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ABSTRACT

In some recent studies, it has been suggested that non–Newtonian fluid flow can be modeled by a spatially non–local velocity, whose dynamics are
described by a fractional derivative. In this study, we use the space fractional constitutive relation to model heat and mass transfer in a nanofluid.
We present a numerically accurate algorithm for approximating solutions of the system of fractional ordinary differential equations describing the
nanofluid flow. We present numerically stable differentiation matrices for both integer and fractional order derivatives defined by the one–sided
Caputo derivative. The differentiation matrices are based on the series expansion of the unknown functions using a truncated Chebyshev polynomial
of the first kind and interpolation using Gauss–Lobatto quadrature. We show that the proposed technique is highly effective for solving the fractional
model equations.
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1. INTRODUCTION

The boundary layer flow of both Newtonian and non–Newtonian fluid-
s has been explored extensively in the literature because of the many
industrial and scientific uses of these fluids. Experimental and theoret-
ical investigations of non–Newtonian fluids have shown that they exhibit
anomalous behaviours and are generally more complex than viscous flu-
ids. To describe these behaviours, several models have been proposed to
mathematically describe and experimentally quantify the stress–strain re-
lationship. These constitutive relations include but are not limited to the
power–law, Ellis and Powell–Eyring fluids models. These models and
several others have been subjected to experimental and theoretical inves-
tigations. In some recent studies, attempts have been made to reconstruct
the constitutive relations to incorporate hereditary properties, memory re-
tention and non–local properties of non–Newtonian fluids. The primary
objective is to recast the velocity gradient in the momentum transport e-
quation as a fractional derivative.

Fractional calculus can best describe physical models with long term
memory and non–locality of the spatial domain. For instance, constitu-
tive relations with time fractional derivative are used to describe memory
dependence in dynamical systems (Tarasov, 2013). An investigation and
summary of studies on fluid flow problems in which the rheological prop-
erties of the fluid are described using fractional calculus is given by Sun
et al. (2018). In this study, the classical constitutive equation of a viscous
fluid was reconstructed so that the velocity gradient is expressed using
a non–local spatial derivative. This approach allows for the capture of

†Corresponding author. Email: shina@aims.edu.gh

the non–locality of non–Newtonian fluid and the correlation between the
fluid particles. They conducted a theoretical analysis of a steady pipe
flow of a laminar incompressible flow, obtaining the frictional head loss,
velocity profile and yield stress in terms of the fractional Reynolds num-
ber. Chen et al. (2015) investigated the fractional boundary layer flow
of a Maxwell fluid on an unsteady stretching surface. The constitutive
equation was recast so as to introduce space–time dependent fractional
derivatives. Research on classical boundary layer flow, heat and mass
transfer in magnetohyrodynamics nanofluid has been carried out by, a-
mong others, Dhanai et al. (2015) and Khan and Pop (2010). By applying
the implicit finite difference method, velocity, temperature and nanopar-
ticle concentration profiles were obtained in the study of Dhanai et al.
(2015) which investigated the combined effects of heat and mass trans-
fer parameters on a steady boundary layer nanofluid flow and examined
multiple solutions of the conservation equations. Critical review of litera-
ture shows that heat and mass transfer in viscous nanofluid with fractional
constitutive relation has not been studied. In this study, a fractional sys-
tem of equations describing heat and mass transport in an incompressible
magnetohydrodynamic viscous nanofluid is developed and solved using
a spectral technique that uses Chebyshev polynomials of the first kind as
basis functions.

2. MATHEMATICAL FORMULATION
We consider a steady two–dimension boundary layer flow of an incom-
pressible nanofluid with space fractional shear rate induced by an im-
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permeable horizontal wall along the plane y = 0, where the y–axis is
perpendicular to the wall and the x–axis along the wall. It is assumed
that the flow occurs at y ≥ 0 and a constant magnetic field B is applied
in the y–direction. The temperature and nanoparticle volume fraction at
the wall (Tw, Cw) are constant and the ambient temperature and concen-
tration are T∞ and C∞ respectively as in Fig. 1. By defining the shear
stress associated with a fluid with fractional dynamic viscosity coefficient
µα (kg/m2−α/s) in the following form

τ = µα
∂αu

∂yα
, 0 < α < 2, (1)

Fig. 1 Coordinate system and flow geometry.

where α is the order of the fractional space derivative, and ∂αu/∂yα de-
notes the fractional velocity gradient. A reclassification of non–Newtonian
fluid based on the fractional constitutive equation (1) was given by (Sun
et al., 2018). In the aforementioned study, the case < α < 1 was pro-
posed to describe shear thickening fluids, 2 > α > 1 model shear thin-
ning fluids and α = 1, viscous fluids. The partially coupled system of
equations describing the transport processes is given as (Chen et al., 2015;
Khan and Pop, 2010)

∂u

∂x
+
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∂y
= 0 (2)
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∂y
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)

(4)

u
∂C

∂x
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∂C

∂y
= DB

∂2C

∂y2
+
DT
T∞

∂2T

∂y2
, (5)

subject to the boundary conditions

v = 0, u = U0, T = Tw, C = Cw at y = 0,

u = 0, T = T∞, C = C∞ as y →∞.

Here C
0 D

α
y is the Caputo fractional operator of order α of the function

u(y) : (0,∞)→ R, defined as

C
0 D

α
y u(y) =


1

Γ(n−α)

∫ y
0

un(ỹ)

(y−ỹ)α+1−n dỹ, n− 1 ≤ α < n ∈ N

dnu(y)
dyn

α = n ∈ N.
(6)

The Caputo fractional operator is the most popular in applications due to
the ease in imposing conditions on the fractional differential equations.
Other fractional operators include the Riemann-Liouville, Riesz and the
Canavati fractional derivatives. We note that the Caputo fractional oper-
ator is a regularized form of the Riemann-Liouville fractional derivative.
The definitions and properties of the Caputo derivative and the aforemen-
tioned arbitrary order derivatives can be found in Miller and Ross (1993);
Podlubny (1998); Atanackovic et al. (2014).
We define u and v (m/s) as the horizontal and vertical velocity com-
ponents respectively, να(m1+α/s) = µα/ρb is the fractional kinemat-
ic viscosity, ρb and ρp (kg/m3) are constant basefluid and nanoparticle
densities respectively. If we assume the reference length L and velocity
U0, we have the following dimensionless variables

(U, V,X, Y, θ, φ) =

(
uU−1

0 , vU−1
0 , xL−1, yL−1,

T − T∞
∆T

,
C − C∞

∆C

)
,

(7)

(Reα,M
2, Le, Pr,Nbt, Sc) =

(
U0L

α

να
,
σB2L

ρU0
,

k

(ρc)pDB∆C
,

LU0(ρc)f
k

,
Nb

Nt
,
DB
LU0

)
, (8)

whereNb andNt are respectively the Brownian diffusion and thermophore-
sis parameters,Reα is the fractional Reynolds number,M is the magnetic
parameter, Le is the Lewis number, Pr is the Prandtl number, and Sc is
the Schmidt number (Dhanai et al., 2015). Introducing the stream func-
tion ψ defined by U = ∂ψ/∂Y and V = −∂ψ/∂X , Eqs. (3) to (5)
become

∂ψ

∂Y

∂2ψ

∂X∂Y
− ∂ψ

∂X

∂2ψ

∂Y 2
=

1

Reα

∂α+2ψ

∂Y α+2
−M2 ∂ψ

∂Y
(9)
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[
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]
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∂Y 2
+
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∂Y
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+

1

Nbt

(
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∂Y

)2

(10)

Sc

[
∂ψ

∂Y

∂φ

∂X
− ∂ψ

∂X

∂φ

∂Y

]
=
∂2φ

∂Y 2
+

1

Nbt

∂2θ

∂Y 2
. (11)

We perform a scaling transformation by introducing the new variables
x, y, ψ̃, θ̃, φ̃ defined as

(X,Y, ψ, θ, φ) =
(
λa1x, λa2y, λa3 ψ̃, λa4 θ̃, λa5 φ̃

)
. (12)

Here, λ is the scaling parameter and ai for i = 1 . . . 5 are constants
to be determined such that Eqs. (9) to (11) remain invariant under this
group transformation. Upon substituting Eq. (12) into Eqs. (9) to (11),
and dropping the tilde for convenience, we get

λ2a3−2a2+a1

[
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

]
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]
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Nbt
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∂y2
. (15)
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For the system of equations to remain invariant, we set a1 = a3 = a (ar-
bitrary) and a2 = a4 = a5 = 0. The characteristics equations associated
with the transformation is given as

dx

ax
=
dy

0
=
dψ

aψ
=
dθ

0
=
dφ

0
, (16)

which give the similarity functions

y = η, ψ(x, y) = xf(η), θ(x, y) = θ(η), φ(x, y) = φ(η).
(17)

Using the Caputo fractional operator to obtain the fractional derivative of
the similarity function ψ(x, y) = xf(η) and substituting Eq. (17) into
Eqs. (9) to (11) gives the following similarity equations

fα+2 −ReαM2f ′ −Reαf ′2 +Reαff
′′ = 0 (18)

Leθ′′ + θ′φ′ +
1

Nbt
θ′2 + LePrfθ′ = 0 (19)

φ′′ +
1

Nbt
θ′′ + Scfφ′ = 0, (20)

with boundary conditions

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(η) = 0, θ(η) = 0, φ(η) = 0 as η →∞. (21)

We note here that setting α = 1, Reα = 1 and M = 0, the system of
equations reduces to the problem studied in Khan and Pop (2010).

3. NUMERICAL APPROXIMATION
Existing numerical methods for integer order differential equations have
been extended to fractional order differential equations. Numerical and
approximate methods such as the differential transform, homotopy, Ado-
mian decomposition and finite difference methods have been used to solve
fractional differential equations (Wang, 2006; Diethelm et al., 2002; Er-
jaee et al., 2011; El-Sayed et al., 2010; Momani and Odibat, 2007a,b).
Despite the fact that some of these methods are considered accurate and
reliable, they have certain limitations. For example, due to the histo-
ry dependence associated with fractional derivatives, approximations can
be computationally expensive. Fractional derivatives are defined glob-
ally, hence numerical methods that discretize non–locally would be ap-
propriate in approximating the derivative. One such method is the spec-
tral method. Spectral methods are synonymous with exponential rate of
convergence. We discretized the dependent variables and their arbitrary
order derivatives using the spectral collocation methods. The Chebyshev
spectral collocation method uses trial functions to represent the functions
as truncated series expansions. The trial functions are usually orthogo-
nal basis functions such as the Lagrange, Jacobi, Chebyshev and other
polynomials. A crucial difference between spectral methods and other
methods is that the test functions for spectral methods are inherently con-
tinuous and infinitely differentiable global functions. Some recent studies
have demonstrated the use of the operational matrix for certain orthogo-
nal polynomials. Ahmadi Darani and Saadatmandi (2017) introduced the
operational matrix of a class of fractional order Chebyshev functions us-
ing classical Chebyshev polynomials of the first kind. Doha et al. (2011)
and Atabakzadeh et al. (2013) presented a matrix operator for shifted
Chebyshev polynomials and used it to approximate multi–order fraction-
al ordinary differential equations and Doha et al. (2012) obtained the ma-
trix operator of the Jacobi polynomials. In recent studies by Kazem et al.
(2013) and Kayedi-Bardeh et al. (2014), the operational matrices of the
fractional Legendre polynomials and fractional Jacobi polynomials are
respectively obtained. Direct implementation of the operational matrices

usually lead to accurate solutions. However, dealing with nonlinearity
and coupling can be time consuming. Hence, in this study, we follow a
different approach by using approximations based on the shifted Cheby-
shev polynomials of the first kind and integration on the Gauss–Lobatto
quadrature to obtain the coefficients of expansion.

The series form of shifted Chebyshev polynomials Tl,n of degree
n > 0, where l is the truncation of the positive half domain, is defined
(Abramowitz and Stegun, 1965; Doha et al., 2011; Ahmadi Darani and
Saadatmandi, 2017) as

Tl,n = n

n∑
j=0

(−1)n−j(n+ j − 1)!22j

(n− j)!(2j)!lj ηj , (22)

and satisfies the orthogonality condition

∫ l

0

Tl,n(η)Tl,m(η)wl(η)dη = δmnhn. (23)

We discretized the dependent variables using the shifted Chebyshev Gauss
Lobatto grid points η ∈ [0, l]

η =
l

2

(
1− cos

πi

N

)
, i = 0, . . . , N. (24)

The weight function wl(η) for the shifted Chebyshev polynomials is giv-
en by 1/

√
lη − η2 and hn = cnπ/2, with c0 = 2 and cn = 1 for n ≥ 1.

If we assume F (η) = {f(η), θ(η), φ(η)}, to be a square integrable and
smooth function defined over the truncated semi infinite interval [0, l],
then the function can be approximated as N + 1 terms of the shifted
Chebyshev polynomials

FN (η) =

N∑
n=0

FnTl,n(η), (25)

the coefficients Fn satisfy the orthogonality condition

Fn =
1

hn

N∑
j=0

π

cjN
Tl,n(ηj)F (ηj), n = 0, . . . , N. (26)

If F (η) is approximated using the shifted Chebyshev polynomials and
evaluated at the shifted Gauss-Lobatto collocation points, then any arbi-
trary order derivative of F (η) is given as

DαFN (η) =

N∑
j=0

Dαj,pF (ηj). (27)

Here,

Dαj,p =
π

cjN

N∑
n=0

N∑
k=0

1

hn
Tl,n(ηj)D

(α)
n,kTl,k(ηp), j, p = 0, 1, . . . , N.

(28)

and

D
(α)
n,k = n

n∑
j=0

(−1)n−j(n+ j − 1)!22j

(n− j)!(2j)!lj
Γ(j + 1)

Γ(j − α+ 1)
qj,k, (29)

where qj,k are entries of a matrix defined as (Ahmadi Darani and Saadat-
mandi, 2017; Ahmadi-Darani and Nasiri, 2013; Atabakzadeh et al., 2013;
Doha et al., 2011)
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qj,k =


0 j = 0, 1, . . . , dαe − 1,

k
√
π

hk

∑k
r=0

(−1))k−r(k+r−1)!22r

(k−r)!(2r)! lj−α Γ(j−α+r+1/2)
Γ(j−α+r+1)

j = dαe, dαe+ 1, . . . , N ;

k = 0, 1, . . . , N.

(30)
We note here that if α = 1, Eq. (27) is equivalent to

DFN (η) =

N∑
j=0

[
2wl,j
π

N∑
n=1

n

cn
Tl,n(ηj)Sl,n−1(ηk)

]
F (ηj),

k = 0, . . . , N, (31)

where Sl,n is the shifted second kind Chebyshev polynomials of degree
n ≥ 1. In order to approximate f(η) in terms of the Chebyshev polyno-
mials, it has been assumed that f(η) is a smooth function, so it is safe to
take advantage of the semi–group property of the Caputo fractional oper-
ator, therefore when approximating fα+2(η), we can have (Matlob and
Jamali, 2017; Dabiri and Butcher, 2018)

d2

dη2

(
C
0 D

α
η f(η)

)
= C

0 D
α
η

(
d2f(η)

dη2

)
= C

0 D
2+α
η f(η). (32)

3.1. Error bound estimation

If F (η) is a square integrable function andwl(η) is a Lebesque integrable
function defined in the interval (0, l), we can define a L2

wl space in which
F (η) is measurable and the norm of F (η) associated with the space is
defined as

‖F (η)‖wl =

(∫ l

0

|F (η)|2wl(η)dη

) 1
2

, finite, (33)

and this norm is induced by the inner product

〈F (η), F̃ (η)〉 =

∫ l

0

F (η)F̃ (η)wl(η)dη. (34)

If we consider TN , the space of all Chebyshev polynomials of degree
≤ N , such that TNF (η) is the approximation of F (η) on the shifted
Chebyshev–Gauss–Lobatto nodes. Assume that the derivative FN+1(η)
exist and is continuous on the interval (0, l), and using the error term
of the generalized Taylor’s approximation of F (η), for any η, the error
bound is defined as

‖εN‖wl = ‖F (η)−TNF (η)‖2wl (35)

≤ 1

(Γ(N + 2))2
QN

∫ l

0

η2N+2√
lη − η2

dη (36)

=
1

(Γ(N + 2))2
QN l

2N+2 Γ(2N + 5/2)

Γ(2N + 3)
, (37)

where QN =
(
max0<η≤l F

N+1(η)
)2

. For sufficiently large N , we can
see that ‖εN‖wl → 0.

4. NUMERICAL RESULTS
In this section, we obtain approximate solutions of the equations describ-
ing heat and mass transfer in a nanofluid with space fractional constitu-
tive relation using the technique described in Section 3. The aim is to
obtain approximate solutions of the system of differential Eqs. (18) to
(20) rather than giving an analysis of the effects of the flow parameters.
The parametric analysis of heat and mass transfer process has been given
in studies such as Dhanai et al. (2015); Khan and Pop (2010); Fang and
Zhang (2009); Chen et al. (2015). Some results obtained using the above

scheme are compared with results in these studies. The nonlinear sys-
tem is first linearized using quasilinearization as in Bellman and Kalaba
(1965); Motsa et al. (2011, 2014) [see Appendix A for the discretization
of the equations]. In developing numerical schemes, a pertinent question
often asked centers around the accuracy of the numerical scheme. For an
approximation method, it is expected that when the approximate solutions
and their derivatives are substituted in Eqs. (18) to (20), the residual er-
rors should vanish. That is, given the points ηj ∈ [0, l] for j = 0, . . . , N ,
we should expect

εf =

∣∣∣∣∣C0 Dα+2
η f(ηj)−ReαM2 df

dη
(ηj)−Reα

(
df

dη
(ηj)

)2

+Reαf(ηj)
d2f

dη2
(ηj)

∣∣∣∣
L2
wl

≈ 0 (38)

εθ =

∣∣∣∣∣Led2θ

dη2
(ηj) +

dθ

dη
(ηj)

dφ

dη
(ηj) +

1

Nbt

(
dθ

dη
(ηj)

)2

+LePrf(ηj)
dθ

dη
(ηj)

∣∣∣∣
L2
wl

≈ 0 (39)

εφ =

∣∣∣∣dφdη (ηj) +
1

Nbt

d2θ

dη2
(ηj) + Scf(ηj)

dφ

dη
(ηj)

∣∣∣∣
L2
wl

≈ 0. (40)

Tables 1 to 3 show the solutions obtained for different values of N and α
and the residual errors as defined in Eqs. (38) to (40). The approximate
solutions are obtained with Nt = Nb = 0.5, Le = Pr = 5, Reα =
1,M = 0. It can be seen that the errors are bounded between 10−16 and
10−13.
An analytic solution of the momentum equation for α = 1 and Reα = 1
was obtained by Fang and Zhang (2009) as

f(η) =
1√

1 +M2

(
1− e−

√
1+M2η

)
, (41)

and so the skin friction is given as

f ′′(0) = −
√

1 +M2. (42)

Fig. 2 The L2
wl norm error of the numerical solutions to the model e-

quations using different number of collocation points. The blue
line corresponds to N = 10, green line to N = 15 and red line
corresponds to N = 20 for α = 0.2.
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(a)

(b)

Fig. 3 Variation of heat and mass transfer rates with Nb for different
values of fractional order α.

Table 3 Approximate solution of φ(η) and the maximum residual error
for l = 2.

α N φ(η) εφ

0.5 4 [1, 0.5661, 0.1631, 0.0565, 0]T 5.55e−16

6 [1, 0.7769, 0.3273, 0.0650,−0.0047,−0.0107, 0]T 1.54e−14

1 4 [1, 0.5749, 0.2088, 0.0752, 0]T 1.55e−15

6 [1, 0.7658, 0.3564, 0.1916, 0.0928, 0.0140, 0]T 1.50e−14

1.5 4 [1, 0.5443, 0.2174, 0.0348, 0]T 2.66e−15

6 [1, 0.7457, 0.3362, 0.1917, 0.0665, 0.0010, 0]T 7.55e−15

Table 4 Comparison of the shear stress at the wall fα+1(0) for α = 1
between the exact solution as obtained by Fang and Zhang, 2009
and approximate solutions based on the proposed method.

M Exact Approximate

0 −1.0000 −1.000039
0.1 −1.0049 −1.004979
0.2 −1.0198 −1.019658
0.3 −1.0440 −1.043674
0.4 −1.0770 −1.076404
0.5 −1.1180 −1.117066

Table 1 Computation results of f ′(η) and the maximum residual error for
l = 2.

α N f ′(η) εf

0.5 4 [1, 0.7111, 0.0007,−0.2103, 0] 1.33e−15

6 [1, 0.7734, 0.1885,−0.0036,−0.0526,−0.1339, 0]T 1.09e−14

1 4 [1, 0.7439, 0.3115, 0.0675, 0]T 6.11e−16

6 [1, 0.8671, 0.5768, 0.3046, 0.1236, 0.0288, 0]T 4.40e−14

1.5 4 [1, 1.001, 0.6175, 0.1164, 0]T 7.77e−16

6 [1, 0.9702, 0.7793, 0.4531, 0.18308, 0.0391, 0]T 1.07e−13

Table 2 Numerical results of θ(η) and norm of the residual error for l = 2

α N θ(η) εθ

0.5 4 [1, 0.9219, 0.5083, 0.1128, 0]T 4.44e−16

6 [1, 0.9863, 0.8981, 0.6650, 0.3585, 0.1035, 0]T 4.10e−15

1 4 [1, 0.9052, 0.3961, 0.0301, 0]T 8.05e−16

6 [1, 0.9770, 0.8048, 0.4140, 0.1170, 0.0214, 0]T 6.14e−15

1.5 4 [1, 0.8571, 0.2085, 0.0310, 0]T 8.33e−16

6 [1, 0.9757, 0.7606, 0.3093, 0.0562, 0.0124, 0]T 3.43e−15

Table 5 Comparison of the heat and mass transfer coefficients at the wall
for different values of Nt and Nb with α = 1 and fixed values
for Pr = Le = 10, Reα = 1 and M = 0

Nt Nb −θ′(0) −φ′(0)

Present Study Khan and Pop (2010) Present Study Khan and Pop (2010)

0.2 0.2 0.36572 0.3654 2.49971 2.5152

0.3 0.18262 0.1816 2.50181 2.5150

0.4 0.08745 0.0859 2.46878 2.4807

0.3 0.2 0.27395 0.2371 2.63457 2.6555

0.3 0.13639 0.1355 2.59230 2.6068

0.4 0.06496 0.0641 2.53433 2.5486

0.4 0.2 0.21160 0.2110 2.75631 2.7818

0.3 0.10507 0.1046 2.66824 2.6876

0.4 0.04996 0.0495 2.58740 2.6038

Table 6 Numerical values of the shear stress at the wall, rate of heat
and mass transfer coefficients for different values of the fractional
order α, magnetic parameter M , and Prandtl number Pr when
Le = 5, Nt = Nb = 0.5.

M α Pr fα+1(0) −θ′(0) −φ′(0)

0 0.5 0.7 12.31787 0.37124 1.04856
10 12.31714 0.00415 1.46487

1 0.7 −1.05859 0.42433 1.59908
10. −1.06348 0.03665 1.81565

1.5 0.7 −2.19141 0.44243 1.70113
10 −2.17969 0.03934 1.95014

0.5 0.5 0.7 12.34448 0.36922 1.02365
10 12.34473 0.00340 1.45313

1 0.7 −1.16309 0.42146 1.58259
10 −1.16406 0.03584 1.79791

1.5 0.7 −2.38672 0.44005 1.69217
10 −2.40234 0.03960 1.93226

To establish the accuracy of the numerical scheme, we compare Equa-
tion (42) with the approximate solutions. Table 4 shows the compari-
son between the exact and approximate values of the skin friction coef-
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(a)

(b)

Fig. 4 Variation of heat and mass transfer rates with Nt for different
values of fractional order α.

ficient for different values of M . The approximate values are found to
be close to the exact values. The approximate values in Table 4 are ob-
tained with N = 10 and l = 5.9. The heat and mass transfer coefficients
{θ′(0), φ′(0)} obtained using this method are compared with earlier re-
sults by Khan and Pop (2010). Table 5 shows that the new results are
in agreement with the published data. Figure 2 shows that the solutions
converge for different number of collocation points, especially in the e-
quation where we have the fractional order. In Table 6, the approximate
values of the skin friction and heat and mass transfer rates are presented.
Figs. 3 and 4 respectively show the variation in the heat and mass transfer
rates with the Brownian diffusion and thermophoresis parameters for dif-
ferent values of the fractional order α. It can be clearly seen that the heat
and mass transfer rates increase as α increases. Fig. 3(a) shows that the
heat transfer rate decreases as the mass diffusion parameter Nb increas-
es, while Fig. 3(b) shows that the mass transfer rate is a monotonically
increasing function of Nb. From Fig. 4, we can see that the mass trans-
fer rate decreases as the thermal diffusion parameter increases, while the
heat transfer rate strictly decreases. Previous studies have suggested that
increasing the number of collocation points for spectral methods does not
necessarily improves the accuracy (Dabiri and Butcher, 2017b,a; Zay-
ernouri and Karniadakis, 2014).

5. CONCLUSION
This study proposed a new numerical technique for finding solutions of
fractional differential equations. The method uses Chebyshev polynomi-
als as basis function for the series solution and interpolating using Gauss–
Lobatto quadrature. Differentiation matrices for fractional and integer

order derivatives were introduced. To test its accuracy, the method was
used to solve the model equations that describe momentum, heat and mass
transfer in a nanofluid with fractional constitutive relation. The residual
error norms in the solutions were found to be less or equal to 10−13, thus
demonstrating the accuracy and convergence of the method.

APPENDIX A: DISCRETIZATION OF THE MODEL
EQUATIONS

In this appendix, we describe the full discretization of the coupled system
of the equations (18) to (20). We obtain the numerical solution f(η) by
solving Eq. (18) independent of Eqs. (19) and (20) and then Eqs. (19) and
(20) are solved as coupled system. In order to linearize each equation, we
apply the quasilinearization method of Bellman and Kalaba (1965). The
linearization method is a generalization method of the Newton–Raphson
method and is constructed using the Taylor’s series expansion about an
initial guess of the solution. Applying the linearization on Eqs. (18), we
have

fα+1
r+1 + (Reαfr)f

′′
r+1 + (−2Reαf

′
r −ReαM2)f ′r+1

+ (Reαf
′′
r )fr+1 = Rfr , (43)

where Rfr = Reαf
′′
r fr − Reαf ′2r and fr and fr+1 are solutions f(η)

at two successive iterations. The linearization method assumes that the
difference between these solutions approaches zero as r → ∞ (Bellman
and Kalaba, 1965). If we now apply the Chebyshev approximation on
the linearized Eq. (43) by substituting Eqs. (25), (27), and (31) where
appropriate and using the semi–group property, so that we have

[
DαD2 + diagflt[Reαfr]D2 + diagflt[−2Reαf

′
r −ReαM2]D

+diagflt[Reαf ′′r ]
]
fN,r+1 = Rfr , (44)

in which diagflt[. . .] constructs a two–dimensional matrix with the input
as a diagonal. upon obtaining the solution fN,r+1(η), we use the known
solution in the linearization of Eqs. (19) and (20) which is solved as sys-
tem. The linearized form of Eqs. (19) and (20) is given as

Leθ′′r+1 + (φ′r + (2/Nbt)θ′r + LePrfr+1)θ′r+1 + (θ′r)φ
′
r+1 = Rθr

(45)

(1/Nbt)θ′′r+1 + φ′′r+1 + (Scfr+1)φ′r+1 = 0, (46)

where Rθr = φ′rθ
′
r + (1/Nbt)θ′2r . Again we apply the Chebyshev ap-

proximation to the linearized coupled system and this yields

[
LeD2 + diagflt[φ′r + (2/Nbt)θ′r + LePrfr+1]D

]
θN,r+1

+
[
diagflt[θ′r]D

]
φN,r+1 = Rθr (47)[

(1/Nbt)D2] θN,r+1 +
[
D2 + diagflt[Scfr+1]D

]
φN,r+1 = O, (48)

where O is a zero matrix of size (N + 1) × 1. Note also that the right
hand side of Eqs. (44) and (47) are expressed in terms of the N + 1–
truncated shifted Chebyshev approximation. As stated earlier, the semi–
infinite domain [0,∞) has been truncated to [0, l], therefore, the coupled
linearized system of algebraic equations are solved subject to

fN,r+1(η0) = 0, D0,qfN,r+1(η0) = 1, θN,r+1(η0) = 1,

φN,r+1(η0) = 1

DN,qfN,r+1(ηN ) = 0, θN,r+1(ηN ) = 0, φN,r+1(ηN ) = 0 (49)

to obtain a consistent system.
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