range 2< ¢ <7 .

0.1 T T T T T
0 1 2 3 ¢ 4 5 6

Fig. 3(a) Horizontal velocity profiles for different values of
Aand £ with Pr=1.09,Sc=m=1,Nb=Bi=Mn=0.5,
Nt=0.1,A=B=K,=0.2.
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Physically, this dual behavior of the fluid flow is due to the larger
values of the rotation parameter A correspond to a higher rotation for
the angular velocity Q, because the term Ais defined as

A=QL/u,.

0.04 4

0.00

0044

86

-0.24 4

0 1 2 3¢ 4 5 6 7
Fig. 3(b) Transverse velocity profiles for different values of
Aand B withPr=1.09,Sc=m=1,Nb=Bi=Mn=0.5,
Nt=0.1,A=B =K, =0.2.
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Fig. 3(c) Temperature profiles for different values of
Aand f with Pr=1.09,S¢ =m=1,Nb=Bi=Mn=0.5,

Nt=0.1,A=B=K, =0.2.
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Fig. 3(d) Concentration profiles for different values of
Aand S withPr=1.09,Sc=m=1,Nb=Bi=Mn=0.5,

Nt=0.1,A=B=K, =0.2.
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Further, the smaller Deborah number £ gives a viscous effect
compared to the elastic effect, whereas the larger [ exhibit in the
elastically solid material in nature. With reference to 6(¢), both
Aand S increases the temperature field, which is recorded in Fig.
3(c). The concentration profile exhibits the decreasing trend for
Aand f (see Fig. 3(d)). Figure 4(a) to 4(d) illustrates the impact of

the magnetic parameter Mn (presence and absence) and the hall
current parameterm on f'(¢),g({),0(¢)and@({) . It is observed that

S'(¢),g(¢)andg(g)  and

decreases #(¢) . This phenomenon is obtained due to the effective

the rising values of m increases

conductivity |:0'/ (1 +m2)], which decreases with increasing values
of m. Hence, it reduces the applied magnetic field, and consequently
increases f'(¢) .

Further, for a larger value of hall current parameterm , the term
[1 / (1 + mz):| becomes smaller and smaller, and the resistive force of
the magnetic field is diminished. Besides this, the magnetic
parameter Mn reduces the fluid velocity, concentration profile in the
boundary region and enhances the temperature field. The reason

behind this development is the opposing force known as the Lorentz
force, and this force tends to slow down the fluid flow.

08

0741
0.6
05-

1@
04

0.3

0.2

0.1

0.0 T T IA —T

Fig. 4(a) Horizontal velocity profiles for different values of
Mnandm with Pr=1.09,Sc =[,Nb=Bi=0.5,Nt = 1=0.1,

A=B=K,=£=02.
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Fig. 4(b) Transverse velocity profiles for different values of
Mnandm with Pr=1.09,Sc=1,Nb=Bi=0.5,Nt =4 =0.1,
A=B=K,=£=02.
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Fig. 4(c) Temperature profiles for different values of
Mnandm with Pr=1.09,Sc=1,Nb=Bi=0.5,Nt=1=0.1,
A=B=K,=£=02.
0.008 —— Mn=0,----Mn=05,----- Mn=1
0.000 m=123
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-0.032 oo -
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0.0 015 110 115 4 210 215 3.0
Fig. 4(d) Concentration profiles for different values of

Mnandm with Pr=1.09,Sc=1,Nb=Bi=0.5Nt=4=0.1,

A=B=K, =£=02.
The influence of the magnetic parameter Mn (in the presence
/absence) and velocity slip K, on f'(¢) is elucidated in Fig. 5. The
velocity profile f'({) decreases for varying values of K.
Physically, the higher the value of K, reduces the kinematic
viscosity V. This nature of the profile is attributed to the fact
K, =kJU, 1 2vL """,

1.0

—— Mn=0,----Mn=05,------ Mn=1

0.8

0.6

(Y]

0.4 -

0.2 -

0.0 . . z — 7

Fig. 5 Horizontal velocity profiles for different values of
Mnand K| with Pr=1.09,Sc=m=1,Nb=Bi=0.5,Nt =1=0.,

A=B=p=02.
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Figure 6(a) demonstrates that the temperature profile 8(¢) which
reduces for increasing values of Prand A . Here, the increase in
Pr(=v/a)is responsible for lesser thermal diffusivity ¢z which

results in the reduced thermal boundary layer. A similar trend may be
observed in the case ofA. The impact of NtandBion@({)is

sketched in Fig. 6(b). The terms Nt=zD,(T,-T,)/vI,and
Bi=(h/k)\2vL /U, predicts the enhancement in temperature as
both Ntand Bi increase. It is noticed that the fluid temperature is zero

when Bi=0and it is prescribed temperature at the wall when it tends
to infinity.

0.5

0.4

03",

a

0.1+

0.0 —
0 1 2 3 s 4 5 6 7

Fig. 6(a) Temperature profiles for different values of Prand A
withSc=m=1,Nb=Bi=Mn=0.5,Nt =1 =0.1,
B=K,=f=02.
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0 1 2 3 4 4 5 6

Fig. 6(b) Temperature profiles for different values of Ntand Bi
with Pr=1.09,Sc =m =1, Nb = Mn =0.5,4 =0.1,
A=B=K =£=0.2.

Figure 7(a) depicts the concentration profiles for different values
of the Schmidt number Scand concentration exponent
parameter B. From the figure, it is clear that the rising values of
both Scand B enhances the concentration profile. The Schmidt
number Sc shows the relative strength of the thermal diffusivity to
the nanoparticle diffusion rate. The thermal diffusivity will exceed
nanoparticle diffusivity whenSc>1. This result stands for

enhancement in the magnitudes of the nanoparticle concentration and
thickened concentration boundary layer.
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Fig. 7(a) Concentration profiles for different values of ScandB
withPr=1.09,m=1,Nb=Bi=Mn=0.5Nt =1 =0.1,
A=K, =B=02.
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Fig. 7(b) Concentration profiles for different values of Ntand Nb
with Pr=1.09,m =Sc=1,Bi=Mn=0.5, A =0.1,
A=B=K,=f=02.

Figure 7(b) explains the impact of Nt and Nb on¢({). It is
noted that the nanoparticle volume fraction increases with the
increase in Nt (increase in thermophoresis force) and thus, an
enhancement in the thickness of the concentration boundary layer is
observed. In this case, the nanoparticles move away from the hot
stretching sheet towards the cold ambient fluid under the influence of
the temperature gradient. But in the case of N (smaller nano-
particles), the result is the opposite. However, Nb will stifle the
diffusion of nanoparticles away from the surface, which results in a
decrease in nanoparticle concentration values in the boundary layer.
Finally, Figure 8(a-c) displays the 3D plot of velocities and these
plots exhibit similar results as that of velocity profiles.

Table 4 is tabulated to exhibit the influence of embedding
parameters on the skin-friction coefficient, the local Nusselt number,
and the local Sherwood number. It is seen that the rising values of

Aand S decreases f"(0),g'(0)and¢'(0) and increases 8'(0) . The
effect of M shows a quite opposite trend as compared with Aand 3 .
Further,  f"(0),0'(0)and¢'(0) are the

Mn, A, Prand B and increasing function of K andSc .

decreasing function of



Table 4 The values of skin-friction, local Nusselt number and local Sherwood number for various physical parameters with Nt =0.1, Nb =0.5.

P A B Sc B B Mn A m K —f'0) -k El -g0)  -h £ -000) -, E g0 -k, E? g;‘j
0.0 150171 128150 2.12x10° 022358 139868 9.79x10° 0.28443 1.64350 3.12x10¢ 071 36620 6.54x107 624s

109 02 02 1 05 02 05 01 1 3
0.2 105565 1.15027 248x10° 0.18565 127430 129105 027388 1.54837 1.56x10° 0.05554 132737 1.09x107 687s
0.4 085932 113670 2.08x10° 0.16337 126558 124x10° 0.26685 1.54884 2.86x10° 0.05383 130500 632x10° 651s
1 105565 1.15027 2.48x10° 0.18565 1.27430 1.29x10° 027388 1.54937 1.56x10° 005554 1.08737 1.09x<107 392s
109 02 02 1 05 02 05 01 2 02 102295 118305 1.59x10° 018351 130220 6.47x10 027519 158916 1.45x10 005581 1.06671 1.78<107 389s
3 101171 119386 135x10° 018289 131160 5.09x10° 027565 1.60237 147x<10° 0.05580 106443 2.12x107 398s
0.0 104348 0.88977 2.90x10° 0.10493 127712 532100 027482 1.52442 1.13x10© 0.05569 1.05284 1.59x107 319s
109 02 02 1 05 02 05 02 1 02 107905 122029 1.90x10° 046081 128995 5.18x10° 027208 159099 2.65x10° 005510 120626 7.04x10° 406s
0.4 121201 127865 1.13x10% 077021 1.04182 187105 026357 1.61183 8.99x10° 0.05318 145384 4.78x10% 373s
0.0 100033 120441 1.13x10° 0.18226 132105 3.97<10° 027613 1.61507 1.54x10° 0.05597 1.06449 2.51x107 367s
109 02 02 1 05 02 05 01 1 02 105204 113393 1.17x10° 029030 127572 3.55%10° 027415 154151 143x10° 005558 1.07645 121x107 389s
1.0 109372 0.85781 2.22x107 041054 122642 232x10* 027297 146064 1.50x10° 0.05525 1.09898 8.39x10° 388s
0.0 103520 134943 1.08x10° 043421 141332 222105 027349 1.69735 8.04x<10° 0.05556 1.13206 9.48x10° 325s
109 02 02 1 05 04 05 01 1 02 111821 110462 325%10° 048499 1.17409 1.08x10% 027146 145160 2.93x106 005472 125205 7.17x10% 423s
0.8 118609 092313 8.35x10° 052801 098672 3.52x10% 027099 122764 4.78<10° 0.05442 1.15635 9.61x10% 36ls
0.0 105204 1.13393 1.17x10° 029031 127572 3.55<10° 0.00000 0.00000 0.000000 0.00000 0.00000 _0.00000 _ 337s
109 02 02 1 05 02 05 01 1 02 105204 113393 1.17x10° 029031 127572 3.55x10° 027239 154605 1.63x10° 027647 1.07776 2.30x10° 378s
5.0 105204 113393 1.17x10 029031 127572 3.55x10° 0.52265 1.50517 7.95x10° 0.53300 1.18482 1.60x10° 379s
0.7 105204 1.13393 1.17x10° 029031 127572 3.55<10° 027413 1.54089 144x10° 0.05527 124722 4.01x10° 408s
109 02 02 1.0 05 02 05 01 1 02 105204 113393 117<10° 029031 127572 3.55x10° 027403 1.54088 14010 005543 114238 8.81x10° 369s
15 105204 1.13393  1.17x10° 029031 127572 3.55x10° 027390 1.54022 1.50x10° 0.05550 121553 1.58x107 367s
0.0 105204 113393 L17x10° 029031 127572 3.55<10° 027424 1.54163 1.41x10° 0.05562 1.06718 1.07<107 357s
109 02 05 1 05 02 05 01 1 02 105204 113393 117<10° 029031 127572 3.55%10° 027403 1.54088 14610 005543 1.14238 8.81x10° 369s
1.0 105204 1.13393 11710 0.29031 127572 3.55<10° 0.27390 1.53824 1.55x10 0.05532 120167 2.51x10° 366s
0.0 105204 113393 1.17x10° 029031 127572 3.55<10° 025849 1.59760 2.77<10° 0.05220 127656 3.87<10° 352s
109 05 02 1 05 02 05 01 1 02 105204 113393 117x10° 029031 127572 3.55x10°5 029345 146311 2.23x106 0.05885 131697 5.70x107 36ls
1.0 105204 113393 1.17x10° 029031 127572 3.55x10° 031724 135343 1.87x10° 0.06352 138964 9.52x107 310s
1.09 105204 1.13393 1.17<10° 0.29031 127572 3.55<10° 0.29345 1.46311 2.23x10° 0.05885 131697 5.70<107 361s
200 02 02 1 05 02 05 01 1 02 10504 113393 117x10° 029031 127572 3.55x10° 033311 112825 1.10x10° 0.06652 144121 7.99x10° 368s
5.09 105204 1.13393  1.17x10 029031 127572 3.55x10° 039126 0.97029 9.08x10° 0.07806 122071 4.25x10° 373s
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3D plot of u with ¢ and x

(b)

©

Fig. 8 Three dimensional plot of the velocity.
6. CONCLUSIONS

Some of the interesting findings of the present work are summarized
below.

B3

% The rotation parameter decreases the f'({), g(¢), 6({) and

0(¢) whereas the hall current parameter exhibits reverse

trend.
¢ A substantial variation in Deborah number

f'(¢) and ¢(&) while g(¢) and 6(<) rises.

reduces

10
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% The enhanced magnetic parameter
parameter decreases f'(¢) .

% Increased Prandtl number and temperature exponent and

samller magnetic parameter, reduces 0(¢) .

and velocity slip

% An increase in ¢(¢{)is due to the increase in the Schmidt

number, temperature exponent, thermophoresis parameter
and the Brownian motion parameter.

NOMENCLATURE
A temperature exponent parameter
B concentration exponent parameter
B magnetic induction vector
Bi Biots number
B, magnetic field strength [N m' A"']
C nanoparticles concentration
Cﬁ,ny skin friction co-efficient along xand y axis.
C, concentration at wall
C, ambient fluid concentration
D, Brownian diffusion coefficient [m? s™']
D, thermophoretic diffusion coefficient [m? s™']
e electric charge
E intensity vector of the electric field
f.e dimensionless velocities
h heat transfer coefficient [W m?2 K]
J current density vector
K, slip parameter
k thermal conductivity of fluid [W m™ K'']
L characteristic length
m Hall effect parameter
Mn magnetic parameter
n, electron number density
P, electronic pressure
Nb Brownian motion parameter
Nt thermophoresis parameter
Nu local Nusselt number
Pr Prandtl number
Re local Reynolds number
Se Schmidt number
Sh, local Sherwood number
T fluid temperature [K]
T, hot fluid temperature
T, ambient fluid temperature [K]
U, reference velocity
u,v,w velocity components in the x,yandz

directions [ms]

stretching velocity in the xand y directions
[ms'].

velocity vector

X, 9,2 cartesian coordinate axes
Greek symbols:

thermal diffusivity [m?s™]

Deborah number
rotation parameter

relaxation time [s]

D o~ n ™ R

constant angular velocity
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) dimensionless nanoparticles concentration

v kinematic viscosity [m? s']

P fluid density [kg m~]

o electrically conductivity [S m™']

9 dimensionless temperature

r ratio between the effective heat capacity of
the nanoparticle material and heat capacity of
the fluid.

I similarity variable

Subscripts:

- condition at infinity

W condition at wall

Superscript:

! differentiation with respect to ¢ .
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