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ABSTRACT

In this article, the Differential Transform Method (DTM) is used to perform thermal analysis of natural convective and radiative heat transfer in
moving porous fins of rectangular and exponential profiles. This study is performed using Darcy’s model to formulate the governing heat transfer
equations. The effects of porosity parameter, irregular profile and other thermo-physical parameters, such as Peclet number and the radiation
parameter are also analyzed. The results show that the fin rapidly dissipates heat to the surrounding temperature with an increase in the values of the
porosity parameter and the dimensionless time parameter. The results also show that the heat transfer rate in an exponential profile with negative
power factor is much higher than the rectangular profile.
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1. INTRODUCTION

Fins are extensively used in many heat transfer applications to enhance
heat dissipation from a heated surface. An increased rate of heat trans-
fer with reduced size and cost of fins is the main target for a number of
engineering applications such as heat exchangers, conventional furnaces
and gas turbines. Some engineering applications such as hydroplane and
motorcycle also require a lighter fin with a higher rate of heat transfer.
Increasing the heat transfer mainly depends on the heat transfer coeffi-
cient, the surface area available and the temperature difference between
the surface and surrounding fluid. Extensive studies have been conduct-
ed to find an optimum shape and size for the fins to increase the heat
transfer rate in different applications. The use of porous fins as a pas-
sive method for heat transfer enhancement has attracted a lot of research
interests following the pioneer work of Kiwan and Al-Nimr (2001). Al-
so, the research interests have aroused following the further studies by
Kiwan (2007); Kiwani and Zeitoun (2008) on the thermal performance
analysis of porous fins in natural convection environment. Following the
work of Kiwan, most researchers have introduced other thermo-physical
parameters to further improve the heat transfer from fins. Recently, a vast
amount of research studies have been carried out by various authors in
porous medium to improve the heat transfer process through fins.

The heat transfer rate by using porous medium can be further en-
hanced by increasing the effective area for the heat transfer by convection.
The steady state thermal analysis of natural convection and radiation in
porous fins was analytically conducted using Homotopy Analysis Method
(HAM) by Moradi et al. (2014). These authors analyzed both infinite and
finite fins with rectangular profile. Jooma and Harley (2017) studied a
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porous model for the radial fin. Contrary to their findings, the one dimen-
sional DTM yielded approximate solutions which converge after thirteen
iterations without requiring extra memory for construction of steady s-
tate solutions. Razelos and Kakatsios (2000) investigated the optimum
dimensions of convecting-radiating rectangular fins. They studied the
influence of all dependent parameters on optimization and performance
of rectangular fins. They also investigated the effect of the temperature-
dependent thermal conductivity and emissivity on the temperature profile.

In recent years, the heat transfer from a moving fin has attracted the
attention of various researchers. This phenomenon is significant in nu-
merous industrial applications such as extrusion, hot rolling, glass fiber
drawing and casting. Turkyilmazoglu (2018) studied heat transfer from
moving exponential fins with internal heat generation. Exact formulas
for the thermal features like the distribution of temperature as well as the
efficiency were derived and analyzed. The heat transfer of moving fins
through a non-Newtonian fluid was first analytically studied by Fox et al.
(1969). The effect of temperature-dependent thermal conductivity of the
moving fin and radiation effect have been studied by Aziz and Khani
(2011). They applied the HAM to solve governing equations and com-
pared the analytical and numerical results. An analysis of heat transfer
in a porous fin with temperature-dependent thermal conductivity and in-
ternal heat generation was conducted using Chebychev Spectral Colloca-
tion Method (CSCM) by Sobamowo (2017). This author used numerical
solutions to investigate the effects of various parameters on the thermal
performance of the porous fin. The results showed that increasing the
porosity parameter also increases the rate of heat transfer from the base
of the fin and consequently improve the efficiency of the fin. Colloca-
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tion Method (CM) and the Homotopy Perturbation Method (HPM) were
presented by Hoshyar et al. (2015) to determine the temperature distri-
bution in a porous fin with temperature-dependent internal heat genera-
tion. Their results were validated by using the Runge-Kutta fourth order
method. They discovered that as the buoyancy effects become stronger,
the local temperature in the fin decreases. Following similar work un-
dertaken by Hoshyar et al. (2015), Oguntala and Abd-Alhameed (2017)
applied the Haar Wavelet Collocation Method (HWCM) to analyze the
thermal performance of porous fins. A simulation of combined conduc-
tive, convective and radiative heat transfer in moving irregular porous fins
of various profiles was performed by Ma et al. (2017) using Spectral El-
ement Method (SEM). Besides, the effects of porous materials, profiles
and various thermo-physical parameters on non-dimensional, the authors
also investigated the temperature and volume adjusted fin efficiency. Gor-
la and Bakier (2011) solved a second order non-linear ordinary differen-
tial equation (ODE) describing heat transfer in a stationary porous fin us-
ing the Runge-Kutta fourth order method. It is found that in their analysis
that radiates and convects transfers more heat than that dissipates heat by
convection only. Kundu and Lee (2016) developed new analytical anal-
ysis by using double DTM to determine the temperature distribution in
annular step porous fins subject to a mobile condition. They concluded
that the porous fins have an ability to transfer more heat compared to the
solid fin for an equal mass of fins at an optimum condition.

In this study, the DTM is applied to solve nonlinear heat transfer e-
quation of a moving porous fins of rectangular and exponential profiles to
determine temperature distribution along the fin. The effect of radiation
on the performance of porous fin is studied in natural convection environ-
ment. We introduce a time factor to the governing equations resulting in
highly nonlinear second order partial differential equations (PDEs). This
improvement has not been developed in the related literature. The effect
of porosity and radiation parameter, temperature ratio and Peclet num-
ber on dimensionless temperature and heat transfer rate is studied. The
DTM is the most dominant method of analyzing temperature distribution
through fin equations as it difficult to construct exact solutions. The DT-
M is an analytical method based on Taylor series expansion and was first
introduced by Zhou (1986) in 1986. Zhou used the DTM to solve explic-
itly the linear and nonlinear initial value problems that arise in electrical
circuits. Chen and Ho (1999), developed a two-dimensional DTM which
can be used for solving differential and integral equations. Ayaz (2000),
showed that the DTM is better equipped to solve highly nonlinear prob-
lems than the Taylor series method. The DTM has been used to solve
various problems in applied mathematics and physics such as systems of
differential equations (Kanth and Aruna, 2008).

This article is organized as follows; the mathematical background of
the problem under consideration is described in § 2. A brief discussion
on the fundamentals of the 2D DTM will be provided in § 3. We provide
analytical solutions in § 4. Lastly, we provide some discussions based on
the results obtained in § 5 and concluding remarks in § 6.

2. MATHEMATICAL FORMULATION

We consider a moving porous fin of length L and cross-sectional area
Ac while it moves horizontally with a constant velocity U along an axial
coordinate X as depicted in Fig. 1. The fin surface is exposed to an envi-
ronment of temperature Ta and the base temperature of the fin is Tb > Ta.
As the fin is porous, it allows fluid to penetrate through it, which enhances
the convective heat transfer, The fin thickness at the prime surface is giv-
en by δb and its profile is given by F (X). The following assumptions are
considered for the problem under consideration:

• The fin tip is adiabatic.

• The temperature inside the fin is only function of t and X .

• The physical properties of both solid wall and fluid are constant.

• The porous medium is homogeneous, isotropic and saturated with
a single-phase fluid.

• The fluid and porous medium are not in local thermodynamic equi-
librium.

• For the interaction between the porous medium and fluid, the Dar-
cy’s model is applied

The energy balance to the slice segment of the fin thickness ∆x, as de-
picted in Fig. 1, requires:

I = q(X)− q(X + ∆X)− ṁc(T − Ta)

− P∆Xεσ(T 4 − T 4
a )− ρcAcU∆X

dT

dX
(1)

where ρ is the density of fluid; c is the specific heat of fluid; P is the
periphery of the fin; ε and σ are the emissivity and Boltzman constant
respectively; T the temperature of the fin. q is the heat flux of conduction.
The time rate of change of internal energy in the volume element I is
given by,

I = ρcAc
dT

dt
∆X. (2)

By Fourier’s law of conduction,

q = −kcAc
dT

dX
(3)

where kc is the thermal conductivity of the fin. The mass flow rate of fluid
ṁ passing through the porous material is expressed by (Kiwan, 2007):

ṁ = ρνwW∆X (4)

where W is the width of the fin. The value of νw should be estimated
from the consideration of the flow through the porous medium. Darcy’s
model then yields:

νw =
gKβ

υ
(T (X)− Ta). (5)

Darcy’s model stimulates the fluid-solid interaction in the porous medi-
um. Here, g is the gravitational acceleration,K is the permeability, υ and
β are the kinematic viscosity and thermal expansion coefficient respec-
tively. Substituting Equations (2)− (5) into Equation (1), the following
nonlinear partial differential equation governing the temperature distribu-
tion in the fin is obtained:

ρc
∂T

∂t
=
δb
2

∂

∂X

(
kcF (X)

∂T

∂X

)
− ρcgKβW

υAc
(T − Ta)2

− Pσε

Ac
(T 4 − T 4

a )− δb
2
F (X)ρcU

∂T

∂X
, 0 ≤ X ≤ L, (6)

where t is the time. δbF (X)/2 is introduced to the energy balance equa-
tion to cater for varying fin profiles. Assuming that the fin tip is adiabatic
(insulated) and the base temperature is kept constant, then the boundary
conditions are given by (Kraus et al., 2001; Kern and Kraus, 1972),

T (t, L) = Tb and
∂T

∂X

∣∣∣∣
X=0

= 0, (7)

and initially the fin is kept at the ambient temperature (Ndlovu and Moit-
sheki, 2013),

T (0, X) = Ta. (8)

Introducing the following dimensionless variables,

θ =
T − Ta
Tb − Ta

, x =
X

L
, τ =

kct

ρcL2
, f(x) =

δb
2
F (X),

α =
kc
ρc
, Pe =

UL

α
, Np =

gKβWL2

υαAc
(Tb − Ta),

Nr =
PεσL2

kcAc
(Tb − Ta)3 and NT =

Ta
Tb − Ta

(9)
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reduces Eqn. (6) to

∂θ

∂τ
=

∂

∂x

(
f(x)

∂θ

∂x

)
−Npθ2 −Nr((θ +NT )4 −N4

T )

− f(x)Pe
∂θ

∂x
, 0 ≤ x ≤ 1, (10)

and Eqn. (10) admits the following boundary conditions,

θ(τ, 1) = 1, τ > 1, (11)

∂θ

∂x

∣∣∣∣
x=0

= 0, (12)

and the initial condition becomes,

θ(0, x) = 0. (13)

Fig. 1. Schematic representation of a longitudinal porous fin of an un-
specified profile.

Here,Nr is the radiation parameter;NT is the dimensionless ratio of
the surrounding temperature Ta to the difference of the base temperature
Tb and surrounding temperature; Np is the porosity parameter that repre-
sents the effect of permeability of the porous medium beside the natural
convection effects. The dimensionless variable Pe is the Peclet number
which represent the dimensionless speed of the moving fin and Pe = 0
represents a stationary fin; θ is the dimensionless temperature, x is the
dimensionless space variable, τ is the non dimensional time.

3. FUNDAMENTALS OF THE TWO-DIMENSIONAL
DIFFERENTIAL TRANSFORM METHOD

In this section, the basic idea underlying the two-dimensional DTM is
briefly introduced. If function θ(t, x) is analytic and differentiated con-
tinuously with respect to time and the spatial variable x in the domain of
interest, then we let

Φ(κ, s) =
1

κ!s!

[
∂κ+sφ(t, x)

∂tκ∂xs

]
(0,0)

, (14)

where the spectrum Φ(κ, s) is the transformed function, which is also
called the T-function (see Kangalgil and Ayaz (2009); Ayaz (2000)). The
differential inverse transform of Φ(κ, s) is defined as

φ(t, x) =

∞∑
κ=0

∞∑
s=0

Φ(κ, s)tκxs, (15)

and from Eqns. (14) and (15) it can be concluded that

φ(t, x) =

∞∑
κ=0

∞∑
s=0

1

κ!s!

[
∂κ+sφ(t, x)

∂tκ∂xs

]
(0,0)

tκxs. (16)

In real applications, the function φ(t, x) is expressed by a finite series,
and Eqn. (15) can be written as:

φ(t, x) =

m∑
κ=0

n∑
s=0

Φ(κ, s)tκxs, (17)

Equation (17) implies that

φ(t, x) =

∞∑
κ=m+1

∞∑
s=n+1

Φ(κ, s)tκxs, (18)

is negligibly small.
Some of the useful mathematical operations performed by the dif-

ferential transform method are given in Table 1 .

Table 1: Fundamental operations of the differential transform method

Original function Transformed function
φ(t, x) = f1(t, x)± f1(t, x) Φ(κ, s) = F1(κ, s)± F2(κ, s)
φ(t, x) = αf(t, x) Φ(k, s) = αF (κ, s)

φ(t, x) = ∂f(t,x)
∂t

Φ(κ, s) = (κ+ 1)F (κ+ 1, s)

φ(t, x) = ∂f(t,x)
∂x

Φ(κ, s) = (s+ 1)F (κ, s+ 1)

φ(t, x) = ∂2f(t,x)

∂t2
Φ(κ, s) = (κ+ 1)(κ+ 2)F (κ+ 2, s)

φ(t, x) = ∂2f(t,x)

∂x2
Φ(κ, s) = (s+ 1)(s+ 2)F (κ, s+ 2)

φ(t, x) = tmxn Φ(κ, s) = δ(κ−m)δ(s− n)

φ(t, x) = xm exp(at) Φ(κ, s) = aκ

κ!
δ(s−m)

The Kronecker delta function δ(κ− s) is given by

δ(κ− s) =

{
1 if κ = s

0 if κ 6= s.

4. DERIVATION OF ANALYTICAL SOLUTIONS

In this section we provide analytical solutions for the problem described
in § 2. Using 2D-DTM to solve PDEs consists of three main steps. The
steps are: transforming the PDE into algebraic equations, solving the e-
quations, and inverting the solution of algebraic equations to obtain an
infinite series solution or an approximate solution. The fin profile is rect-
angular when f(x) = 1 and exponential when f(x) = eηx where η is a
constant. Taking the two-dimensional differential transform of Eqn. (10)
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given a rectangular profile, we obtain the following recurrence relations,

(κ+ 1)Θ(κ+ 1, h) = (h+ 1)(h+ 2)Θ(κ, h+ 2)

−Np
κ∑
i=0

h∑
j=0

Θ(i, h− j)Θ(κ− i, j)

− 4NrN
3
TΘ(k, h)− 6NrN

2
T

κ∑
i=0

h∑
j=0

Θ(i, h− j)Θ(κ− i, j)

− 4NrN
2
Tβ

κ∑
i=0

κ−i∑
l=0

h∑
j=0

h−j∑
p=0

Θ(i, h− j − p)Θ(l, j)Θ(κ− i− l, p)

−Nr
κ∑
i=0

κ−i∑
l=0

κ−i−l∑
z=0

h∑
j=0

h−j∑
p=0

h−j−p∑
t=0

Θ(i, h− j − p− t)Θ(l, j)Θ(z, p)Θ(κ− i− l − z, t)
− Pe(h+ 1)Θ(k, h+ 1), (19)

where Θ(κ, h) is the differential transform of θ(τ, x).
Taking the two-dimensional differential transform of the initial con-

dition (13) and boundary condition (12) we obtain the following transfor-
mations respectively,

Θ(0, h) = 0, h = 0, 1, 2, . . . (20)

Θ(κ, 1) = 0, κ = 0, 1, 2, . . . . (21)

We consider the other boundary condition as follows,

Θ(κ, 0) = a, a ∈ R, κ = 1, 2, 3, . . . (22)

where the constant a can be determined from the boundary condition (11)
at each time step after obtaining the series solution.

Substituting Eqns. (20)-(22) into (19) we obtain the following,

Θ(1, 2) = c+ 2cNrN
3
T (23)

Θ(2, 2) =
1

2
(3c+ c2Np + 6c2NrN

2
T + 4cNrN

3
T ) (24)

Θ(1, 3) =
1

3
(Pe(c+ 2cNrN

3
T )) (25)

Θ(2, 3) =
1

6
(Pe(3c+ c2Np + 6c2NrN

2
T + 4cNrN

3
T )) (26)

...

Substituting Eqns. (20)-(26) into (17) we obtain the following closed
form of the solution,

θ(τ, x) = aτ + aτ2 + a+ 2aNrN
3
T τx

2

+
1

2
(3a+ a2Np + 6a2NrN

2
T + 4aNrN

3
T )τ2x2

+ aτ3 +
1

3
(Pe(a+ 2aNrN

3
T ))τx3

+
1

6
(Pe(3a+ a2Np + 6a2NrN

2
T + 4aNrN

3
T ))τ2x3

+ . . . (27)

The constant a can be determined from the boundary condition (11)
at each time step. To obtain the value of a, we substitute the boundary
condition (11) into (27) at the point x = 1. Thus, we have,

θ(τ, 1) = aτ + aτ2 + (a+ 2aNrN
3
T )τ

+
1

2
(3a+ a2Np + 6a2NrN

2
T + 4aNrN

3
T )τ2

+ aτ3 +
1

3
(Pe(a+ 2aNrN

3
T ))τ

+
1

6
(Pe(3a+ a2Np + 6a2NrN

2
T + 4aNrN

3
T ))τ2

+ . . . = 1 (28)

We then obtain the expression for θ(τ, x) upon substituting the ob-
tained value of a into equation (27). Following a similar approach, we
obtain the following solution for the exponential fin profile,

θ(τ, x) = aτ + aτ2 + (a+ 2aNrN
3
T )τx2

+
1

2
(3a+ a2Np + 6a2NrN

2
T + 4aNrN

3
T )τ2x2

+ aτ3 +
1

3
(aPe+ 2aPeNrN

3
T − 2aη − 4aNrN

3
T η)τx3

+ (2a+ a2Np + 6a2NrN
2
T + 2a3NrN

2
T + 2aNrN

3
T )τ3x2

+ . . . (29)

Using the first 20 terms of the power series solution, we benchmark
the series solutions to the numerical solution obtained through employing
the Maple package. The pdsolve in Maple uses Finite Difference Method
(FDM) to discretize the differential equation. The technique is a centered
implicit scheme that is capable of finding solutions to higher-order partial
differential equations. As seen from the benchmark analysis in Fig. 2,
the series solution is in agreement with the numerical solution across all
profiles.
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1

Rectangular 2D-DTM
Rectangular Numerical Solution
Exponential (  > 0) 2D-DTM
Exponential (  > 0) Numerical Solution
Exponential (  < 0) 2D-DTM
Exponential (  < 0) Numerical Solution

Fig. 2. Temperature distribution in differing fin profiles.

With the confidence obtained from the benchmark analysis, we plot
the solutions for (27) and (29) for various parameters as shown in Figs.
below. For all analytical results reported in this article, the following
values of parameters are used unless stated otherwise as indicated in the
graphs below.

Np = 10, Nr = 5, NT = 0.10, P e = 3, τ = 0.6 (30)

5. SOME DISCUSSIONS

In this article, we have established analytical expressions for determina-
tion of thermal performance in moving porous fins with three different
profiles. Figs. 3 and 4 shows that as time evolves, the fin temperature
increases across different profiles as a result of thermal conduction. Fig.
5 depicts the variation of temperature distribution with varying values of
NT . We note that the temperature on the fin decreases with the increas-
ing values of NT . This signifies that the heat transfer rate reaches its
peak with the increasing values of NT while other parameters are kept
constant. The only way to increase NT is through changing the value of
the ambient temperature for a fixed base temperature. The effect of the
porosity parameter Np is shown in Fig. 6. Expectedly, as the values of
the porosity parameter increase, the heat transfer rate to the ambient flu-
id is increased as evidenced by the rapid decrease of the dimensionless

4
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Fig. 3. Temperature distribution in a longitudinal rectangular fin for vary-
ing time, τ .
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Fig. 4. Temperature distribution in a longitudinal exponential fin for vary-
ing time, τ .
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Fig. 5. Effect of the dimensionless ratio of temperature, NT , on a rectan-
gular fin temperature distribution.
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Fig. 6. Effect of the porosity parameter, Np, on a rectangular fin temper-
ature distribution.
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Fig. 7. Effect of the radiation parameter, Nr , on a rectangular fin temper-
ature distribution.
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Fig. 8. Effect of varying speeds, Pe, on a rectangular fin temperature dis-
tribution.
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Fig. 9. Temperature distribution for differing axial values in a rectangular
fin.
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Fig. 10. Transient temperature distribution in a longitudinal rectangular
fin.
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Fig. 11. Transient temperature distribution in a longitudinal exponential
fin, η = 2.
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Fig. 12. Transient temperature distribution in a longitudinal exponential
fin, η = −2.
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Fig. 13. Effect of different porous media in a longitudinal rectangular fin.

temperature inside the fin. In the case of a porous fin exposed to natural
convection, higher porosity due to changing of permeability included in
Np results in higher rate of heat transfer. Physically, this can be caused
by the effect of larger area of porous medium. Fig. 7 shows the effect of
the radiation parameter Nr on temperature distribution. We note that as
radiation gets stronger, the fin loses heat to the ambient fluid effectively
as shown by the decreasing temperatures inside the fin. It can be deduced
from the results that thermal energy transfers by radiation enhance heat
transfer rate from fin. The intensity of such energy flux depends upon the
temperature difference between fin and ambient and the nature of fin’s
surface.

The impact of the speed of the moving fin as defined by the Peclet
number Pe is shown in Fig. 8. We also observe that for Pe = 0, i.e.,
stationery fin, the cooling of the fin takes more time as shown by higher
temperatures when compared to a moving fin. Physically, this is the ratio
of the rate of advection of thermal energy by the flow to the rate of ther-
mal energy diffusion driven by an appropriate gradient. As Pe increases,
that is, the fin moves quicker, the advection effect becomes stronger and
the fin dissipates heat rapidly as indicated by the lower temperatures on
inside the fin. Consequently, where cooling is required, the higher value
of Peclet number is desirable. Fig. 9 shows the variation in tempera-
ture distribution for different values of the axial parameter x, that is, the
temperature variation along the fin profile. We see that as the the axial
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variable increases, i.e, as we approach the fin base, the temperature insid-
e the fin increases. The comparison between the fin of rectangular profile
and that of an exponential profile is show in Fig. 2. We see that the fin of
exponential profile with a negative power is more efficient in dissipating
heat to the surrounding fluid. The validation of the results and the bound-
ary conditions are shown as three dimensional plots in Figs. 10, 11 and
12. Lastly, Fig. 13 shows that the moving porous fin dissipates heat faster
and efficiently to the the surrounding fluid that the moving solid fin.

6. CONCLUDING REMARKS

In this study, we have illustrated that the temperature distribution in the
moving porous fin is highly dependent upon the fin profile. This is an
important finding for fin design as we noted that an exponential porous
fin is more efficient than the solid fin. We also discovered that the tem-
perature distribution in a moving porous fin can be affected by changes in
the underlying physical parameters. The DTM was used to perform ther-
mal analysis as it is the most dominant analytical method for these kinds
of problems and has been found to converge faster to the exact solutions
with a appropriate number of iterations considered.
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NOMENCLATURE

c specific heat (J/kg · K)
h heat transfer coefficient (W/m2 · K)
k thermal conductivity (W/m · K)
kc thermal conductivity (W/m · K)
t time (s)
T temperature (K)
U velocity of the fin (m/s)
X space variable (m)
x dimensionless space variable (m)
Ac cross-sectional area (m2)
L fin length (m)
L fin profile
W fin width
Ta ambient temperature (K)
Tb fin base temperature (K)
P fin perimeter
K permeability of the porous medium
Pe Peclet number
Φ(t, x) transformed analytical function
φ(t, x) original analytical function
q heat flux (W/m2)
ṁ mass flow rate of fluid (Kg/s)
Nr radiation parameter
NT temperature ratio
Np porosity parameter
g gravitational acceleration (m/s2)
Greek Symbols
σ Boltzmann constant (W/m2 · K4)
δb base fin width (m)
ε total emissivity
β thermal expansion coefficient (K−1)
ρ density (kg/m3)
τ dimensionless temperature
ρ density (kg/m3)
α thermal diffusivity (m2/s)
υ kinematic viscosity (m2/s)
θ dimensionless temperature
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