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ABSTRACT 

An analysis was developed for the flow resistance of the nanoporous filtration membrane with conical pores for a liquid-particle separation, based on 

the nanoscale flow model. The calculation results show that there exists the optimum cone angle of the conical pore which gives the lowest flow 

resistance and thus the highest flux of the membrane; This optimum cone angle of the conical pore depends on the radius of the small opening of the 

conical pore, the passing liquid-pore wall interaction and the membrane thickness. The equations were regressed out for calculating this optimum 

cone angle respectively for weak, medium and strong liquid-pore wall interactions. For the optimum cone angle of the conical pore, the 

dimensionless minimum flow resistance of the membrane was calculated and it is only dependent on the radius of the small opening of the conical 

pore and the passing liquid-pore wall interaction.  
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1. INTRODUCTION 

Nanoporous filtration membranes have been successfully applied in 

super purification, hemofiltration, drug delivery, DNA analysis, 

biosensing and biotechnology (Adiga et al., 2009; Biffinger et al., 2007; 

Desai et al., 2000; Escosura-Muniz and Merkoçi, 2011; Fissel et al., 2009; 

Hinds et al., 2004; Jackson and Hillmyer, 2010). They are in fast progress 

especially in manufacturing. Currently, the pores taken in such 

membranes can be single cylindrical, double cylindrical or single conical 

(Baker and Bird, 2008; Vlassiouk et al., 2009; Zhang, 2018a). It was 

found that both double cylindrical pores and single conical pores are 

advantageous over single cylindrical pores owing to yielding the higher 

fluxes of the membranes (Vlassiouk et al., 2009; Zhang, 2018a).  

Nanoporous filtration membranes with conical pores have been 

studied plentifully by experiments. Scopece et al. (2006) found that the 

cone angle of the pore in this membrane can be well controlled by 

controlling the amount of the ethanol present in an alkaline etching 

solution. Vlassiouk et al. (2009) showed that the radius of the conical 

pore is linearly increased with the increase of the etching time; they also 

showed that both the porosity of the membrane and the pore surface 

chemistry can be well controlled when manufacturing the SiN 

membranes by the ion track-etching technique. Harrell et al. (2006) 

found that the cone angle of the pore can be changed by varying the trans-

membrane potential difference in pore etching. Mukaibo et al. (2009) 

found that the length of the conical pore was linearly increased with the 

increase of the etch time when the etch temperature was low.  

Theoretical analysis for the performance of nanoporous filtration 

membranes was less seen in the past. Cervera et al. (2005) developed an 

analysis for the ionic transport through synthetic conical nanopores 

based on the Poisson and Nernst-Planck equations. Zhang (2018a-c)  

analytically studied the performances of nanoporous filtration 

membranes respectively with double cylindrical pores and tree-type 

cylindrical pores based on the flow equation for a nanoscale flow. He  
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found the optimum working conditions of these membranes in which the 

fluxes of the membranes are the highest. He also developed the design 

principles for these membranes.  

The present paper aims to develop an analysis for the performance 

of a nanoporous filtration membrane with conical pores which is for a 

liquid-particle separation, based on the flow equation for a nanoscale 

flow. This is the pioneering theoretical study on such membranes with 

non-electrokinetic flows, although the experimental studies on them 

have been plentiful. The flow resistance of the membrane was calculated 

in this study for different geometrical shapes of the pore and different 

passing liquid-pore wall interactions. The optimum cone angle of the 

pore was found for the lowest flow resistance i.e. the highest flux of the 

membrane. The equations for calculating this optimum cone angle of the 

pore were regressed out respectively for weak, medium and strong 

liquid-pore wall interactions. The equations for the corresponding lowest 

flow resistances of the membrane were also derived. The present study 

should be of significant interest to the understanding of the performance 

of a nanoporous filtration membrane with conical pores for a liquid-

particle separation and to the design of this membrane. 

2. STUDIED MEMBRANE  

Figures 1(a) and (b) show the studied nanoporous filtration membrane 

with conical pores. The pore is identical and uniformly distributed within 

the membrane. The radii of the small and large openings of the pore are 

respectively 𝑅0  and 𝑅1 , the cone angle of the pore is 𝜃 , and the 

thickness of the membrane is 𝑙. The property of the pore wall surface is 

uniform. The membrane is for a liquid-particle separation. The value of 

𝑅0 is determined according to the requirement of the particle filtration. 

The membrane thickness 𝑙 is determined according to the requirement 

of the mechanical strength of the membrane. The cone angle 𝜃 can be 

optimized for giving the highest flux of the membrane.  
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(a) Front view           (b)Left-side view 
 

 
 

(c) The divided elements of a conical pore 
 

Fig. 1 The studied nanoporous filtration membrane with conical pores. 

3. ANALYSIS 

The analysis for the flow in the nanopore of the membrane is based on 

the flow equation for a nanoscale flow (Zhang, 2016). For the analysis 

feasibly carried out, a conical pore is divided into n elementary very 

small sections with the same axial length 𝑙𝑒, as shown in Fig.1(c). When 

n is sufficiently large, a divided elementary section of the pore can be 

taken as a cylindrical pore with the axial length 𝑙𝑒; While, the radius of 

this equivalent cylindrical pore is equal to the mean radius of the divided 

elementary section of the conical pore. It is easily written that 𝑙𝑒 = 𝑙/𝑛 

and 𝑅1 = 𝑅0 + 𝑙𝑡𝑎𝑛𝜃. The radius of the small opening of the ith divided 

elementary section of the pore is: 

 

𝑅𝑠,𝑖 = 𝑅0 + (𝑖 − 1)𝑙𝑒𝑡𝑎𝑛𝜃, for i=1,2,.., n                     (1) 

 

The radius of the large opening of the ith divided elementary section of 

the pore is: 

 

𝑅𝑙,𝑖 = 𝑅0 + 𝑖𝑙𝑒𝑡𝑎𝑛𝜃,  for i=1,2,.., n                         (2) 

 

The average radius of the ith divided elementary section of the pore is: 

 

𝑅𝑚,𝑖 = 𝑅0 + (𝑖 −
1

2
)𝑙𝑒𝑡𝑎𝑛𝜃,  for i=1,2,.., n                   (3) 

 

For a sufficiently large n, the ith divided elementary section of the 

pore is equivalent to the cylindrical pore with the inner radius 𝑅𝑚,𝑖 and 

the axial length 𝑙𝑒 . When the passing liquid-pore wall interfacial 

slippage is neglected, the flow resistance of this equivalent cylindrical 

pore is (Zhang, 2019): 

 

𝑖𝑓,𝑖 =
4𝜂𝑏𝑓

𝑒𝑓𝑓
(�̅�𝑚,𝑖)𝑙𝑒

𝜋𝜌𝑏𝑓
𝑒𝑓𝑓

(�̅�𝑚,𝑖)|𝑆(�̅�𝑚,𝑖)|𝑅𝑚,𝑖
4

                                 (4) 

where �̅�𝑚,𝑖 = 𝑅𝑚.,𝑖/𝑅𝑐𝑟 , 𝑅𝑐𝑟  is the critical inner radius of the 

cylindrical pore for the liquid to become continuum across the pore 

radius, 𝜌𝑏𝑓
𝑒𝑓𝑓

and 𝜂𝑏𝑓
𝑒𝑓𝑓

are respectively the average density and the 

effective viscosity of the confined liquid across the pore radius, and S is 

the parameter describing the non-continuum effect of the confined liquid 

across the pore radius ( 01  S ).  

In a conical pore of the membrane, all the divided elementary sections as 

shown in Fig.1(c) are in series connection, the flow resistance of a single 

conical pore in the membrane is (Zhang, 2019): 

 

𝑖𝑓,𝑝𝑜𝑟𝑒 = ∑ 𝑖𝑓,𝑖
𝑛
𝑖=1                                          (5) 

 

If the flow resistance of the whole membrane is defined as: 𝑖𝑓,𝑚𝑒𝑛 =

∆𝑝/𝑞𝑚, where ∆𝑝 is the pressure drop across the membrane and 𝑞𝑚 is 

the mass flow rate through the whole membrane, because of all the 

conical pores in the membrane in parallel connection, 𝑖𝑓,𝑚𝑒𝑛 is equated 

as (Zhang, 2019): 

 

𝑖𝑓,𝑚𝑒𝑛 =
𝑖𝑓,𝑝𝑜𝑟𝑒

𝑁𝑝
                                            (6) 

 

where 𝑁𝑝 is the number of the conical pores in the whole membrane.  

It is formulated that 𝑁𝑝 = 𝜆𝑁𝐴𝑚, where 𝜆𝑁 is the number density of 

the conical pore on the membrane surface (in /𝑚2) and 𝐴𝑚 is the area 

of the membrane surface. It can be formulated that χ/𝜆𝑁 = 𝜋𝑅1
2, where 

χ is the pore production rate on the membrane surface. It is then obtained 

that: 

 
1

𝑁𝑝
=

𝜋𝑅1
2

𝜒𝐴𝑀
                                                (7) 

 

Substituting Eq.(7) into Eq.(6) and re-arranging gives that: 

 

𝑖𝑓,𝑚𝑒𝑛 =
𝜋𝑅1

2

𝜒𝐴𝑀

∑ 𝑖𝑓,𝑖
𝑛
𝑖=1                                       (8) 

 

If the dimensionless flow resistance of the membrane is defined as:  

𝛪𝑓,𝑚𝑒𝑛 = 𝑖𝑓,𝑚𝑒𝑛𝜌𝜒𝐴𝑚𝑅𝑟
2/(4𝜂𝑙)(Zhang, 2019), where 𝑅𝑟 is a constant 

reference radius and  and are respectively the bulk density and the 

bulk viscosity of the liquid at a given temperature and under low 

pressures when the liquid is continuum, the dimensionless flow 

resistance of the membrane is expressed as: 

 

𝐼𝑓,𝑚𝑒𝑛 = ∑
𝐶𝑦(�̅�𝑚,𝑖)(

𝑅𝑟
𝑅0

)2(
𝑅1
𝑅0

)2

𝑛𝐶𝑞(�̅�𝑚,𝑖)|𝑆(�̅�𝑚,𝑖)|(
𝑅𝑚,𝑖

𝑅0
)4

𝑛
𝑖=1                            (9) 

 

where 𝐶𝑦(�̅�𝑚,𝑖) = 𝜂𝑏𝑓
𝑒𝑓𝑓

(�̅�𝑚,𝑖)/𝜂 and 𝐶𝑞(�̅�𝑚,𝑖) = 𝜌𝑏𝑓
𝑒𝑓𝑓

(�̅�𝑚,𝑖)/𝜌 

4. CALCULATION 

First, the proposed model was validated regarding how large values of n 

should be used. Then, the dimensionless flow resistance of the 

membrane was calculated for different geometrical shapes of the pore 

and different liquid-pore wall interactions.  

In the calculations, it was taken that 𝑅𝑟 = 10𝑛𝑚.The formulations 

of the functions 𝐶𝑞(�̅�𝑚,𝑖),  𝐶𝑦(�̅�𝑚,𝑖) and 𝑆(�̅�𝑚,𝑖) are respectively 

the same with those presented by Zhang (2019) in the earlier study.  

For weak, medium and strong passing liquid-pore wall interactions, 

the values of 𝑅𝑐𝑟 were respectively taken as 3.5nm, 10nm and 20nm 

(Zhang, 2019). For the weak, medium and strong liquid-pore wall 

interactions here studied, the values of the corresponding used 

parameters have been shown by Zhang (2019).  
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5. RESULTS AND DISCUSSION 

5.1Validation Of The Model 

Figure 2 plots the calculated values of 𝐼𝑓,𝑚𝑒𝑛 against n for 𝜃 = 20°, 

�̅�0 = 0.5 and different values of 𝜆1 when the passing liquid-pore wall 

interaction is weak. Here, �̅�0 = 𝑅0/𝑅𝑐𝑟 , and 𝜆1 = 𝑅0/𝑙 . Figure 2 

shows that for each 𝜆1, when n is sufficiently large, 𝐼𝑓,𝑚𝑒𝑛 approaches 

to a constant value in spite of the variation of n. This indicates that for 

the present model to simulate the flow in a conical pore, the value of n 

should be large enough; Otherwise, the calculation will be greatly 

erroneous. The chosen n value is shown to intimately depend on the 

value of 𝜆1 . It was also found that the choosing of the value of n is 

irrelevant to the liquid-pore wall interaction. In all the present 

calculations, the value of n is taken as 50000, which is large enough.  

 

 
Fig.2 Plots of the value of 𝐼𝑓,𝑚𝑒𝑛  against n for 𝜃 = 20°, �̅�0 = 0.5 

and different values of 𝜆1  when the passing liquid-pore wall 

interaction is weak. 

5. 2Dimensionless Flow Resistance Of The Membrane 

Figure 3(a) shows the variations of the dimensionless flow resistance 

(𝐼𝑓,𝑚𝑒𝑛) of the membrane with the cone angle 𝜃 of the pore for different 

�̅�0  values when 𝜆1 = 1.0𝐸 − 3  and the passing liquid-pore wall 

interaction is weak. It is shown that there exists the optimum value of 𝜃 
which yields the lowest flow resistance i.e. the highest flux of the 

membrane. The value of the cone angle 𝜃 deviating from this optimum 

one increases the flow resistance of the membrane and is thus not 

beneficial for the performance of the membrane. This optimum 𝜃 value 

was found to be dependent on both the values of �̅�0 and 𝜆1 and the 

passing liquid-pore wall interaction. 

Figure 3(b) shows the variations of the dimensionless flow 

resistance (𝐼𝑓,𝑚𝑒𝑛) of the membrane with the cone angle 𝜃 of the pore 

respectively for weak, medium and strong liquid-pore wall interactions 

when 𝜆1 = 1.0𝐸 − 3  and 𝑅0 = 2𝑛𝑚 . For the same operational 

parameter values, the increase of the interaction strength between the 

passing liquid and the pore wall significantly increases the flow 

resistance of the membrane. For a given liquid-pore wall interaction, 

there exists the optimum value of 𝜃  which yields the lowest flow 

resistance of the membrane. This optimum 𝜃  value is practically 

slightly increased with the increase of the interaction strength between 

the passing liquid and the pore wall. For the given values of �̅�0 and 𝜆1, 

when the value of 𝜃  is optimum, the lowest flow resistance of the 

membrane is significantly increased with the increase of the interaction 

strength between the passing liquid and the pore wall.  

 
 

(a) For the weak passing liquid-pore wall interaction 

 

 
 

(b) 𝑅0 = 2𝑛𝑚 

 

Fig.3 Plots of the dimensionless flow resistance (𝐼𝑓,𝑚𝑒𝑛) of the 

membrane against the cone angle 𝜃 of the pore when 𝜆1 =
1.0𝐸 − 3. 

 

5. 3Regression Equations For Calculating The Optimum 

Value Of The Cone Angle θ Of The Pore 
The equations were regressed out for calculating the optimum value of 

the cone angle 𝜃 of the pore as shown above respectively for the weak, 

medium and strong passing liquid-pore wall interactions. For the weak 

interaction, the optimum 𝜃 value can be calculated from the following 

equation: 

 

𝜃𝑜𝑝𝑡 = 𝜆1(35.6�̅�0
2 − 43.25�̅�0 + 18.23),  for 0.2 ≤ �̅�0 ≤ 0.9    (10) 

 

For the medium interaction, the optimum 𝜃 value is calculated from the 

following equation: 

 

𝜃𝑜𝑝𝑡 = 𝜆1(61.1�̅�0
2 − 106.1�̅�0 + 55.76),  for 0.2 ≤ �̅�0 ≤ 0.9    (11) 

 

For the strong interaction, the optimum 𝜃 value is calculated from the 

following equation: 

𝜃𝑜𝑝𝑡 = −𝜆1(27.78�̅�0
2 + 33.89�̅�0 − 55.76), for 0.2 ≤ �̅�0 ≤ 0.9   (12) 
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The calculated values of 𝜃𝑜𝑝𝑡 from Eqs.(10)-(12) are in degree. 

The values of 𝜃𝑜𝑝𝑡  calculated by Eqs.(10)-(12) are respectively 

compared with the numerical calculation results in Figs.4(a)-(c). It is 

shown that the accuracy of the predictions by Eqs.(10)-(12) is 

satisfactory.  

 

 
(a) For the weak liquid-pore wall interaction 

 
(b) For the medium liquid-pore wall interaction 

 
 

(c) For the strong liquid-pore wall interaction 

 

Fig.4 The comparisons of the optimum 𝜃 values (𝜃𝑜𝑝𝑡) respectively 

numerically calculated and equation predicted (by Eqs.(10)-(12)) 

for the weak, medium and strong liquid-pore wall interactions. 

 

5. 4Regression Equation For Calculating The Dimensionless 

Lowest Flow Resistance Of The Membrane When The Cone 

Angle θ Of The Pore Is Optimum 

For a given operating condition, when the cone angle 𝜃 of the pore is 

optimum, the flow resistance of the membrane will be the lowest, and 

the flux of the membrane will thus be the highest. The equations for 

calculating this dimensionless lowest flow resistance (𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛) of the 

membrane were regressed out as follows: 

 

Ig 𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛 = 2.212�̅�0
2 − 4.462�̅�0 + 3.234, for the weak liquid-pore 

wall interaction and 0.2 ≤ �̅�0 ≤ 0.9                       (13) 

 

Ig 𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛 = 3.989�̅�0
2 − 6.819�̅�0 + 3.114 , for the medium liquid-

pore wall interaction and 0.2 ≤ �̅�0 ≤ 0.9               (14) 

 

Ig 𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛 = 6.517�̅�0
2 − 10.539�̅�0 + 3.874 , for the strong liquid-

pore wall interaction and 0.2 ≤ �̅�0 ≤ 0.9                   (15) 

 

The values of the dimensionless lowest flow resistance (𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛) 

of the membrane calculated from Eqs.(13)-(15) are respectively 

compared with the numerical calculation results in Fig.5. It is shown that 

the calculation accuracy by Eqs.(13)-(15) is satisfactory. The value of 

𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛  is only dependent on the dimensionless radius �̅�0  of the 

small opening of the conical pore and the passing liquid-pore wall 

interaction. 

 
 

Fig.5 The comparisons of the dimensionless lowest flow resistances 

𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛 of the membrane respectively numerically calculated 

and equation predicted (by Eqs.(13)-(15)) for the weak, medium 

and strong liquid-pore wall interactions.  

 

6. CONCLUSIONS 

An analysis is developed for the performance of a nanoporous filtration 

membrane with conical pores which is for a liquid-particle separation, 

based on the flow equation for a nanoscale flow. The analysis divides a 

conical nanopore into many elementary sections with a constant very 

small axial length which can be treated as cylindrical-shaped nanopores 

with different inner radii. In a conical pore, the divided elementary 

sections are in series connection; While, in the whole membrane, the 

conical pores are in parallel connection. Thus, the flow resistance of the 

whole membrane can be calculated when the flow resistance of an 

elementary section of the conical pore is calculated. The analysis shows 

that the flow resistance of the studied membrane is dependent on the 

radius of the small opening of the conical pore, the cone angle 𝜃 of the 

pore, the membrane thickness and the passing liquid-pore wall 

interaction. The calculation results show that for a given operating 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.0 0.2 0.4 0.6 0.8 1.0

Numerical
calculation,landa1=1.0E-3

Equation
prediction,landa1=1.0E-3

Numerical
calculation,landa1=1.0E-2

Equation
prediction,landa1=1.0E-2

Numerical
calculation,landa1=1.0E-1

Equation
prediction,landa1=1.0E-1

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.0 0.2 0.4 0.6 0.8 1.0

Numerical
calculation,landa1=1.0E-3

Equation
prediction,landa1=1.0E-3

Numerical
calculation,landa1=1.0E-2

Equation
prediction,landa1=1.0E-2

Numerical
calculation,landa1=1.0E-1

Equation
prediction,landa1=1.0E-1

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.0 0.2 0.4 0.6 0.8 1.0

Numerical
calculation,landa1=1.0E-3

Equation
prediction,landa1=1.0E-3

Numerical
calculation,landa1=1.0E-2

Equation
prediction,landa1=1.0E-2

Numerical
calculation,landa1=1.0E-1

Equation
prediction,landa1=1.0E-1

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0.0 0.2 0.4 0.6 0.8 1.0

I
f
,
m
e
m
,
m
i
n

Numerical
calculation,weak
interaction

Equation
prediction,weak
interaction

Numerical
calculation, medium
interaction

Equation
prediction,medium
interaction

Numerical
calculation,strong
interaction

Equation
prediction,strong
interaction

 

 

1
1.0 3E  

1
1.0 3E  

1
1.0 2E  

1
1.0 2E  

1
1.0 1E  

1
1.0 1E  

_

0
     R

1
1.0 3E  

1
1.0 3E  

1
1.0 2E  

1
1.0 2E  

1
1.0 1E  

1
1.0 1E  

_

0
     R

o( )     opt

o( )     opt

o( )     opt

_

0
     R

1
1.0 3E  

1
1.0 2E  

1
1.0 2E  

1
1.0 1E  

1
1.0 1E  

_

0
     R

1
1.0 3E  



Frontiers in Heat and Mass Transfer (FHMT), 12, 14 (2019)
DOI: 10.5098/hmt.12.14

Global Digital Central
ISSN: 2151-8629

5 

condition, there is the optimum value of the cone angle 𝜃 of the pore 

which yields the lowest flow resistance i.e. the highest flux of the 

membrane. The equations for calculating this optimum 𝜃 value and for 

calculating the corresponding dimensionless lowest flow resistance of 

the membrane were regressed out respectively for weak, medium and 

strong liquid-pore wall interactions. The obtained results in the present 

study should be of significant interest to the design and application of 

nanoporous filtration membranes with conical pores.  

7. NOMENCLATURE

𝐴𝑚 area of the membrane surface 

𝐶𝑦(�̅�𝑚,𝑖)    𝜂𝑏𝑓
𝑒𝑓𝑓

(�̅�𝑚,𝑖)/𝜂

𝐶𝑞(�̅�𝑚,𝑖)    𝜌𝑏𝑓
𝑒𝑓𝑓

(�̅�𝑚,𝑖)/𝜌

𝑖𝑓,𝑖   flow resistance of the 𝑖𝑡ℎ divided section of the cylindrical

pore 

𝑖𝑓,𝑝𝑜𝑟𝑒 flow resistance of a single conical pore in the membrane 

𝑖𝑓,𝑚𝑒𝑛  flow resistance of the whole membrane 

𝐼𝑓,𝑚𝑒𝑛 dimensionless flow resistance of the membrane  

𝐼𝑓,𝑚𝑒𝑛,𝑚𝑖𝑛 dimensionless lowest flow resistance of the membrane

l  thickness of the membrane 

𝑙𝑒 axial length of the divided elementary section of the conical 
pore

n 
𝑁𝑝 

𝑞𝑚 

number of the divided sections of the conical pore 

number of the conical pores in the whole membrane 

mass flow rate through the whole membrane 
𝑅0 radius of the small opening of the conical pore 

𝑅1 radius of the large opening of the conical pore  

𝑅𝑠,𝑖  radius of the small opening of the  𝑖𝑡ℎ divided elementary
section of the conical pore 

𝑅𝑙,𝑖  radius of the large opening of the  𝑖𝑡ℎ divided elementary

section of the conical pore 

Rm,i average radius of the  𝑖𝑡ℎ divided elementary section of the
conical pore 

�̅�𝑚,𝑖   𝑅𝑚.,𝑖/𝑅𝑐𝑟

�̅�0   𝑅0/𝑅𝑐𝑟

𝑅𝑐𝑟 critical inner radius of the cylindrical pore for the liquid to 
become continuum across the pore radius 

𝑅𝑟 constant reference radius 

𝑆 parameter describing the non-continuum effect of the confined 
liquid across the pore radius 

𝜃 cone angle of the conical pore 

𝜃𝑜𝑝𝑡  optimum value of the cone angle 𝜃  for the lowest flow 
resistance of the membrane 

𝜌𝑏𝑓
𝑒𝑓𝑓

, 𝜂𝑏𝑓
𝑒𝑓𝑓

respectively the average density and the effective viscosity 

 of the confined liquid across the pore radius 
∆𝑝  pressure drop across the membrane 
𝜆𝑁  number density of the conical pore on the membrane surface
 (in/𝑚2)
χ  pore production rate on the membrane surface 
𝜌, 𝜂   respectively the bulk density and the bulk viscosity of the 
 liquid at a given temperature and under low pressures when
 the liquid is continuum 

𝜆1               𝑅0/𝑙
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