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ABSTRACT 

This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching 
sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current 
are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary 
ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal 
homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields are analyzed 
graphically and discussed in detail. The impact of hall current is reduced the temperature field whereas increase to the velocity and the 
concentration fields. The present results are compared with the available results in the literature to check the legitimacy of the present semi-
analytical scheme and noted an excellent agreement for limiting cases.  
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1. INTRODUCTION 

Boundary layer flow of a viscous fluid due to an impulsive motion 
over an elastic surface is involved in several areas of science and 
technology such as “drawing, annealing, and tinning of copper wires, 
rolling and manufacturing of plastic films, and artificial fibers,” etc.  
In these application processes, the end product primarily depends on 
the rate of stretching of the surface, which is very significant. The 
pioneering work of Sakiadis (1961) considering stationary ambient 
fluid over a moving plate has brought new dimensions to the 
boundary layer theory. Crane (1970) obtained the closed-form of the 
exact solution for the velocity distribution and examined the work of 
Sakiadis (1961) by considering the velocity of the stretching sheet 
which is proportional to the distance from the slit. Rajagopal et al. 
(1984) made a comparative analysis between viscoelastic fluid and 
viscous fluid and examined the rate of cooling of viscoelastic fluid 
flow over a stretching sheet. Grubka and Bobba (1985) and Lawrence 
and Rao (1992) extended the work of Rajagopal et al. (1984) for heat 
transfer characteristics. Further, several researchers have examined 
the stretching sheet geometry problems for two-dimensional flows 
(Ganji et al. (2014); Parand et al. (2017); Rahimi et al. (2017) and 
three-dimensional flows (Hayat et al. (2012); Nadeem et al. (2013); 
Weidman and Ishak (2015)).   

All the above studies confined their examinations to two-
dimensional/three-dimensional flows over linearly stretched sheets. 
On the other hand, the demands of the technological industries and 
previously mentioned applications are not only confined to a linearly 
stretched sheet but also to the non-linearly extruded sheet. The 
stretching of the sheet exponentially is one of the prominent methods 
to meet the nonlinear requirements of the industry. Given this, 
Magyari and Keller (1999) and Elbashbeshy (2001) analyzed the 
flow pattern due to an exponentially continuous stretching sheet.Sajid  

 
and Hayat (2008) and Bidin and Nazar (2009) employed 
HAM/Keller-box method to obtain the analytical/numerical solution 
to examine the impact of thermal radiation on the flow using 
exponentially stretching sheet. Further, Swati Mukhopadhyay (2013) 
investigated that the slip effects over a magnetic flow field with 
suction/blowing are prominent. Of late, Fazle et al. (2017) and 
Srinivasacharya and Jagadeeshwar (2017) extended the work of 
Magyari and Keller (1999) and Swati Mukhopadhyay (2013) by 
considering radiation effects. 

In recent advancement, the nanotechnology is an attractive area 
of discussion owing to its enriching characteristics of controlling the 
thermal conductivity. A blend (Solid-Liquid) of very small-sized 
nanoparticle ( 100 nm) and base fluid is known as nanofluid. The 
colloids of the base fluids are usually made up of metal and oxides, 
which enhance both the conduction and convection coefficient and 
also improve significantly the heat transfer rates of the coolants. The 
nanofluids have emerged as special kinds of many applications in 
heat transfer such as nuclear reactor cooling, solar water heating, 
domestic refrigerators, drag reduction, and thermal energy storage, 
etc. Choi (1995) has initially experimented on the base fluid, which is 
the addition of the mixture of metal oxides to the base fluid and 
observed the enhancement of the thermal properties in the fluid. 
Buongiorno (2006) proposed a most conventional model to describe 
the convective transport based on the mechanism of Brownian 
motion with thermophoretic diffusion and remarked that the heat 
transfer performance has a vital role in the nanofluid. Further, Tiwari 
and Das (2007) examined two-sided lid-driven differentially heated 
square cavity filled with nanofluids model which different form 
conventional Buongiorno (2006) model and explained behavior of 
particle size, momentum/thermal diffusivity, and temperature. Some 
recent attempts to describe in this direction are Mustafa et al. (2016); 
Hayat et al. (2017); Animasaun et al. (2019); Prasad et al. (2018); 
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Vaidya et al. (2019a, 2019b); Majdi et al. (2019); Puroshotaman et 
al.(2019) and Amini et al. (2020). 

Inspired by subsequent developments in the available literature, 
our main objective of the present investigation is to analyze the three-
dimensional rotating flow of a UCM nanoliquid over an 
exponentially stretchable surface. Rotating flows usually involve in 
an anticyclone flow circulation, geological stretching of tectonic plate 
beneath the rotating ocean, centrifugal filtration process, in rotor-
stator systems, and cooling of skins of high-speed aircraft. The 
analysis is carried out in the presence of hall effect, velocity slip, 
convective boundary condition, and zero mass flux nanoparticle 
concentration. Here, the local similarity equations are derived and 
solved analytically for varying values of embedded parameters by the 
semi-analytical technique known as OHAM (see for details, Liao 
(2010); Marinca and Herisanu (2015); and Van Gorder (2019)). The 
impacts of different physical parameters on velocity, temperature, 
and concentration profiles are analyzed graphically. In addition to 
this, estimations of skin friction, local Nusselt number, and local 
Sherwood number are presented in the analysis, which is very 
important from the industrial application point of view. 

2. MATHEMATICAL FORMULATION AND 
PHYSICAL DESCRIPTION OF THE STUDIED 

FLOW PROBLEM 
Let’s consider a steady three-dimensional (3D) rotating flow of a 
viscous incompressible Upper Convected Maxwell (UCM) 
nanoliquid by an exponentially stretchable surface subjected to the 
slip velocity, convective boundary condition and zero mass flux 
concentration. The Cartesian coordinate system is adopted in such a 
way that the surface is aligned with andx y -axes and the fluid is 
taken in the space 0z  (see Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Geometry of the Maxwell nanoliquid flow model. 
 
The fluid is rotating about Z -axis with constant angular velocity . 
The fluid is considered electrically conducting, and a transverse 
magnetic field 0B is applied in the Z -direction. Further, the hall 
current effect is taken into account. In general, the hall current and 
electrically conducting fluid affect the flow in the presence of a 
strong magnetic field. The effect of hall current gives rise to a force 
in the Z -direction, and hence the flow becomes three dimensional. 
The generalized Ohm's law with hall current is defined as 

1 1-J E V B J B e
e e

p
en en

                             (1) 

where , ,x y zJ J J J  is the current density vector, is the 

electrical conductivity, E is the induced electric field resulting from 
the charge separation,

 , v,V u w is the velocity vector,
 

00 0B B, , is the magnetic induction vector, e is the electric 

charge, en is the electron number density and ep is the electronic 

pressure. Furthermore, there is no applied or polarization voltage is 
imposed on the flow 0,0,0E . For weakly ionized gases, ion slip 
effect and the electron pressure gradient are ignored. The generalized 
ohm’s law under the above-mentioned conditions for electrically 
non-conducting sheet 0zJ . Hence the Eq. (1) becomes 

2 2
v , v .

1 1
0 0

x y
B BJ Jmu u m
m m

                    (2) 

Here, the following assumptions are considered. 
a) Joule heating is neglected. 
b) The wall is impermeable wi.e.,v 0 . 
c) The sheet is stretchable with a variable velocity and slip velocity is 
given by /

0 1( ) x L
w

uu x U e k
z

, where oU is the reference 

velocity, L is the characteristic length, 1k is the slip constant. The 
physical problem under consideration includes the connections of 
momentum, energy, and mass. These relations can be condensed as 
pursue 
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with the following realistic boundary conditions (BCs) 
/

0 1( ) , v 0 ,

0,  , 0  at z = 0,

0 , v 0 ,  , as .

x L
w

T
f B

uu u x U e k
z

T C D Tw k h T T D
z z T z

u T T C C z

          (8) 

Here ,vandu w are the fluid velocity components along 
the , andx y z -direction, respectively. Further, v  is the kinematic 
viscosity, 1  is the relaxation time,  is the density of the fluid, 
m is the hall effect parameter, T is the temperature, is the 
thermal diffusivity,  is the ratio of the effective heat capacity of the 
nanoparticle material and heat capacity of the fluid, BD is the 
Brownian diffusion coefficient, C  is the concentration of  
nanoparticles, TD  is the thermophoresis diffusion coefficient, T is 
the ambient fluid temperature, k  is the thermal conductivity, h is 
the heat transport coefficient, fT is the hot fluid temperature. The 
magnetic field 0B is considered to be uniform.  
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2.1 Similarity variables and dimensionless governing 
equations 

To simplify the mathematical analysis of the model by the following 
similarity variables (see details Hayat et al. (2017)) are evoked, 

( / ) ( / ) ( / 2 )0
0 0

(A / 2 )
0

(B / 2 ) ( / 2 )0
0

'( ) ,  v ( ) , ' ,
2

( ) ( ) , w h er e ( )

(C ) ( ) ,w h er e (C ) , .
2

x L x L x L

x L
f f

x L x L
f f

vUu U e f U e g w e f f
L

T T T T T T T e

UC C C C C e z e
vL

(9) 

where the prime superscripts represent the differentiation 
concerning .  
Using the above transformations, the continuity equation given by Eq. 
(3) is automatically verified, while Eqs. (4) - (7) are reduced to 

2
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2
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21
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                (11) 

2'' Pr ' ' ' ' ' 0,f Af Nb Nt                                     (12) 

'' ' B ' '' 0.NtSc f f
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                                              (13) 

the corresponding BCs Eq. (8) is altered to 
10 (0) 0, ' 0 1 ''(0),

'(0) (1 (0)), '(0) '(0) 0,
'( ) 0, ( ) 0, ( ) 0, ( ) 0.

f g f K f
Bi Nb Nt

f g
                      (14) 

In the above expression, is the rotation parameter, is the 
Deborah number, Mn is the magnetic parameter, Pr is Prandtl 
number, A is the temperature exponent, Nb is the Brownian motion 
parameter,  Nt  is the thermophoresis motion parameter, Sc is the 
Schmidt number, B  is concentration exponent, 1K  is velocity slip 
parameter, Bi  is the Biots number and defined as follow 

2 2
1 0

/ 20
1 1

0
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B fw
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B

D C CL u B L vMn Nb
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(15) 

 
2.2 Skin-friction, heat and mass transfer coefficients 

The local skin-friction coefficients ,fx fyC C  and the local Nusselt 

number xNu are defined formally as 

2 2, andwywx
fx fy x

w w f

vv xqC C Nu
u u T T

           

(16) 

where wx and wy are the skin-friction (at wall) along andx y axis, 
and q is the heat flux from the plate are defined as 

0 0 0

v, andwx wy
z z z

u Tq
z z z

        

(17) 

in terms of non-dimensional quantities are obtained as 

0 0
2 2

v
''(0) '(0), ,

2Re 2Re
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fx fy
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uv v
f gz zC C

u u
 

 
 

0 Re '(0).
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f
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                                 (18) 

Particularly, for zero nanoparticles mass flux condition, the 
dimensionless mass flux denoted by the local Sherwood number 

xSh is identically zero, where Re /x wu L v  represents the local 
Reynolds number. 
 

3. SOLUTION METHODOLOGY BY MEANS OF 
OHAM 

In this section, we solve Eqs. (10) - (13) with BCs. (14) by a 
productive semi-analytical algorithm known as Optimal Homotopy 
Analysis Method (see for details, Liao (2010); Marinca and Herisanu 
(2015); and Van Gorder (2019)).  Consequently, a nonlinear problem 
is changed into an infinite number of linear sub-problems. In the 
frame of OHAM, we have an incredible opportunity to pick initial 
approximation and auxiliary linear operators and are picke as 

0 0
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f e g
K
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It is worth noting here that the auxiliary linear operators in Eq. (20) 
satisfy the properties 

1 2 3
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f
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where ' 1 9iA s i are arbitrary constants. 
In the present procedure, we construct the following zeroth-order 
deformation equations are given by 

0
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with the following BCs  
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where 0,1q  is an embedding parameter, ( , , , )f g  
are the 

convergence control parameter  and , , ,f gN N N N  are non-linear 
operators defined as 
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Methodologically, we choose the auxiliary function as 
f gH H H H e                            (28) 

Hence, by setting 0 and 1q q , in Eq. (22) then we get the 
solutions as follows 

0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ;0 , ;0 , ;0 , ;0 ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ;1 ,  ;1 ,  ;1 , ;1 .

f f g g

f f g g
   (29) 

From Eq. (28), it is clear that 
ˆ ˆ ˆˆ, , , , , and ,f q g q q q vary from the initial 

guesses 0 0 0 0, , andf g  to the final solutions 

, , andf g  of Eqs. (10) - (13) with BCs. (14), 
when the parameter q  oscillates between 0 to 1. Moreover, the 

sought solutions ˆ ˆ ˆˆ, , , , , and ,f q g q q q can be 
approximated accurately for the variable q by higher-
order expansions with the help of Taylor’s series as follows 
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where the convergence of the above series strongly depends 
upon , , andf g . Considering that the control parameter 

( , , , )f g  
are chosen in such a manner that Eq. (22) converges 

at 1.q Then, we have  
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The pth- order deformation equations and their corresponding BCs are 
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The  general solutions of the pth -order deformation equations are 
given by 
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in which * * * *( , , , )p p p pf g
 
denote the special solutions. 

The expressions of exact residual errors are written as follows 
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In practice the evaluation of the residual errors are  
ˆ ˆ ˆ ˆ, , ,f g

p p p pE E E E
 
consumed a large amount of time. 

So, instead of computing the exact residual errors, it is feasible to 
handle the accuracy of the problem using the average residual errors 
defined by 
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where ˆ t
pE represents the total squared residual error, 

/ P, 0,1,2. . ,P.n k k  
Now we minimize the error function ˆ ˆ ˆ, ,f g

p p pE E E  
ˆand pE  and record the optimal values of , , ,f g . For the 

required order approximation, the optimal values of , , ,f g  

corresponding to the functions , , ,f g are obtained by utilizing 
the following mathematical restrictions 
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0, 0, 0, 0

f g
p p p pdE dE dE dE
d d d d   

         (43) 

The convergent series solutions correspond to 
ˆ ˆ ˆ ˆlim 0, lim 0, lim 0, lim 0f g

p p p pp p p p
E E E E            (44) 

Table 1 and 2 provide the results obtained for the individual average 
squared residual error and total residual error by considering 

, , , 1.18152,1.29527,1.30537,1.46363f g  as the optimal values 

which have been analyzed by minimizing the averaged residual error 
and total residual error at 12th-order approximation. It can be 
observed that the averaged squared residual error, and total residual 
errors are consistently reduced as increases the order of 
approximations. Further, the average squared residual error and total 
residual error of each governing equations are found in the 
diminishing function of the order of approximation, as shown in Fig. 
2(a-b). 
Table 1 The individual average squared residual error as a function 
of the number of iterations and CPU time is also listed. Physical 
parameters are Pr 1.09, 1, 0.5, 0.1,Sc m Nb Mn Bi Nt  

1A B 0.2,K fixed and CPU time is also listed. We obtain 
the optimal values of convergence control parameters 
are 1.18152, 1.29527, 1.30537, 1.46363.f g  

 
Table 2 Total averaged squared residual error with no. of iteration 
and CPU time(s). Physical parameters are Pr 1.09, 1,Sc m  

10.5, 0.1,A B 0.2,Nb Mn Bi Nt K fixed and 
recorded as CPU time (in sec).  

 
Fig. 2(a) Residual error vs Order of approximation 

 

2 4 6 8 10 12
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10 4

0.001

0.010
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r

 
Fig. 2(b) Total residual error vs. no. of iteration .p  

 
4. MODEL VALIDATION 

 
Here, we present the exact solutions in certain special cases. These 
solutions have much importance due to they provide as a baseline for 
the comparison with the obtained results in the literature through the 
numerical solutions. In the absence of somenon-dimensional 
parameters, 1i.e., , , , , , 0,0,0,0,0,0Mn m K A B , Eqs. (10) - (13) and 
BCs. (14) are reduced to those treated by Mustafa et al. (2016), 
which are 

2''' '' 2 ' 4 0,f ff f g                                                (45) 
'' ' 2 'g 4 ' 0,g fg f f                                               (46) 

2'' Pr ' ' ' ' 0,f Nb Nt                                     (47) 

'' ' '' 0,NtSc f
Nb

                                                (48) 

with boundary conditions are  
0 (0) 0, ' 0 1, '(0) (1 (0)), '(0) '(0) 0

'( ) 0, ( ) 0, ( ) 0, ( ) 0
f g f Bi Nb Nt
f g

 

(49) 

To authenticate and validate the exactness of the proposed OHAM 
procedure, the present outcomes are compared with those reported by 

p  ˆ f
pE  ˆ g

pE  
      

ˆ
pE  ˆ

pE  CPU time 
2 6.09 10-4 2.86 10-3 2.57 10-5 3.53 10-6 3.51s 
4 3.59 10-5 3.89 10-4 8.28 10-7 6.19 10-7 34.59 s 
6 4.96 10-6 9.74 10-5 4.40 10-9 8.93 10-8 263.18s 
8 1.17 10-6 3.55 10-5 1.31 10-9 1.69 10-8 1261.57s 

10 4.16 10-7 1.67 10-5 1.11 10-9 5.52 10-9 4898.92s 
12 1.97 10-7 9.29 10-6 3.21 0-10 2.27 10-9 24101.19s 

   p  f
ph  g

ph  ph  ph     t
pE  CPU time 

2 0.96748 1.17805 1.21602 1.39283 1.05 10-2 1.81s 
4 1.05049 1.24464 1.20643 1.49248 9.36 10-3 7.86s 
6 1.10042 1.26462 1.17431 1.52095 1.75 10-4 15.46s 
8 1.13393 1.27572 0.95993 1.50951 3.38 10-5 170.42s 

10 1.15996 1.28557 0.81760 1.48142 2.52 10-5 318.52s 
12 1.18152 1.29527 0.71537 1.46363 1.39 10-5 526.91s 
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Hayat et al. (2017) for some special cases. The correctness found to 
be in superior agreement (see Table 3). 
 
Table 3 Comparison results of local Nusselt number and local 
Sherwood number for various values of and when 

1 0.Mn m K Bi  

 
5. RESULTS AND DISCUSSION 

 
The obtained numerical results by means of solving the transformed 
Eqs. (10) - (13) which are coupled and non-linear are treated with 
OHAM technique. Thus obtained are analyzed with the help of 
figures and tables. The results for the horizontal velocity profiles 

'( )f , transverse velocity profiles g( ), temperature profiles 
( ) and concentration profiles ( ) are presented for various 

pertinent flow parameters such as rotation parameter ( ),  Deborah 
number ( ),  magnetic parameter ( ),Mn  hall current parameter 
( ),m Prandtl number (Pr),  temperature exponent (A),  Brownian 
motion parameter ( ),Nb  thermophoresis parameter ( ),Nt Schmidt 
number ( ),Sc  concentration exponent (B),  velocity slip parameter 

1( )K  and Biots number ( )Bi in Figs. 3 - 7. The computed numerical 

values for the skin-friction coefficient ''(0)and '(0),f g  the local 

Nusselt number '(0), and the local Sherwood number '(0) are 
tabulated in Table 4. 

Figure 3(a) through 3(d) elucidates the graphical representation 
of the profiles '( ), ( ), ( )and ( )f g for different values of 

and . Figure 3(a) depicts that the suppressed horizontal velocity 

field '( )f  for the rising values of both and . The rotation 

parameter  decreases the velocity profile ( )g  within the range 
0 2  and then enhances gradually in the range 2 7 .  

0 1 2 3 4 5 6
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
  = 0,   = 0.2,   = 0.4

f ' ( )

  = 0.8, 0.4, 0

 

 

 
Fig. 3(a) Horizontal velocity profiles for different values of 

and with Pr 1.09, 1, 0.5,Sc m Nb Bi Mn

10.1,A= B =K 0.2.Nt  

Physically, this dual behavior of the fluid flow is due to the larger 
values of the rotation parameter correspond to a higher rotation for 
the angular velocity ,  because the term is defined as 

/ .wL u  

0 1 2 3 4 5 6 7

-0.24

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

0.04   = 0,   = 0.2,   = 0.4

g ( )

  =  0, 0.4, 0.8

 

 

 
Fig. 3(b) Transverse velocity profiles for different values of  

and with Pr 1.09, 1, 0.5,Sc m Nb Bi Mn

10.1,A= B =K 0.2.Nt  
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0.5
  = 0,   = 0.2,   = 0.4

 = 0, 0.4, 0.8
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0.112
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Fig. 3(c) Temperature profiles for different values of 

and with Pr 1.09, 1, 0.5,Sc m Nb Bi Mn

10.1,A= B =K 0.2.Nt  
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-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01
  = 0,   = 0.2,   = 0.4

 = 0.8, 0.4, 0

 

 

0.85 0.90 0.95

-0.0144

-0.0120  = 0.8, 0.4, 0

  
Fig. 3(d) Concentration profiles for different values of 

and with Pr 1.09, 1, 0.5,Sc m Nb Bi Mn

10.1,A= B =K 0.2.Nt  

    
 Hayat et al.     (2017)  Present Results 

By OHAM 

'(0)  '(0)  '(0)  '(0)  

0.0 
0.1 

0.5323 0.5040 0.532478 0.504141 
0.1 0.5239 0.4943 0.524068 0.494511 
0.2 0.5172 0.4858 0.519813 0.490602 

0.1 

0.0 0.5358 0.5107 0.536286 0.512786 
0.1 0.5239 0.4943 0.525566 0.498645 

0.2 0.4988 0.4609 0.500721 0.465365 
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Further, the smaller Deborah number  gives a viscous effect 
compared to the elastic effect, whereas the larger  exhibit in the 
elastically solid material in nature. With reference to ( ),  both 

and  increases the temperature field, which is recorded in Fig. 
3(c). The concentration profile exhibits the decreasing trend for 

and  (see Fig. 3(d)). Figure 4(a) to 4(d) illustrates the impact of 

the magnetic parameter Mn (presence and absence) and the hall 
current parameter m  on '( ), ( ), ( )and ( )f g . It is observed that 

the rising values of  increases '( ), ( )and ( )f g  and 

decreases ( ) . This phenomenon is obtained due to the effective 

conductivity 2/ 1 m , which decreases with increasing values 

of .m  Hence, it reduces the applied magnetic field, and consequently 

increases '( )f . 
Further, for a larger value of hall current parameter m , the term 

21 / 1 m  becomes smaller and smaller, and the resistive force of 

the magnetic field is diminished. Besides this, the magnetic 
parameter Mn reduces the fluid velocity, concentration profile in the 
boundary region and enhances the temperature field. The reason 
behind this development is the opposing force known as the Lorentz 
force, and this force tends to slow down the fluid flow. 
 

0 1 2 3 4 5
0.0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

m = 1, 2, 3

m = 1, 2, 3

 Mn = 0,  Mn = 0.5,  Mn = 1

f '( )

 

 

 

1.50 1.56 1.62

0.11
0.12
0.13
0.14

 
Fig. 4(a) Horizontal velocity profiles for different values of 

andMn m with Pr 1.09, 1, 0.5, 0.1,Sc Nb Bi Nt

1A= B =K 0.2.  
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Fig. 4(b) Transverse velocity profiles for different values of 

andMn m with Pr 1.09, 1, 0.5, 0.1,Sc Nb Bi Nt

1A= B =K 0.2.  
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Fig. 4(c) Temperature profiles for different values of   

andMn m with Pr 1.09, 1, 0.5, 0.1,Sc Nb Bi Nt

1A= B =K 0.2.  
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Fig. 4(d) Concentration profiles for different values of 

andMn m with Pr 1.09, 1, 0.5, 0.1,Sc Nb Bi Nt

1A= B =K 0.2.  
The influence of the magnetic parameter Mn  (in the presence 
/absence) and velocity slip 1K on '( )f is elucidated in Fig. 5. The 

velocity profile '( )f  decreases for varying values of 1K . 
Physically, the higher the value of 1K reduces the kinematic 
viscosity v . This nature of the profile is attributed to the fact 

/ 2
1 1 0 / 2 .x LK k U vL e  

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
 Mn = 0,  Mn = 0.5,  Mn = 1

f ' ( )

 = 0.4, 0.2, 0

 
 

 
Fig. 5 Horizontal velocity profiles for different values of  

1andMn K with Pr 1.09, 1, 0.5, 0.1,Sc m Nb Bi Nt
A= B = 0.2.  
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Figure 6(a) demonstrates that the temperature profile ( ) which 
reduces for increasing values of Pr and A . Here, the increase in 
Pr /v is responsible for lesser thermal diffusivity  which 
results in the reduced thermal boundary layer. A similar trend may be 
observed in the case of A . The impact of andNt Bi on ( ) is 
sketched in Fig. 6(b). The terms /T wNt D T T vT and 

0/ 2 /Bi h k vL U predicts the enhancement in temperature as 

both andNt Bi increase. It is noticed that the fluid temperature is zero 

when 0Bi and it is prescribed temperature at the wall when it tends 
to infinity. 

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

A = 1, 0.5, 0
 

 

 Pr = 1.09,   Pr = 2,   Pr = 5.09

 
Fig. 6(a) Temperature profiles for different values of Pr and A    

with 1, 0.5, 0.1,Sc m Nb Bi Mn Nt

1B = 0.2.K  
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1.0

Bi = 0, 0.5, 5

 

 

 Nt = 0,  Nt = 0.5,  Nt = 1

 
Fig. 6(b) Temperature profiles for different values of andNt Bi     

with Pr 1.09, 1, 0.5, 0.1,Sc m Nb Mn

1A= B = 0.2.K  
Figure 7(a) depicts the concentration profiles for different values 

of the Schmidt number Sc and concentration exponent 
parameter B. From the figure, it is clear that the rising values of 
both and BSc enhances the concentration profile. The Schmidt 

number Sc shows the relative strength of the thermal diffusivity to 
the nanoparticle diffusion rate. The thermal diffusivity will exceed 
nanoparticle diffusivity when 1Sc . This result stands for 
enhancement in the magnitudes of the nanoparticle concentration and 
thickened concentration boundary layer. 
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Fig. 7(a) Concentration profiles for different values of and BSc     

with Pr 1.09, 1, 0.5, 0.1,m Nb Bi Mn Nt

1A= 0.2.K  
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Fig. 7(b) Concentration profiles for different values of andNt Nb     

with Pr 1.09, 1, 0.5, 0.1,m Sc Bi Mn

1A= B = 0.2.K  
 
Figure 7(b) explains the impact of Nt and Nb on ( ) . It is 

noted that the nanoparticle volume fraction increases with the 
increase in Nt (increase in thermophoresis force) and thus, an 
enhancement in the thickness of the concentration boundary layer is 
observed. In this case, the nanoparticles move away from the hot 
stretching sheet towards the cold ambient fluid under the influence of 
the temperature gradient. But in the case of  Nb (smaller nano-
particles), the result is the opposite. However,  Nb will stifle the 
diffusion of nanoparticles away from the surface, which results in a 
decrease in nanoparticle concentration values in the boundary layer. 
Finally, Figure 8(a-c) displays the 3D plot of velocities and these 
plots exhibit similar results as that of velocity profiles. 

Table 4 is tabulated to exhibit the influence of embedding 
parameters on the skin-friction coefficient, the local Nusselt number, 
and the local Sherwood number. It is seen that the rising values of 

and decreases ''(0), '(0)and '(0)f g  and increases '(0) . The 

effect of m  shows a quite opposite trend as compared with and . 

Further, ''(0), '(0)and '(0)f are the decreasing function of 
, A, Pr and BMn  and increasing function of 1 andK Sc .
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Table 4 The values of skin-friction, local Nusselt number and local Sherwood number for various physical parameters with 0.1, 0.5.Nt Nb  

  

 

      

Pr  A  B  Sc  Bi   Mn   m  1K  ''(0)f  fh  ˆ f
pE  '(0)g  gh  ˆ g

pE  '(0)  h  ˆ
pE  '(0)  h  ˆ

pE  CPU 
time 

1.09 0.2 0.2 1 0.5 0.2 0.5 0.1 1 
0.0 1.50171 1.28150 2.12×10-6 0.22358 1.39868 9.79×10-6 0.28443 1.64350 3.12×10-6 0.0571

3 1.36629 6.54×10-7 624s 

0.2 1.05565 1.15027 2.48×10-6 0.18565 1.27430 1.29×10-5 0.27388 1.54837 1.56×10-6 0.05554 1.32737 1.09×10-7 687s 
0.4 0.85932 1.13670 2.08×10-6 0.16337 1.26558 1.24×10-5 0.26685 1.54884 2.86×10-6 0.05383 1.30500 6.32×10-8 651s 

1.09 0.2 0.2 1 0.5 0.2 0.5 0.1 
1 

0.2 
1.05565 1.15027 2.48×10-6 0.18565 1.27430 1.29×10-5 0.27388 1.54937 1.56×10-6 0.05554 1.08737 1.09×10-7 392s 

2 1.02295 1.18305 1.59×10-6 0.18351 1.30220 6.47×10-6 0.27519 1.58916 1.45×10-6 0.05581 1.06671 1.78×10-7 389s 
3 1.01171 1.19386 1.35×10-6 0.18289 1.31160 5.09×10-6 0.27565 1.60237 1.47×10-6 0.05589 1.06443 2.12×10-7 398s 

1.09 0.2 0.2 1 0.5 0.2 0.5 
0.0 

1 0.2 
1.04348 0.88977 2.90×10-8 0.10493 1.27712 5.32×10-6 0.27482 1.52442 1.13×10-6 0.05569 1.05284 1.59×10-7 319s 

0.2 1.07905 1.22029 1.90×10-5 0.46081 1.28995 5.18×10-5 0.27208 1.59099 2.65×10-6 0.05510 1.20626 7.04×10-8 406s 
0.4 1.21201 1.27865 1.13×10-4 0.77021 1.04182 1.87×10-5 0.26357 1.61183 8.99×10-6 0.05318 1.45384 4.78×10-8 373s 

1.09 0.2 0.2 1 0.5 0.2 
0.0 

0.1 1 0.2 
1.00033 1.20441 1.13×10-6 0.18226 1.32105 3.97×10-6 0.27613 1.61507 1.54×10-6 0.05597 1.06449 2.51×10-7 367s 

0.5 1.05204 1.13393 1.17×10-6 0.29030 1.27572 3.55×10-5 0.27415 1.54151 1.43×10-6 0.05558 1.07645 1.21×10-7 389s 
1.0 1.09372 0.85781 2.22×10-7 0.41054 1.22642 2.32×10-4 0.27297 1.46064 1.50×10-6 0.05525 1.09898 8.39×10-8 388s 

1.09 0.2 0.2 1 0.5 
0.0 

0.5 0.1 1 0.2 
1.03520 1.34943 1.08×10-5 0.43421 1.41332 2.22×10-5 0.27349 1.69735 8.04×10-6 0.05556 1.13296 9.48×10-8 325s 

0.4 1.11821 1.10462 3.25×10-5 0.48499 1.17409 1.08×10-4 0.27146 1.45160 2.93×10-6 0.05472 1.25205 7.17×10-8 423s 
0.8 1.18609 0.92313 8.35×10-5 0.52801 0.98672 3.52×10-4 0.27099 1.22764 4.78×10-6 0.05442 1.15635 9.61×10-8 361s 

1.09 0.2 0.2 1 
0.0 

0.2 0.5 0.1 1 0.2 
1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 337s 

0.5 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27239 1.54605 1.63×10-6 0.27647 1.07776 2.30×10-6 378s 
5.0 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.52265 1.50517 7.95×10-6 0.53300 1.18482 1.60×10-5 379s 

1.09 0.2 0.2 
0.7 

0.5 0.2 0.5 0.1 1 0.2 
1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27413 1.54089 1.44×10-6 0.05527 1.24722 4.01×10-8 408s 

1.0 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27403 1.54088 1.40×10-6 0.05543 1.14238 8.81×10-8 369s 
1.5 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27390 1.54022 1.50×10-6 0.05559 1.21553 1.58×10-7 367s 

1.09 0.2 
0.0 

1 0.5 0.2 0.5 0.1 1 0.2 
1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27424 1.54163 1.41×10-6 0.05562 1.06718 1.07×10-7 357s 

0.5 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27403 1.54088 1.46×10-6 0.05543 1.14238 8.81×10-8 369s 
1.0 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.27390 1.53824 1.55×10-6 0.05532 1.20167 2.51×10-8 366s 

1.09 
0.0 

0.2 1 0.5 0.2 0.5 0.1 1 0.2 
1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.25849 1.59760 2.77×10-6 0.05229 1.27656 3.87×10-8 352s 

0.5 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.29345 1.46311 2.23×10-6 0.05885 1.31697 5.70×10-7 361s 
1.0 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.31724 1.35343 1.87×10-6 0.06352 1.38964 9.52×10-7 310s 

1.09 
0.2 0.2 1 0.5 0.2 0.5 0.1 1 0.2 

1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.29345 1.46311 2.23×10-6 0.05885 1.31697 5.70×10-7 361s 
2.00 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.33311 1.12825 1.10×10-6 0.06652 1.44121 7.99×10-6 368s 
5.09 1.05204 1.13393 1.17×10-6 0.29031 1.27572 3.55×10-5 0.39126 0.97029 9.08×10-9 0.07806 1.22071 4.25×10-6 373s 
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(a) 

 
(b) 

 
(c) 
 

Fig. 8 Three dimensional plot of the velocity. 
 

6. CONCLUSIONS 
 

Some of the interesting findings of the present work are summarized 
below.  

 The rotation parameter decreases the '( ),f g( ), ( ) and 
( ) whereas the hall current parameter exhibits reverse 

trend.  
 A substantial variation in Deborah number reduces 

'( )f and ( )  while ( )g  and ( )  rises. 

 The enhanced magnetic parameter and velocity slip 
parameter decreases '( )f  . 

 Increased Prandtl number and temperature exponent and 
samller magnetic parameter, reduces ( ) . 

 An increase in ( ) is due to the increase in the Schmidt 
number, temperature exponent, thermophoresis parameter 
and the Brownian motion parameter. 

 
                        NOMENCLATURE 

 
A               temperature exponent parameter 

B               concentration exponent parameter 

B  magnetic induction vector 

Bi             Biots number 

0B              magnetic field strength [N m-1 A-1] 

C               nanoparticles concentration 

,fx fyC C        skin friction co-efficient along andx y axis. 

wC              concentration at wall 
C              ambient fluid concentration 

BD              Brownian diffusion  coefficient [m2 s-1] 

TD              thermophoretic diffusion coefficient [m2 s-1] 

e               electric charge 

E              intensity vector of the electric field 
,f g            dimensionless velocities 

h               heat transfer coefficient [W m-2 K-1] 

J               current density vector 

1K              slip parameter 

k               thermal conductivity of fluid [W m-1 K-1] 

L               characteristic length 

m              Hall effect parameter 

Mn             magnetic parameter 

en              electron number density 

eP              electronic pressure 

Nb             Brownian motion parameter 

Nt              thermophoresis parameter 

xNu            local Nusselt number 

Pr              Prandtl number 
Rex             local Reynolds number 

Sc              Schmidt number 

xSh             local Sherwood number 

T               fluid temperature [K] 

fT              hot fluid temperature 
T              ambient fluid temperature [K] 

0U              reference velocity 
, v,u w          velocity components in the , andx y z  

directions   [m s-1] 
, vw wu x y

 
stretching velocity in the andx y directions 
[m s-1].       

V   velocity vector 
, ,x y z  cartesian coordinate axes 

Greek symbols: 
             thermal diffusivity [m2 s-1] 

             Deborah number 

             rotation parameter 

1              relaxation time [s] 

 constant angular velocity 
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             dimensionless nanoparticles concentration 

             kinematic viscosity [m2 s-1] 

          fluid density [kg m-3] 

            electrically conductivity [S m-1] 

             dimensionless temperature 

             ratio between the effective heat capacity of  
the nanoparticle material and heat capacity of 
the fluid.                                                              

           similarity variable 
Subscripts: 

        condition at infinity 

 w             condition at wall 
Superscript: 
'  differentiation with respect to . 
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