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ABSTRACT 

The heat and mass transfer characteristics of the influence of uniform blowing/suction and MHD (magnetohydrodynamic) on the free convection of 
non-Newtonian fluids over a vertical plate in porous media with internal heat generation and Soret/Dufour effects are numerically analyzed. The 
surface of the vertical plate has a uniform wall temperature and uniform wall concentration (UWT/UWC). The numerical modeling of this problem 
attracts considerable attention, owing to its practical applications in biological sciences, electronic cooling, advanced nuclear systems, etc. The 
transformed governing equations are solved by Keller box method. Comparisons showed excellent agreement with the numerical data in previous 
works. Numerical data for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number and the local 
Sherwood number are presented for the main parameters: the magnetic field parameter M, the blowing/suction parameter  , the power-law index of 
the non-Newtonian fluid n and the internal heat generation A*. The physical aspects of the problem are discussed in details. 

Keywords: uniform blowing/suction, MHD, non-Newtonian fluid, Soret/Dufour effects, internal heat generation, free convection, vertical plate, 
porous medi

1. INTRODUCTION 

The boundary-layer flow of coupled heat and mass transfer (or double-
diffusion) of non-Newtonian fluids in a porous media in which the main 
driving force is gravity has attracted a large class of applications in 
engineering practice, particularly in applied geophysics, geology, 
groundwater flow and oil reservoir engineering. These include nuclear 
reactor cooling system, extraction of geothermal energy, thermal 
insulation of buildings, filtration processes and disposal of underground 
nuclear wastes. Due to the increase in the production of heavy crude 
oils, and elsewhere where materials whose flow behavior in shear 
cannot be characterized by Newtonian relationships, it has become 
necessary to have an adequate understanding of the effects of non-
Newtonian fluid flows and, as a result, a new stage in the evolution of 
fluid dynamic theory is in progress. Nield and Bejan (2006) recently 
presented a comprehensive account of the available information in the 
field.  

In particular, a number of industrially important fluids including 
fossil fuels exhibit non-Newtonian fluid behavior. Non-Newtonian 
power law fluids are so widespread in industrial processes and in the 
environment that it would be no exaggeration to affirm that Newtonian 
shear flows are the exception rather than the rule. Shenoy (1994) 
presented many interesting applications of non-Newtonian power law 
fluids with yield stress on convective heat transport in fluid saturated 
porous media considering geothermal and oil reservoir engineering 
applications. In the aspect of pure heat transfer, Chen and Chen (1988) 
presented similarity solutions for natural convection of a non-
Newtonian fluid over vertical surfaces in porous media. Yang and 
Wang (1996) investigated the natural convection heat transfer of non-
Newtonian power-law fluids with yield stress over axisymmetric1 and 
two-dimensional bodies of arbitrary shape embedded in a fluid-
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saturated porous medium. Gorla and Kumari (1999) studied nonsimilar 
solutions for free convection in non-Newtonian fluids along a vertical 
plate in a porous medium. In the aspect of coupled heat and mass 
transfer, the double-diffusion from a vertical surface in a porous region 
saturated with a non-Newtonian fluid has been treated by Rastogi and 
Poulikakos (1995). Jumah and Mujumdar (2000) examined the natural 
convection heat and mass transfer from a vertical plate with variable 
wall temperature and concentration to power law fluids with yield stress 
in a porous medium. Cheng (2006) studied the natural convection heat 
and mass transfer of non-Newtonian power law fluids with yield stress 
in porous media from a vertical plate with variable wall heat and mass 
fluxes. Tai and Char (2010) examined the Soret and Dufour effects on 
free convection flow of non-Newtonian fluids along a vertical plate 
embedded in a porous medium with thermal radiation. Yih and Huang 
(2015) reported the effect of internal heat generation on free convection 
flow of non-Newtonian fluids over a vertical truncated cone in porous 
media: VWT/VWC.  

The Soret effect referred to species differentiation developing in an 
initial homogeneous mixture submitted to a thermal gradient. The 
Dufour effect referred to heat flux produced by a concentration gradient. 
Postelnicu (2004) examined the heat and mass characteristics of natural 
convection about a vertical surface embedded in a saturated porous 
medium subjected to a magnetic field by considering the Dufour and 
Soret effects. Partha et al. (2006) studied the Soret and Dufour effects 
in a non-Darcy porous medium. Cheng (2007) examined the Soret and 
Dufour effects on free convection boundary layers of non-Newtonian 
power law fluids with yield stress in porous media over a vertical plate 
with variable wall heat and mass fluxes. Hsiao et al. (2014) investigated 
the influence of thermophoretic particle deposition on MHD free 
convection flow of non-Newtonian fluids from a vertical plate 
embedded in porous media considering Soret and Dufour effects.  
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The effect of internal heat generation is important in several 
applications that include reactors safety analyses, metal waste form 
development for spent nuclear fuel, fire and combustion studies, and the 
storage of radioactive materials. A new class of similarity solutions has 
obtained for isothermal vertical plate in a semi-infinite quiescent fluid 
with internal heat generation decaying exponentially by Crepeau and 
Clarksean (1997). Postelnicu and Pop (1999) studied the similarity 
solutions of free convection boundary layers over vertical and 
horizontal surfaces in porous media with internal heat generation. 
Grosan and Pop (2001) examined a free convection over vertical flat 
plate with a variable wall temperature and internal heat generation in a 
porous medium saturated with a non-Newtonian fluid. Grosan et al. 
(2009) reported magnetic field and internal heat generation effects on 
the free convection in a rectangular cavity filled with a porous medium.  

However, in the above paper, these scholars are concentrated upon 
the impermeable case. Minkowycz and Cheng (1982) reported local 
non-similar solutions for free convective flow with uniform lateral mass 
flux in porous medium. Yih (1997) examined the effect of uniform 
lateral mass flux on free convection about a vertical cone embedded in 
a saturated porous medium. Yih (1998) investigate the effect of uniform 
lateral mass flux on the heat transfer characteristics in natural 
convection of non-Newtonian fluids in a saturated porous medium. 
Chamkha and Ben-Nakhi (2008) studied the MHD mixed convection–
radiation interaction along a permeable surface immersed in a porous 
medium in the presence of Soret and Dufour’s effects. Kumari and Nath 
(2009) studied natural convection from a vertical cone in a porous 
medium due to the combined effects of heat and mass diffusion with 
non-uniform wall temperature/concentration or heat/mass flux and 
suction/injection. Rashad et al. (2011) examined natural convection 
boundary layer of a non-Newtonian fluid about apermeable vertical 
cone embedded in a porous medium saturated with a nanofluid. Huang 
(2017) investigated the influence of uniform blowing/suction on the 
free convection of non-Newtonian fluids over a vertical cone in porous 
media with thermal radiation and Soret/Dufour effects: uniform wall 
temperature/uniform wall concentration. Huang (2018) examined the 
effects of internal heat generation and Soret/Dufour on natural 
convection of non-Newtonian fluids over a vertical permeable cone in a 
porous medium.  

The aim of the present work, therefore, is to extend the work of 
Tai and Char (2010) to investigate the influence of uniform 
blowing/suction on the free convection of non-Newtonian fluids over a 
vertical plate embedded in porous media with internal heat generation 
and Soret/Dufour effect. The governing equations have been solved 
numerically using Keller box method (KBM). The results are obtained 
for various values of the parameters.  
 

2. ANALYSIS 

The considered problem is the influence of uniform blowing/suction on 
the natural convection of non-Newtonian fluids over a vertical plate in 
porous media with internal heat generation and Soret/Dufour effect and 
where the boundary condition is uniform wall temperature wT  and 

uniform wall concentration wC (UWT/UWC), respectively. Consider a 

two-dimensional, steady, laminar flow of an incompressible electrically 
conducting fluid over a flat plate in the presence of a transverse 
magnetic field 0B , as shown in Fig. 1, while the induced magnetic field 

due to the motion of the electrically conducting fluid is negligible. The 
origin of the coordinate system is the leading edge of the vertical flat 
plate, where x  and y  are Cartesian coordinates for the distance 
along and normal to, respectively, the vertical flat plate surface. 

All fluid properties are assumed to be constant except for the 
density variation in the buoyancy term. Introducing the boundary layer 
and Oberbeck-Boussinesq approximations, the governing equations and 
the boundary conditions based on the Darcy law (It is valid under the 
condition of low velocity and small pores of porous medium [31]) can  

 
Fig. 1 The flow model and the physical coordinate system 

 

 
be written as follows: 
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Concentration equation: 
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Boussinesq approximation: 
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Boundary conditions: 
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Here, u  and v  are the Darcian velocities in the x  and y

directions, respectively; n  is the power-law index of the non-
Newtonian fluid;  nK  is the permeability of the porous medium;   
is the electric conductivity of the fluid; 0B  is the externally imposed 

magnetic field in the y direction; g  is the gravitational acceleration; 
p , 

 and 
 are the pressure, the density and the absolute viscosity, 

respectively; T  and C  are the volume-averaged temperature and 
concentration, respectively; m  and MD  are the equivalent thermal 

diffusivity and mass diffusivity, respectively; pC  is the specific heat 

at constant pressure; q 
 is the internal heat generation rate per unit 

volume; mT  is the mean fluid temperature; T  and C  are the 

thermal and concentration expansion coefficients of the fluid, 
respectively; wV

 is the uniform blowing/suction velocity. 

The second term on the right-hand side of the energy Eq. (4) represents 
the Dufour effect, and the last term of concentration Eq. (5) denotes the 
Soret effect. 

The power-law fluid index n  for various fluids is as follows: 
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(i) 1n  for pseudo-plastic fluids (for example, the polymer solution) 
or shear-thinning fluids that have a lower apparent viscosity at 
higher shear rates. 

(ii) 1n  for Newtonian fluids (for instance, air and water) where the 
shear stress is directly proportional to the shear rate. 

(iii) 1n  for dilatant fluids (for example, the suspensions of sand) or 
shear-thickening fluids for which there is an increase in the apparent 
viscosity at higher shear rates. 
For the power law model of Ostwald-de-Waele, Christopher and 

Middleman (1965) and Dharmadhikari and Kale (1985) proposed the 
following relationships for the permeability: 
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where d  is the particle diameter and   is the porosity. 

The stream function   is defined by 
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Therefore, the continuity equation is automatically satisfied. 
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Integrating Eq. (11) once and with the aid of boundary equation (8), 
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The following dimensionless variables are invoked: 
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where xRa  is the local Rayleigh number. 

Following Postelnicu and Pop (1999), the internal heat generation 

rate per unit volume q 
 is modeled according to the following 

equation: 
 

  


 


 eTT
x

Rak
Aq w

x
n

2

1

 (14) 

 

Here, *A  is the internal heat generation coefficient. Note that, when 

0* A , this case corresponds to the absence of internal heat generation 

while, when 0* A , this case corresponds to the presence of internal 
heat generation. 

Substituting Eq. (13) into Eqs. (12), (4)-(5), (7)-(8) obtains 
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The boundary conditions are defined as follows: 
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For the new variables, the Darcian velocities in the x  and y  
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where primes denote differentiation with respect to  .   defined in 
Eq. (13.1) is the surface blowing/suction parameter; Eq. (18) can be 
obtained by integrating Eq. (21) versus   once and by setting 0  

(at the surface, 0y , then 0 ), and with the help of boundary Eq. 

(7). On the one hand, for the case of blowing, 0wV  and hence 0 . 

On the other hand, for the case of suction, 0wV  and hence 0 . 

Besides, the buoyancy ratio N , the Lewis number Le , the Dufour 
parameter D  and the Soret parameter S  are respectively defined as 
follows: 
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The results for heat and mass transfer rates have practical 
applications. The heat and mass transfer rates are expressed in terms of 
the local Nusselt number xNu  and the local Sherwood number xSh  

respectively, which are respectively defined as follows: 
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By applying Eq. (13), the local Nusselt number xNu  and the 

local Sherwood number xSh  in terms of n
xRa 21 are respectively 

obtained by 
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It may be noticed that for 0  (without blowing/suction effect), 

0*  AM  (without magnetic field and internal heat generation effects) 
Eqs. (15)-(19) are reduced to those of Tai and Char (2010) where a 
similar solution was obtained previously. 
 

3. NUMERICAL METHOD 

Equations (15)-(19) are integrating by combining the implicit finite 
difference approximation with the modified Keller box method of 
Cebeci and Bradshaw (1984). First, the partial differential converted 
into a system of five first-order equations. These first-order equations 
are then expressed in finite difference forms and solved along with their 
boundary conditions by applying an iterative scheme. This approach 
improves the convergence rate and the computation times. 

Computations were performed with a personal computer with 
1.0

 and the first step size 
01.0l . The variable grid 

parameter is chosen 1.01 and the value of 30 . The iterative 

procedure is stopped to give the final temperature and concentration 
distributions when the error in computing the w   

and w   in the next 

procedure becomes less than 510 . 
 

4. RESULTS AND DISCUSSION 

The accuracy of this method was verified by comparing the results with 
those of Postelnicu (2004), Hsiao et al. (2014) and Yih and Huang 
(2015). Table 1 lists the comparison of )0,(  and )0,(  for 

various values of ,M ,N D  and S  with ,0*  A .1 Len

Table 2 lists the comparison of )0,(  and )0,(
 for various 

values of *A  and n  with 0 SDM , 4N , 10Le . All 
values in Tables 1 to 2 lists the comparisons showed excellent 
agreement with the numerical data in previous works. Table 3 lists the 

values of n
xx RaNu 21/  and n

xx RaSh 21/
 for various values of ,N ,Le

,D ,S , ,M n  and *A .  
 

 

Table 1. Comparison of )0,(  and )0,( for various values of ,M ,N D  and S  with ,0*  A .1 Len  
 

M  N  D  S  

)0,(   )0,(  

Postelnicu 
(2004) 

Hsiao et 
al. (2014) 

Present 
results 

Postelnicu 
(2004) 

Hsiao et al. 
(2014) 

Present 
results 

0 0.5 0.075 0.8 0.5550 0.5550 0.5550 0.2876 0.2876 0.2876 
1 0.5 0.075 0.8 0.3925 0.3925 0.3925 0.2033 0.2033 0.2034 
0 1 0.03 2.0 0.7144 0.7144 0.7144 -0.1359 -0.1395 -0.1395 
1 1 0.03 2.0 0.5051 0.5051 0.5051 -0.0986 -0.0986 -0.0986 

 

Table 2. Comparison of )0,(   and  0, for various values of *A  and n  with 

0 SDM , 4N , 10Le . 

*A  n  
)0,(    0,  

Yih and Huang 
(2015) 

Present 
results 

Yih and Huang 
(2015) 

Present 
results 

0 
0.5 1.0105 1.0104 6.3671 6.3671 
1.0 0.6811 0.6810 3.2892 3.2892 
2.0 0.6030 0.6029 2.4022 2.4022 

1 
0.5 0.2404 0.2402 6.4412 6.4412 
1.0 -0.0191 -0.0191 3.3311 3.3311 
2.0 -0.0837 -0.0837 2.4247 2.4247 

 

 

Table 3. Values of n
xx RaNu 21/  and n

xx RaSh 21/ for various values of ,N ,Le ,D ,S , ,M n  and *A . 
 

N  Le  D  S    M  n  *A  
21/ xx RaNu  21/ xx RaSh  

1 1 0 0 0 0 1 0 0.6275 0.6275 
1 1 0.1 0.1 0 0 1 0 0.5983 0.5983 
0 1 0.1 0.1 0 0 1 0 0.4230 0.4230 
1 2 0.1 0.1 0 0 1 0 0.5435 0.8849 
1 1 0.2 0.1 0 0 1 0 0.5638 0.6053 
1 1 0.1 0.2 0 0 1 0 0.6053 0.5638 
1 1 0.1 0.1 1 0 1 0 0.4197 0.4197 
1 1 0.1 0.1 -1 0 1 0 0.8284 0.8284 
1 1 0.1 0.1 0 1 1 0 0.4230 0.4230 
1 1 0.1 0.1 0 0 0.5 0 0.7179 0.7179 
1 1 0.1 0.1 1 0 1.5 0 0.5710 0.5710 
1 1 0.1 0.1 0 0 1 1 -0.0725 0.7022 

First row is baseline. 
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The numerical results are presented for the buoyancy ratio 5N , 
the Lewis number 2Le , the Dufour parameter 1.0D , the Soret 
parameter 2.0S , the power-law index of the non-Newtonian fluid 

n  ranging from 0.5 to 3.0, the blowing/suction parameter   ranging 

from -1 to 1, the magnetic field parameter M  ranging from 0 to 2 and 

the internal heat generation *A  ranging from 0 to 1.
 
 

 

  
 
Fig. 2 (a) The dimensionless temperature profile and (b) the dimensionless concentration profile for two values of M  and *A . 

 

Table 4. The values of n
xx RaNu 21/  and n

xx RaSh 21/  for various values of M  and *A  with 

,5N ,2Le ,1.0D ,2.0S ,5.1n 1 . 

M  

n
xx RaNu 21/  n

xx RaSh 21/  

0.0* A  5.0* A  0.1* A  0.0* A  5.0* A  0.1* A  
0.0 0.5894 0.2794 -0.0268 0.7686 0.8489 0.9282 
0.5 0.5161 0.1992 -0.1139 0.6694 0.7511 0.8321 
1.0 0.4582 0.1363 -0.1820 0.5897 0.6725 0.7545 
1.5 0.4116 0.0860 -0.2363 0.5250 0.6085 0.6913 
2.0 0.3734 0.0449 -0.2806 0.4710 0.5557 0.6390 

 

 
 

Figure 2 illustrates the two values of the magnetic field parameter 

M  ( M 0, 1) and the internal heat generation coefficient *A  ( *A
0, 1) on the dimensionless temperature profile and concentration profile 
with ,5N ,2Le ,1.0D ,2.0S ,5.1n ,1  respectively. 
These two figures show that the dimensionless temperature and 
concentration profiles decrease monotonically from the surface of the 

vertical flat plate to the ambient except the case of 1,1 *  AM . 

Increasing the magnetic field parameter or the internal heat generation 
coefficient worsen the dimensionless wall temperature gradient, as 
depicted in Fig. 2(a). The dimensionless wall concentration gradient 
enhances with a decrease in the magnetic field parameter or the internal 
heat generation coefficient, as illustrated in Fig. 2(b). Besides, 

increasing internal heat generation coefficient *A  from 0 to 1 causes 
the dimensionless wall temperature gradient  0,   to become 
negative value. This phenomenon is due to overshoot in the 

dimensionless temperature profile for 1M , 1* A  where heat 
transfer is from the porous medium to the vertical flat plate. 

Table 4 lists the values of local Nusselt number n
xx RaNu 21/  and 

the local Sherwood number n
xx RaSh 21/  for various values of M  and 

*A  with ,5N ,2Le ,1.0D ,2.0S ,5.1n 1 . First, for fixed 

M , as the internal heat generation coefficient *A  is enhanced, the 
local Nusselt number decreases but the local Sherwood number 
increases. This is because increasing the internal heat generation 

coefficient *A  reduces the dimensionless surface temperature gradient 
 0,   and increases the dimensionless surface concentration 

gradient  0, , as displayed in Fig. 2. Second, for fixed *A , the 
local Nusselt number and the local Sherwood number tends to decrease 
as the magnetic field parameter M  is increased. Increasing the 
magnetic field parameter increases the thermal boundary layer 
thickness and the concentration boundary layer thickness, as revealed in 
Fig. 2. The thicker the thermal concentration boundary layer thickness, 
the smaller the local Nusselt (Sherwood) number. 

To determine the effects of step size   (the first step size 

1 ), the numerical code for the model was run with three different 

step sizes as  0.2, 0.1 and 0.05 ( 1 0.05, 0.01 and 0.005). The 

grid independency is done as shown in Fig. 3, for the case of ,5N

,2Le ,1.0D ,2.0S ,5.1n ,1 ,1M .0.0* A  
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Fig. 3 (a) The dimensionless temperature profile and (b) the dimensionless concentration profile for the case of ,5N ,2Le

,1.0D ,2.0S ,5.1n ,1 ,1M .0.0* A  

  
Fig. 4 (a) The dimensionless temperature profile and (b) the dimensionless concentration profile for two values of n  and  . 

 

Table 5. The values of n
xx RaNu 21/  and n

xx RaSh 21/  for various values of n  and   with ,5N ,2Le

,1.0D ,2.0S ,1M .5.0* A  

n  
n

xx RaNu 21/  n
xx RaSh 21/  

1  0  1  1  0  1  

0.5 0.4616 0.3259 0.2224 1.6720 1.2173 0.8613 
0.8 0.4371 0.2974 0.1919 1.6118 1.1488 0.7914 
1.0 0.4222 0.2800 0.1730 1.5774 1.1088 0.7502 
1.5 0.3945 0.2465 0.1363 1.5144 1.0339 0.6725 
2.0 0.3773 0.2248 0.1120 1.4756 0.9864 0.6228 
2.5 0.3662 0.2103 0.0956 1.4506 0.9552 0.5902 
3.0 0.3588 0.2002 0.0839 1.4335 0.9335 0.5674 

 

Figure 4 presents the two values of the non-Newtonian fluid 
power-law index n  ( n 0.5,1.5) and the blowing/suction parameter 
  (  -1,1) on the dimensionless temperature and concentration 

profiles with ,5N ,2Le ,1.0D ,2.0S ,1M ,5.0* A  
respectively. It is found that the dimensionless temperature profiles   
and the dimensionless concentration profiles   increase with 

increasing the non-Newtonian fluid power-law index n , thus 
increasing the thermal and concentration boundary layer thicknesses. 
This is because increasing the non-Newtonian fluid power-law index 
n  tends to decrease the buoyancy force and slow the flow velocity. 
Therefore, pseudoplastic fluids ( n 0.5) are superior to the dilatant 
fluids ( n 1.5) from the viewpoint of the heat and mass transfer rates 
by free convection from a vertical plate embedded in a porous medium 
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saturated with non-Newtonian power-law fluids. 

Table 5 lists the values of local Nusselt number n
xx RaNu 21/  and 

the local Sherwood number n
xx RaSh 21/  for various values of n  and 

  with ,5N ,2Le ,1.0D ,2.0S ,1M .5.0* A  It is found 

that for the fixed n , enhancing the blowing/suction parameter   has 
the tendency to reduces both the local Nusselt number and the local 
Sherwood number. This is because for the case of blowing decreases 
both the dimensionless surface temperature and concentration gradients, 
as shown in Fig. 3. However, this trend reversed for suction of fluid. 
 

5. Conclusions 

A two-dimensional laminar boundary layer analysis is presented to 
study the influence of uniform blowing/suction and MHD on the free 
convection of non-Newtonian fluids over a vertical plate in porous 
media with Soret/Dufour effect. After the coordinate transformation, the 
transformed governing equations are solved by Keller box method 
(KBM). Comparisons with previously published works show excellent 
agreement. Numerical solutions are obtained for different values of the 
blowing/suction parameter  , the magnetic field parameter M , the 
power-law index of the non-Newtonian fluid n  and the internal heat 

generation coefficient *A . The calculations show that, when the 
magnetic field parameter M  and the non-Newtonian fluid n  
increase, both the local Nusselt number and the local Sherwood number 
decrease. Otherwise, increasing the internal heat generation coefficient 

*A reduces the local Nusselt number and increases the local Sherwood 
number. In the case of suction, both the local Nusselt number and the 
local Sherwood number increase. Blowing has the opposite effect. 

NOMENCLATURE 

A   internal heat generation coefficient 

oB
  externally imposed magnetic field in the y-direction 

C   concentration 

PC    specific heat at constant pressure 

D   Dufour parameter 
d   particle diameter 

D    Dufour coefficient 

MD   mass diffusivity 

f   dimensionless stream function 
g   gravitational acceleration 

xh   local convective heat transfer coefficient 

xmh ,   local convective mass transfer coefficient 

K   permeability of the porous medium 
k   equivalent thermal conductivity 
Le   Lewis number 
M   magnetic field parameter 
N   buoyancy ratio 

xNu   local Nusselt number 

wm   local mass flux 

n   power-law index of the non-Newtonian fluid 

wq   local heat flux 

q 
  internal heat generation rate per unit volume 

xRa   modified local Rayleigh number 

S   Soret parameter 

S    Soret coefficient 

xSh   local Sherwood number 

T   temperature 
u   Darcy velocity component in the x -direction 
v   Darcy velocity component in the y -direction 

wV   uniform transpiration velocity 

x   streamwise coordinate 
y   transverse coordinate 

Greek symbols 

m   equivalent thermal diffusivity 

C   coefficient of concentration expansion 

T   coefficient of thermal expansion 

   porosity 
   pseudo-similarity variable 

   dimensionless temperature 
   absolute viscosity of fluid 
   density of fluid 
   electric conductivity of the fluid 
   dimensionless concentration 
   stream function 
Subscripts 
w   condition at the wall 
   condition at infinity 
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