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ABSTRACT

The present paper examines the peristaltic mechanism of a Jeffrey fluid through an elastic tube. The influence of velocity slip, convective boundary
conditions, and variable liquid properties are taken into account. Closed form solutions are obtained for velocity, flux and temperature fields. In order
to linearize the temperature equation, perturbation technique is employed. Also, the flux is determined theoretically via Rubinow and Keller and
Mazumdar approach and the results are compared graphically. The effects of various vital parameters on the fluid flow are sketched and analyzed
graphically. The findings emphasize the importance of elastic parameters in enhancing the flux of a non-Newtonian fluid. Moreover, a rise in the
variable viscosity results in an increase in the velocity and temperature, whereas a drop in the flux is observed. Trapping phenomena reveals an
increase in the volume of the bolus for increasing values of the variable viscosity and velocity slip parameter.
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1. INTRODUCTION

Peristalsis is the fluid flow mechanism through which the fluid is trans-
ported through a distensible tube by means of progressive waves of ex-
pansion and contraction. Latham (1966) was the first person to investi-
gate the peristaltic mechanism in the transport of urine through the ureter.
Since then, numerous investigations have been carried out to study the
process of peristaltic transport of fluids, both Newtonian and non- New-
tonian. Specifically, the analysis of non-Newtonian fluids is of more
significance in the biological systems. Keeping this in mind, Mernone
et al. (2002) studied the peristaltic flow of physiological fluids by using
the generalized form of the Casson model. Recently, Rajashekhar et al.
(2018a) investigated the peristaltic transport of blood by using Herschel-
Bulkley fluid. They also discussed the physiological behavior of Newto-
nian, power-law and Bingham fluids. Among the several non-Newtonian
models, Jeffrey model is more significant in describing the flow of blood
in arteries. The studies on the use of Jeffrey model was carried out by
Hayat et al. (2007). Later on, numerous researchers have investigated the
peristaltic mechanism of Jeffrey fluid in different geometrical configura-
tions (Bhatti and Abbas (2016); Selvi et al. (2017)).

Most of the studies carried out on peristalsis consider the fluid to
be of constant viscosity. Though this consideration gives satisfactory re-
sults for the peristaltic transport of urine through the ureter, it is unable
to provide accurate results for the peristaltic motion of blood through
small blood vessels and arteries. This inability is due to the fact that
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the viscosity of blood varies with the thickness of the small arteries.
The concentration of blood cells in whole blood varies across the tube.
Thus, the viscosity of blood near the walls of the arteries have a lower
value. Srivastava et al. (1983) analyzed the effects of variable viscos-
ity on the peristaltic transport of fluids flowing through a non-uniform
geometry. The peristaltic pumping of a Newtonian fluid with varying vis-
cosity and zero Reynolds number was studied by El Naby et al. (2004)
under the influence of an inserted endoscope. Hayat and Ali (2008) pre-
sented a mathematical model to scrutinize the effects of variable viscos-
ity on the different parameters of flow, such as flow rate, frictional forces
and pressure rise in an asymmetric channel. Due to the widespread ap-
plications of heat transfer in engineering and medical fields, researchers
have shown interest in studies on heat transfer during the peristaltic trans-
port of different types of fluids. The variable thermal conductivity of
fluids provide a better approximation of the physiological fluid flow, es-
pecially the blood flowing through arteries (Prasad et al. (2017); Prasad
et al. (2018a); Prasad et al. (2018b)). Moreover, transfer of heat can
take place by three different modes: conduction, convection, and radia-
tion. Among these, convection mode of heat transfer is more prominent in
blood flow. Convection is the process by which heat is transferred due to
the movement of particles of the fluid. In biological systems, the process
of hemodialysis and oxygenation of blood involve the transfer of heat by
means of convection. Hence, investigations have been done by consider-
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ing the convective boundary conditions for classical and biological fluids
in different geometries and assumptions (Boulahia et al. (2018); Hayat
et al. (2013); Hayat et al. (2016); Mebarek-Oudina and Bessaih (2016);
Mebarek-Oudina (2017); Munir et al. (2014); Wakif et al. (2018a); Wakif
et al. (2018b); Wakif et al. (2018c)).

The above studies on peristaltic mechanism have the imposition of
no-slip condition at the walls of the arteries. However, this is not suffi-
cient to completely describe the behavior of the blood flow through them.
The fluid flow exhibits some velocity slip at the walls. Moreover, slip ef-
fects are more pronounced in the non-Newtonian behavior of blood. This
concept of velocity slip has been accounted for by many researchers in
the investigations carried out on peristalsis of fluids along with the effects
of heat transfer (Hayat et al. (2010); Sankad and Patil (2018)). Sinha
et al. (2015) incorporated the influence of variable viscosity, velocity slip
and thermal slip in their attempt to provide better theoretical estimates
of the flow parameters of Newtonian fluid exhibiting peristaltic motion.
Their findings concluded that the velocity of fluid in the central region
decreases as the value of the velocity-slip parameter increases. The non-
Newtonian consideration for such studies was taken into account by Javed
et al. (2016). Investigations were further carried out by Rajashekhar et al.
(2018b) with the variable liquid properties and the effects of convective
boundary conditions on the peristalsis of a Casson fluid fluid through an
inclined porous tube.

The primary function of the arteries is to carry the blood pumped
by the heart to the different parts of the body. Thus, arteries are the first
among the blood vessels to receive blood pumped at high pressure from
the heart. For the arteries to be able to withstand this high pressure, their
walls are thick and elastic. The elastic nature of the arterial walls helps in
its expansion during high blood pressure and then regains to its original
shape and size when the heart relaxes between the systole and diastole.
Thus, due consideration should be given to the elastic property of the ar-
terial walls to study the flow of blood in arteries. Accordingly, several
researchers have investigated the peristaltic mechanism of different flu-
ids through elastic tubes under various boundary conditions (Manjunatha
and Choudhary (2018); Rajashekhar et al. (2018c); Srinivas et al. (2017);
Vaidya et al. (2018a); Vaidya et al. (2018b); Vajravelu et al. (2015); Va-
jravelu et al. (2016)).

The present paper aims to investigate the peristaltic flow of a Jeffrey
fluid through an elastic tube. The influence of velocity slip, convective
boundary conditions, and variable liquid properties are considered. To the
best of authors’ knowledge, no attempts have been done in this direction.
Closed-form solutions are obtained for the velocity, flux, and temperature
expressions. Also, the flux is determined theoretically by two different
approaches with the help of MATLAB. The effects of various pertinent
flow parameters are graphed and analyzed.

2. MATHEMATICAL FORMULATIONS

Consider the flow through an axisymmetric elastic tube of radius a (see
Fig. 1). The chosen cylindrical coordinate system be (R,Θ, Z). A sinu-
soidal wave train of wavelength λ and amplitude b is taken at upper wall
of the tube. At any point on the axis of the tube, the instantaneous radius
of the tube is given by

h′(Z, t) = a+ b sin

[
2π

λ
(Z − ct)

]
. (1)

The length of the tube is assumed to be an integral multiple of the wave-
length λ. Pressure applied at the ends of the tube is such that a constant
pressure difference is maintained across it. Owing to the unsteady flow in
the laboratory frame of reference (R,Θ, Z), a wave frame (r, θ, z) mov-
ing away from the fixed frame at a constant velocity c is considered. The
transformations between these two frames are

r = R, z = Z − ct, ψ = Ψ − R2

2
, p(Z, t) = P (z), (2)

Fig. 1 Geometry of the physical model.

where P , p, Ψ, ψ are the pressures and streamlines in the fixed and wave
frames respectively. Pressure is taken to be uniform at any location along
the axis of the tube under the assumption of long wavelength approx-
imation. Consider the non-dimensional variables as given below (Ra-
jashekhar et al. (2018c)) :

r̄ =
r

h
, z̄ =

z

λ
, t̄ =

ct

λ
, p̄ =

ph′

λcµ0
, ε =

b

a
, Pr =

µ0cp
k

, ū =
u

c
,

w̄ =
w

c
, ψ̄ =

ψ

πa2c
, u = −1

r

∂ψ

∂z
,w =

1

r

∂ψ

∂r
, θ =

T − T0

T0
,

Ec =
c2

cpT0
, δ =

a

λ
,Re =

ρca

µ0
, µ̄(r) =

µ(r)

µ0
, N = Ec× Pr, (3)

where the symbols are as given in the nomenclature.
The momentum and energy equations governing the flow are (Rajashekhar
et al. (2018c)) :

Reδ

(
u
∂

∂r
+ w

∂

∂z

)
w = −∂p

∂z
+

1

r

∂

∂r
(rτrz) + δ

∂

∂r
(τzz), (4)

Reδ3
(
u
∂

∂r
+ w

∂

∂z

)
u = −∂p

∂r
+
δ

r

∂

∂r
(rτrr) + δ2

∂

∂r
(τrz),(5)

ReδPr

(
u
∂

∂r
+ w

∂

∂z

)
θ = EcPr

(
δ
∂u

∂r
τrr +

∂w

∂r
τrz

+δ2
∂u

∂z
τzr + τzz

∂w

∂r
δ

)
+
∂2θ

∂r2
+

1

r

∂θ

∂r
+ δ2

∂2θ

∂z2
.

(6)

With the help of Re = 0 and δ << 1, the Eqs. (4) - (6) reduce to

1

r

∂

∂r
(rτrz) = −∂p

∂z
, (7)

0 =
∂p

∂r
, (8)

1

r

∂

∂r

(
rk(θ)

∂θ

∂r

)
= N

(
−∂w
∂r

τrz

)
. (9)

The constitutive non-dimensional equation for a Jeffrey fluid is given by

τrz =
µ(r)

1 + λ1

(
−∂w
∂r

)
, (10)

where λ1 is the Jeffrey parameter.
The variations in viscosity and thermal conductivity are given by the

following relations :

µ(r) = 1 − φr, φ << 1, (11)

k(θ) = 1 + βθ, β << 1, (12)

where β is the coefficient of thermal conductivity and φ is the coefficient
of variable viscosity.
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The corresponding non-dimensional boundary conditions are (Vaidya et al.
(2018b))

w + α
∂w

∂r
= 0 at r = h′, (13a)

τrz = 0 at r = 0, (13b)

(1 + β)
∂θ

∂r
+ γθ = 0 at r = h′, (13c)

∂θ

∂r
= 0 at r = 0, (13d)

where γ is the Biot number.

3. METHOD OF SOLUTION

On substituting Eqs. (10) and (11) in Eq. (7) and solving for velocityw by
using the boundary conditions (13a) and (13b), we obtain an expression
for velocity as given below:

w =
P (1 + λ1)

2

[
h′α

1 − φr
+
r − h′

φ
+

1

φ2
log

(
1 − φr

1 − φh′

)]
. (14)

The volumetric flow rate Q is given by

Q = 2

∫ h

0

wr dr (15)

=
Ph′(1 + λ1)

12φ3

[
4h′2φ2 − 3h′φ(1 + 2h′φ) − 6(1 + 2αh′φ2) −

6(1 + 2αh′φ2)log(1 − h′φ)
]

(16)

Integrating Eq. (14) and using the condition ψ =
q

2
at r = h′, we obtain

the expression for stream function as

ψ =
q

2
+
P (1 + λ1)

24φ4

{
6(1 + 2αh′φ2)log(1 − h′φ) − 6(1 + 2αh′φ2)

log(1 − rφ) + φ
[
(h′ − r)[6 + 3(h′ + r)φ+ 2(6αh′ + h′2 + h′r

−2r2)φ2] + 6r2φlog

(
−1 + rφ

−1 + h′φ

)]}
.

(17)

Due to the non-linear term present in Eq. (9), the exact solution cannot
be obtained for the temperature. Moreover, the value of β is found to
be small in most of the practical applications. This enables us to apply
perturbation method for its solution.

3.1. Perturbation method

Perturbation method is used to linearise the complex form of heat equa-
tion such as Eq. (9). The appropriate series form for the temperature
is

θ =

∞∑
n=0

βnθn. (18)

Zeroth order solution
Introducing series solution of the parameters defined in Eq. (18) into Eq.
(9) and arranging the coefficients of β, the first characteristic equation of
the temperature θ0 is obtained as:

1

r

∂

∂r

(
rk(θ0)

∂θ0
∂r

)
= N

(
−∂w
∂r

τrz

)
. (19)

The zero-order solution of the temperature θ with respect to boundary
condition around the wall

(1 + β)
∂θ0
∂r

+ γθ0 = 0 at r = h′, (20a)

∂θ0
∂r

= 0 at r = 0, (20b)

is given by

θ0 =
NP 2(1 + λ1)

24φ4

[
(1 + β)[a1φ+ a2log(1 − h′φ)]

h′γ
+ a3+

6a4φ(h′ − r) + a5

(
log

(
h′

1 − h′φ

)
+ log

(
1 − rφ

r

))
−

a2[polylog(2, h′φ) − polylog(2, rφ)] − a5
]
, (21)

where,

a1 = 3h′2φ+ 2h′3φ2 + 6(h′ + 2αh′2φ2) +

3αh′φ[4 + αh′φ2 − 2φh′(2 + αh′φ2)]

(h′φ− 1)2
,

a2 = 6(1 + 4αh′φ2),

a3 =
3h′2φ2

2
+

2h′3φ3

3
+

3α2h′2φ4

h′φ− 1
,

a4 = 1 + 2αh′φ2,

a5 = 3αh′φ2(4 + αh′φ2),

a6 =
3r2φ2

2
+

2r3φ3

3
+

3α2h′2φ4

rφ− 1
.

First order solution
Applying the above method in Eq. (9), the characteristic equation of the
temperature θ1 is written as

1

r

∂

∂r

(
rk(θ1)

∂θ1
∂r

)
= N

(
−∂w
∂r

τrz

)
, (22)

(1 + β)
∂θ1
∂r

+ γθ1 = 0 at r = h′, (23a)

∂θ1
∂r

= 0 at r = 0. (23b)

Solving Eq. (22) with the help of boundary conditions prescribed by Eqs.
(23a) and (23b), we obtain the first order solution as

θ1 = (θ0)2. (24)

Substituting Eqs. (21) and (24) in Eq. (18) and neglecting the terms
higher than O(β) , we obtain the solution for temperature.

3.2. Theoretical determination of flux

Consider an elastic tube of length L and radius h(z, t) = h′(z, t) +
h′′(z), where h′(z, t) is the radius of the tube due to the peristaltic motion
and h′′(z) is the radius due to the elasticity of the tube. Let p1, p2 and
p0 be the inlet, outlet and exterior pressures respectively. Let z be the
distance from the inlet end. Then p(z) is the pressure inside the tube at
any point z in the tube. p(z) decreases from p(0) = p1 to p(L) = p2.
The expansion and contraction of the elastic tube at z happens due to the
transmural pressure difference [p(z) − p0] and results in deformation in
the cross-section of the tube. Hence, the conductivity σ1 at any point
in the tube depends on the transmural pressure difference. The relation
between the flux and the pressure gradient is assumed to be

Q = σ1(p− p0)

(
∂p

∂z

)
. (25)

On comparing Eqs. (16) and (25), we observe that

σ1(p− p0) =
h(1 + λ1)

12φ3
[4h2φ2 − 3hφ(1 + 2hφ) − 6(1 +

2αhφ2) − 6(1 + 2αhφ2)log(1 − hφ)]. (26)

3



Frontiers in Heat and Mass Transfer (FHMT), 12, 15 (2019)
DOI: 10.5098/hmt.12.15

Global Digital Central
ISSN: 2151-8629

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2 Flux (Q) for different values of (a) variable viscosity (φ), (b) Jeffrey parameter (λ1), (c) velocity slip parameter (α), (d) inlet elastic radius (h′′1 ),
(e) outlet elastic radius (h′′2 ), (f) elastic parameter (t1), (g) elastic parameter (t2), by Rubinow and Keller method.

Considering the change in radius of the elastic tube due to the peristaltic
motion (h′) and elasticity of the tube (h′′), Eq. (26) takes the form

σ1(p− p0) =
(h′ + h′′)(1 + λ1)

12φ3
[4(h′ + h′′)2φ2 − 3(h′ + h′′)

φ(1 + 2(h′ + h′′)φ) − 6(1 + 2α(h′ + h′′)φ2) −
6(1 + 2α(h′ + h′′)φ2)log(1 − (h′ + h′′)φ)]. (27)

Since the flow is a Poiseuille flow, h′′ = h′′(p− p0). On integrating Eq.
(25) and setting L = 1 , we get

Q =

∫ p1−p0

p2−p0

[
(h′ + h′′)(1 + λ1)

12φ3
[4(h′ + h′′)2φ2−

3(h′ + h′′)φ(1 + 2(h′ + h′′)φ) − 6(1 + 2α

(h′ + h′′)φ2) − 6(1 + 2α(h′ + h′′)φ2)

log(1 − (h′ + h′′)φ)]
]
dp′, (28)

where p′ = (p− p0) . If h′′(p′) is known explicitly, then Eq. (28) can be
solved by using the equilibrium condition as given below (Rubinow and
Keller (1972))

T (h′′)

h′′
= p− p0. (29)
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(a) (b) (c)

(d) (e)

Fig. 3 Flux (Q) for different values of (a) variable viscosity (φ), (b) Jeffrey parameter (λ1), (c) velocity slip parameter (α), (d) inlet elastic radius (h′′1 ),
(e) outlet elastic radius (h′′2 ), by Mazumdar method.

3.3. Application to flow of blood through an artery

The flow of blood through an artery is found by two methods: Rubinow
and Keller method and Mazumdar method.
Rubinow and Keller method
To know the relation between the tube radius and pressure, Roach and
Burton (1959) obtained a tension versus length curve for a 4 cm long
human iliac artery. The curve obtained was fit with the following equation
by using the method of least squares (Rubinow and Keller (1972)).

T (h′′) = t1(h′′ − 1) + t2(h′′ − 1)5, (30)

where t1 = 13 and t2 = 300.
Substituting Eq. (30) in Eq. (29) and on differentiating, we get

dp′ =

[
t1
h′′2

+ t2

(
4h′′3 − 15h′′2 + 20h′′ − 10 +

1

h′′2

)]
dh′′. (31)

This gives the theoretical determination of flux by Rubinow and Keller
method.
Mazumdar method
As given by Mazumdar (1992), the tension relation is given by

T (h′′) = A(eKh′′
− eK), (32)

where A = 0.007435 and K = 5.2625.
Using Eq. (32) in Eq. (29) and differentiating, we obtain

dp′ = A

[
eKh′′

(
K

h′′
− 1

h′′2

)
+
eK

h′′2

]
dh′′. (33)

The above equation is used to find the flux of a Jeffrey fluid through an
elastic tube theoretically.

4. RESULTS AND DISCUSSION

The various parameters involved in the study are Jeffrey parameter (λ1),
amplitude ratio (ε), velocity slip parameter (α), variable viscosity (φ),
thermal conductivity (β), elastic parameters (t1, t2), inlet elastic radius
(h′′1 ), outlet elastic radius (h′′2 ), Biot number (γ) and Brinkman num-
ber (N ). The influence of these parameters on velocity (w), tempera-
ture (θ), flow rate (Q)(both by Rubinow and Keller method and Mazum-
dar method) and streamlines are analyzed and graphically represented in
Figs. 2-8.

4.1. Flux profiles

The flux is determined by theoretical methods and computed through
MATLAB.
Rubinow and Keller method
The graphical representations in Figs. 2(a)-2(g) illustrate the variation of
pertinent parameters on theoretical flux as obtained from Rubinow and
Keller method. From Fig. 2(a), it can be seen that an increase in the
variation of φ results in decrease in the flux. Thus, the presence of vari-
able viscosity plays a vital role in diminishing the flux. A rise in flux is
observed in Figs. 2(b) and 2(c) for an increment in the values of λ1 and
α respectively. As seen from Fig. 2(d), the rise in the elastic radius of
the tube at the inlet results in an increasing flux at any location along the
axis of the tube. On the other hand, Fig. 2(e) suggests a drop in the flux
with an increase in the outlet elastic radius of the tube. Furthermore, the
increasing values of the elastic parameters of the tube are found to have
an increasing effect on the flux (see Figs. 2(f) and 2(g)).
Mazumdar method
The effects of pertinent parameters on theoretical flux as obtained from
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(a) (b) (c)

(d)

Fig. 4 Velocity profiles (w) for different values of (a) variable viscosity (φ), (b) Jeffrey parameter (λ1), (c) velocity slip parameter (α), (d) amplitude
ratio (ε).

Mazumdar method are sketched in Figs. 3(a) - 3(e). Figure 3(a) depicts
the variation of φ on theoretical flux. Here an increase in the value of φ
significantly reduces the volume of flux in an elastic tube. Figures 3(b)
and 3(c) portray the influence of λ1 and α on theoretical flux respectively.
Here, an increase in the values of λ1 and α enhances the volume flux. The
variation of inlet and outlet elastic radius h′′1 and h′′2 on Q are plotted in
Figs. 3(d) and 3(e). For a fixed value of h′′2 , the effect of increasing val-
ues of h′′1 enhances the flux (see Fig. 3(d)). However, Fig. 3(e) shows the
opposite behavior when we fix h′′1 and vary h′′2 .

4.2. Comparative analysis

In comparison, it can be noticed that flux is enhanced in Rubinow and
Keller method than in the Mazumdar method. This behavior is expected
due to the presence of fifth-degree polynomial present in the tensile rela-
tion defined by Rubinow and Keller (1972) rather than that of an expo-
nential curve in the tensile relation given by Mazumdar (1992). In the ab-
sence of peristalsis, velocity slip and variable liquid properties, Eq. (28)
reduces to that given by Rubinow and Keller (1972) for the flow of New-
tonian fluid in an elastic tube. Further, the behavior of relevant parameters
on theoretical flux obtained from both the models are in good agreement
with the results of Vajravelu et al. (2015), Vajravelu et al. (2016) and
Srinivas et al. (2017).

4.3. Velocity and temperature profiles

The velocity profiles with the radius of the tube for different values of
φ, λ1, α and ε can be seen in Figs. 4(a)-4(d) respectively. It is observed
that the velocity profiles are parabolic in nature with maximum velocity
occuring at the center of the tube. An acceleration in the radial direction
is observed for an increase in the values of each of these parameters.

Temperature variation with the radius of the tube is depicted in Figs. 5(a)-
5(e). From Fig. 5(a), it can be observed that a small variation in the values
of φ results in a significant increase in the magnitude of temperature. An
increase in the Jeffrey parameter λ1 has a decreasing effect on tempera-
ture as seen in Fig. 5(b). The effect of β on temperature is analyzed in
Fig. 5(c). Here the temperature near the axis of the tube increases for
higher values of β and the effect is negligible near the walls. It is because
of the reason that the higher values of β allow the liquid to dissipate or
absorb heat to its surroundings. Hence, the temperature decreases near
the walls of the tube. The influence of γ on temperature is portrayed in
Fig. 5(d). Results indicate that the temperature profile is an increasing
function of γ. Figure 5(e) elucidates the effect ofN on temperature. With
an increment in N(Ec × Pr) the resulting temperature enhances. It is
because of the viscous dissipation effects present in Ec which helps in
enhancing the temperature profile. Further larger value of Pr diminishes
the thermal conductivity and thereby enhances the temperature profile.

4.4. Trapping phenomenon

Trapping phenomena is the most important and well-known phenomena
in peristalsis. It is the formation of a bolus in the tube, which is pushed in
the forward direction by the sinusoidal wave movement of the peristaltic
mechanism. These effects are illustrated in Figs. 6 - 8. These graphs
indicate that an increase in the values of φ, λ1 and α result in an increase
in the volume of the trapped bolus.

5. CONCLUSIONS

It is worth noticing that the results of a Newtonian model can be deduced
from the current model by taking λ1 = 0. The present study helps in
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(a) (b) (c)

(d) (e)

Fig. 5 Temperature profiles (θ) for different values of (a) variable viscosity (φ), (b) Jeffrey parameter (λ1), (c) thermal conductivity (β), (d) Biot number
(γ), (e) Brinkmann number (N ).

Fig. 6 Streamlines for different values of (i) φ = 0.2, (ii) φ = 0.22, (iii)
φ = 0.24, (iv) φ = 0.26

understanding the flow of blood in arteries which can be handled and pro-
cessed in the case of dysfunctions. The conclusions can be summarized
as follows :

• The velocity field is an increasing function of φ, λ1, α and ε.

• The presence of variable viscosity enhances the velocity and tem-
perature in an elastic tube.

• Temperature of the fluid increases near the axis of the tube for an
increasing value of β and diminishes for larger values of λ1.

Fig. 7 Streamlines for different values of (i) λ1 = 0.1, (ii) λ1 = 0.2, (iii)
λ1 = 0.3, (iv) λ1 = 0.4

• The volume flux is enhanced in Rubinow and Keller method than
in the Mazumdar method and is found to be an increasing function
of α.

• The volume of trapped bolus increases for an increase in the value
of φ, λ1 and α.
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Fig. 8 Streamlines for different values of (i) α = 0.1, (ii) α = 0.2, (iii)
α = 0.3,(iv) α = 0.4

NOMENCLATURE

N Brinkman number
ρ density of the fluid
z dimensionless axial distance
w dimensionless axial velocity
p dimensionless pressure
u dimensionless radial velocity
ψ dimensionless streamline
Ec Eckert number
p0 exterior pressure
T0 initial temperature of the tube
p1 inlet pressure
p2 outlet pressure
Pr Prandtl number
r radius of the tube
h′(z, t) radius of the tube due to peristalsis
h′′(z) radius due to elasticity of the tube
Re Reynolds number
cp specific heat at constant pressure
T (h′′) tension in the tube wall
k thermal conductivity
t time
a undeformed radius of the tube
Q volumetric flow rate
q volume flux
b wave amplitude
c wave speed
Greek Symbols
ε amplitude ratio
γ Biot number
β coefficient of thermal conductivity
φ coefficient of variable viscosity
σ1 conductivity of the tube
µ1 constant of viscosity
θ dimensionless temperature
λ1 Jeffrey parameter
τrz shear stress
k(θ) variable thermal conductivity
α velocity slip parameter
µ(r) viscosity varying with radius
δ wave number
λ wave length
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