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ABSTRACT

The present paper encorporates the effet of magnetic field on the incompressible Casson fluid flow between two parallel infinite rectangular plates
approaching towards or away from each other with suction or injection at the porous plates. Using similarity transformations the governing
Navier-Stokes equations are reduced to a nonlinear ordinary differential equation. Semi-analytical solution is obtained based on the Homotopy
perturbation method. Further, the solution is compared with the classical finite difference method separately. The effect of magnetic field on velocity,
skin friction and pressure is analysed on flow between two plates with suction or injection, where two plates moving towards or away from each other.
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1. INTRODUCTION

The rapid advancements in technology and industries, the flow between
porous structures have acquired the attention of numerous researchers in
recent times due to their applications in the field of medicine and indus-
try. Specifically, the flow of blood through arteries, pumping of heart,
polymer industry process, injection modeling, compression, power trans-
mission and lubrication technology can be grasped by the basic fluid flow
between porous structures. Due to the complex rheological behavior of
many classical and biological liquids, it is difficult to understand the
various physiological behaviors by taking the Newtonian fluids. Thus,
their exists several non-Newtonian fluid models to encorporates these ef-
fects (Sankad and Patil (2018); Rajashekhar et al. (2018); Boulahia et al.
(2018)). In recent years study, the Casson fluid flow between two plates
grasp the attention of researchers due to its practical applications. In 1959
N. Casson developed this model in the rheology of dispersed system.
Fung and his associates in 1981 used Casson model to study the behavior
of blood. Milnor, Bate and Merrill concluded that the blood flow through
tubes is best described by Casson equation.

The basic work and formulation of squeezing flows are firstly has
done by Stefan in 1874. After that, many researchers (Grimm (1976),
Kuzma (1966), Tichy and Winer (1970), Jackson (1963)) contributed
towards better understanding of this phenomenon. Reynolds in 1986
(Reynolds (1886)) analyse the squeezing flow between elliptic plates,
Archibald Archibald (1956) extended this work for rectangular plates.
In the 19th century, many researchers studied the same type of problems
by reducing the Navier-Stokes equation to nonlinear ordinary differen-
tial equation or set of nonlinear differential equations through similarity
transformation. In 1999 E. A. Hamza Hamza (1999) studied the suction
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and injection effects on a similar flow between parallel plates.
Siddiqui, et al.( Domairry and Aziz (2009), Abdul et al. (2008)) analysed
the two dimensional MHD squeezing flow between parallel plates using
the homotopy perturbation method. T. Hayat and his co-workers (Hayat
et al. (2008, 2010, 2011, 2015)) analyse the fluid flow phenomenon un-
der different conditions and situations. Recently, many researchers con-
tributed their knowledge to study MHD problems (Sheikh et al. (2015);
Imran et al. (2017); Umar et al. (2016, 2014); Sobamowo and Akinshilo
(2018); Sufian et al. (2012)). The detailed study of nano fluids under
different conditions and effects is well established by Abderrahim Wakif
and his associates(Abderrahim et al. (2017a,b, 2018c,b, 2019, 2018a);
Saleem et al. (2019)).
This type of study mainly involves two sections, first one mathematical
formulation, the second solution of the problem. Most of this kind of
problems is highly nonlinear, solving these really challenges to the re-
search community, many authors solved them using numerical and semi-
numerical methods (Sachdev et al. (2000); Shijun (2011)). The Homo-
topy perturbation method is one of the simplest methods to handle these
type of problems(Ji-Huan (2008); Sumit et al. (2013, 2006); Babolian
et al. (2009); Bujurke et al. (1995b,a); Sampath and Pai (2019)). The ad-
vantage of HPM is a single computer program run yields the solution for
a large range of the expansion quantity rather than a solution for a single
value. In addition the method reveals the analytical structure of the so-
lution function. For simple geometry the method proposed her, provides
accurate results and has advantages over pure numerical methods like fi-
nite difference. In numerical methods a separate scheme is to be devolved
for calculating derived quantities. Such difficulties are not there in HPM.
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2. MATHEMATICAL FORMULATIONS

We consider the two dimensional incompressible Casson fluid flow be-
tween two parallel infinite rectangular plates which are spaced a distance
a(t) apart, where t denotes time. We specify the plates by y = 0 and
y = a(t), a(0) = a0, and the upper plate is moving with velocity a′(t)
towards (or away from) the lower porous plate which is fixed.

Fig. 1 Geometry of the problem

The equation of Casson fluid is defined as

τij =
[
µB +

( py√
2π

) 1
n
]n

2eij , (1)

where py is the yield stress, µB is the Casson viscosity and π = eijeij ,
where eij is the (i, j) components of the deformation rate. The governing
equations are

∂u

∂x
+
∂v

∂y
= 0, (2)

where u and v are velocity components along x and y axis respectively.
The equations governing the flow in cartesian coordinates are

∂u

∂t
+ u

∂u
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Where γ = µB
√

2π/py and ν is the kinematic viscosity of the fluid. T
is the temperature, Cp is the specific heat and k is the thermal conductiv-
ity. Viscosity of the fluid is taken as constant and it does not depend on
temperature.
The boundary conditions are given by

u(x, y, t) = 0, v(x, y, t) = a′(t), T = TH at y = a(t), (6)

u(x, y, t) = 0, v(x, y, t) = Aa′(t),
∂T

∂y
= 0, at y = 0. (7)

Where A is a constant parameter such that A > 0 corresponds to suction
and A < 0 corresponds to injection.
Using the transformation

u =
C − x
a(t)

a′(t)f ′(η),

v = a′(t)f(η).

θ =
T

TH

(8)

Where η = y
a(t)

and C is a constant.
The equation of motion is satisfied and the equation of motion takes the
form

∂p

∂x

1

C − x =
ρa′2

a2
{

1 + 1
γ

R
f ′′′ −Qf ′ + ηf ′′ + f ′ + f ′2 − ff ′′}

+σβ2 a
′

a
f ′ = P1(η, t),

(9)

∂p

∂η
= ρa′2{

(1 + 1
γ

)

R
f ′′ − ff ′ + ηf ′ −Qf} = P2(η, t). (10)

Where

R =
aa′

ν
, Q =

aa′′

a′2
. (11)

The equation for the axial pressure gradient ∂p
∂η

gives

∂2p

∂x∂η
= 0.

This shows that
1

C − x
∂p

∂x
= P1(t)

. Differentiating (9) with respect to η gives

(1 +
1

γ
)f iv = R(ff ′′′ − f ′f ′′ − ηf ′′′ − 2f ′′ +Qf ′′)−M2f ′′. (12)

For a similarity solution to exist, R and Q must be constant, since a′ =
da(t)
dt

, the first equation (11) can be integrated to give

a(t) = (2γRt+ a20)
1
2 . (13)

When R > 0 the upper plate moves away from the lower plate and when
R < 0, it moves towards it, and squeezing flow exists with similar veloc-
ity profiles as long as a(t) > 0.
From (11) and (13) it follows that Q = −1 and hence equations take the
form

(1 +
1

γ
)f iv = R(ff ′′′ − f ′f ′′ − ηf ′′′ − 3f ′′)−M2f ′′. (14)

and

θ′′ + PrR(fθ′ − ηθ′) + PrEc(1 +
1

γ
)(f ′′2 + 4δ2f ′2) = 0 (15)

The boundary conditions are

f(1) = 1, f ′(1) = 0, f(0) = A, f ′(0) = 0, θ(1) = 1, θ′(0) = 0
(16)

Where Pr is Prandtl number, Ec Eckert number and δ is small number.
We solve equations (14) to (16) to see the effects of R and A on the ve-
locity profiles, the skin friction and the pressure distribution for different
values of Casson parameter.

2.1. The skin friction

The skin friction at the wall is represented by

S = µ(1 +
1

γ
)(
∂u

∂y
)y=a(t), (17)

where µ is the coefficient of viscosity.
or

S∗ = (1 +
1

γ
)f ′′(1),

where

S∗ =
a2

µa′(C − x)
S.
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2.2. The pressure distribution

The fluid pressure is obtained by partial integrating (9 and 10). The pres-
sure along x- direction

p(x, t)− p0 = −−ρa
′2L

2a2
[
(c− x)2 − (c− l)2,

]
(18)

where

L =
1 + 1

γ

R
f ′′′(0)−Af ′′(0), (19)

l is the length of the plate from the origin and p0 is the atmospheric pres-
sure at x = l. This can be written in dimensionless form as

px = L,

where

px = − 2a2[p(x, t)− p0]

ρa′2[(c− x)2 − (c− l)2]
.

The η distribution of pressure is equal to

p(η, t)− pe = ρa′2(ηf +
1

2
(A2 − f2) +

(1 + 1
γ

)

R
f ′),

where pe is the pressure at η = 0 or

pη = ηf +
1

2
(A2 − f2) +

1 + 1
γ

R
f ′,

where

pη =
p(η, t)− pe

ρa′2
.

3. METHOD OF SOLUTION

We adopt two methods to solve the considered problems.
Method-I: Homotopy Perturbation Solution:
To describe the HPM solution for the system of non-linear differential
equations, we consider

D1[f(η)]− f1(η) = 0 (20)

D2[θ(η)]− f2(η) = 0 (21)

whereD1 andD2 denotes the operator, f(η) and θ(η) are unknown func-
tions, η denote the independent variable and f1, f2 are known functions.
D1 and D2 can be written as

D1 = L1 +N1

D2 = L2 +N2

whereL1 andL2 are simple linear part,N1 andN2 are remaining part of
the equations (20, 21) respectively. The proper selection of L1, L2, N1,
andN2 form the governing equations one can get the homotopy equation
for ( 20 and 21 ) as follows

H1(Φ1(η, q; q)) = (1− q)
[
L1(Φ1, q)− L1(v0(η))

]
+q
[
D1(Φ1, q)− f1(η)

]
= 0

(22)

H2(Φ2(η, q; q)) = (1− q)
[
L2(Φ1, q)− L2(v0(η))

]
+q
[
D2(Φ2, q)− f2(η)

]
= 0

(23)

where v0(η) is the initial guess to the (20,21 ).
We assume the solution of (22) and (23) as follows

Φ1(η, q) =

∞∑
n=0

qnfn(η) (24)

Φ2(η, q) =

∞∑
n=0

qnθn(η) (25)

The solution to the considered problems is (24 and 25) at q = 1.
Using the above scheme for solving the equations, zeroth and first order
solutions are obtained as follows.

u0 = A+ 3η2 − 3Aη2 − 2η3 + 2Aη3

u1 =
1

140(1 + γ)

[
− 7Mγη2 + 7M2Aγη2 − 25Rγη2

−13ARγη2 + 38A2Rγη2 + 28M2γη3 − 28M2Aγη3 + 96Rγη3

−10ARγη3 − 86A2Rγη3 − 35M2γη4

+35M2Aγη4 − 105Rγη4 + 35ARγη4 + 70A2Rγη4

+14M2γη5 − 14M2Aγη5 + 14Rγη5

+28ARγη5 − 42A2Rγη5

+28Rγη5 − 56ARγ6 + 28A2Rγη6 − 8Rγη6

+16ARγη7 − 8A2Rγη7
]

θ0 =
1

5γ

[
5γ − 6(−1 +A)2EcPr(1 + γ)(−1 + η)

{
5(1 + η − 2η2 + 2η3)

+2δ2(1 + η + η2 + η3 − 4η4 + 2η5)

}]
θ1 =

1

525γ
(−1 +A)2EcPr(−1 + η)

{
3PrR(1 + γ)(−5(2 + 2η + 2η2

+2η3 − 103η4

+212η5 − 180η6 + 60η7) + δ2(3 + 3η + 3η2 + 3η3

+3η4 + 3η5 + 283η6 − 617η7 + 448η8 − 112η9)

+A(15(17 + 17η + 17η2

−53η3 + 17η4 + 52η5 − 60η6 + 20η7) + δ2(47 + 47η2

+47η3 + 47η4 − 373η5 + 47η6 + 527η7

−448η8 + 112η9))) + γ(3M2(35η2(−3 + 11η − 16η2 + 8η3)

+δ2(−1− η − η2 − η3 − 71η4 + 223η5

−225η6 + 75η7))−R(15η2(75− 263η

+340η2 − 80η3 − 108η3 − 108η4 + 36η5)

+δ2(11 + 11η + 11η2 + 11η3 + 761η4

−2281η5 + 1976η6 − 133η7 − 448η8 + 112η9))

+AR(30(7 + 7η − 50η2

+117η3 − 117η4 + 72η5 − 54η6

+18η7) + δ2(29 + 29η + 29η2 + 29η3 − 1111η4

+1895η5 − 1333η6 + 767η7 − 448η8 + 112η9))

}
Method-II: Finite Difference Solution:
The equation mentioned above (14) to (16) is solved numerically by FDM
to confirm the results obtained by us. Using standard finite difference
method, i.e. stepping from ηj−1 to ηj , a Crank-Nicolson’s scheme is
used. This tridiagonal system is easily solved to update the values on
each grid point. Calculations were performed by dividing the interval
into 104 sub intervals to find the associated parameters. These systems of
equations are solved using Mathematica.

4. RESULTS AND DISCUSSION

In the present study, we have analysed the effect of magnetic field, suc-
tion or injection on fluid flow between two parallel plates either the plates
moving towards or away from each other. We used HPM to analyse
f(η), f ′(η) and pη for different values of the parameters and presented
the results from Fig. 2 to Fig. 20, for this we consider 20 terms in the

3
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series by writing a mathematica code. The Values of the skin friction and
px also analysed through HPM and are compared with FDM and results
are presented (Table 1 to 5). We split the result and discussion into two
parts.

a) Injection case (A < 0): Fig. 2 shows the effect ofR on velocity of
the fluid. It is observed that, when the upper plate moving away from the
lower plate, the velocity of fluid is increased in the half plane (0 ≤ η ≤
0.5) and has opposite behavior is observed in 0.5 ≤ η ≤ 1. When the
plates moving towards each other, the velocity decreases in 0 ≤ η ≤ 0.5
and increases in 0.5 ≤ η ≤ 1. The most common observation in this
case is, the peakness of velocity increases, when the plates moving away
from each other and it is less, when the plates are moving towards each
other. This is due to the non-Newtonian characteristic of the fluid. From
Fig. 3 to 5, it is clear that in the presence of magnetic effect, the fluid
flow is smoother. The velocity increases with the effect of magnet in
0 ≤ η ≤ 0.3 and 0.7 ≤ η ≤ 1. The opposite behavior is observed in
0.4 ≤ η ≤ 0.7.

b) Suction Case(A > 0): The velocity of the fluid, when the plates
approaching or receding each other are given in Fig.6. The velocity of
fluid decreases in 0 ≤ η ≤ 0.5 and increases in 0.5 ≤ η ≤ 1, when
the plates moving away from each other. The reverse effect is observed
during the plates moving towards each other. Fig. 7 to 11 show the effect
of M when R = −10, 10,−0.01, 0.01. Here it is observed that, fluid
flow is smoother and there is no disturbance in the flow due to magnetic
effects. Fig. 12 to 15 describe the effect of Casson fluid parameter γ, un-
der different conditions. It is evident that the value of the γ increases, the
non-Newtonian characteristics increases and the flow become smoother.
Fig. 16 and 17 represents the axial pressure with suction and injection
respectively.

The skin friction under different conditions are calculated through
FDM and HPM (Table 1 and 2). From these tables we observe that the
absolute value of skin friction decreases as we increase the effect of M
in both suction and injection cases when plates moving away or towards
each other. The absolute value of the skin friction increases when the
plates moving towards each other and reverse effect is observed during
the plates moving away from each other. Tables 3 and 4 show the effect
of dimensional x pressure under different conditions. Further the absolute
value of the pressure increases when plates moving towards each other.

Fig. 18 to 20 show the temperature distribution with respect to var-
ious parameters. It is observed that as Ec increases temperature also in-
creases, whereas with increase in γ temperature decreases. Also as δ
increases, temperature decreases. Further, it is understood that the re-
sults are same for suction or injection. The variation of θ′(1) for different
values of γ and R for fixed values of Pr , Ec, δ and M listed in table 5.
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whenA = −0.5,γ = 0.3, M = 0.3

5



Frontiers in Heat and Mass Transfer (FHMT), 12, 23 (2019)
DOI: 10.5098/hmt.12.23

Global Digital Central
ISSN: 2151-8629

Table 1 Values of skin friction coefficient when γ = 0.1

A = 0.5 A = −0.5

R M HPM FDM HPM FDM
1 0.1 -32.9356 -32.9310 -98.1154 -98.0961
5 -32.6886 -32.6796 -94.4890 -98.4694

10 -32.4012 -32.3935 -89.7258 -89.7083
15 -32.1410 -32.1343 -84.6728 -84.6528
20 -31.9123 -31.9058 -79.2864 -79.2656
25 -31.7200 -31.7157 -73.5124 -73.4932
30 -31.5696 -31.5646 -67.2824 -67.2637
-1 -33.0642 -33.0575 -99.8727 -99.8523
-5 -33.3304 -33.0575 -103.2840 -103.2630

-10 -33.6785 -33.6731 -107.3700 -107.3510
-15 -34.0411 -34.0349 -111.2790 -111.2580
-20 -34.4159 -34.4093 -115.0280 -115.0060
-25 -34.8009 -34.7951 -118.6330 -118.6090
-30 -35.1944 -35.1887 -122.1070 -122.0850
1 0.3 -32.9316 -32.9263 -98.1033 -98.0849
5 -32.6846 -32.6787 -94.4763 -94.4564

10 -32.3972 -32.3899 -89.7123 -89.6927
15 -32.1370 -32.1289 -84.6584 -84.6404
20 -31.9084 -31.9027 -79.2710 -79.2517
25 -31.7162 -31.7125 -73.4957 -73.4774
30 -31.5659 -31.5583 -67.2643 -67.2472
-1 -33.0602 -33.0527 -99.8608 -99.8396
-5 -33.3264 -33.3217 -103.2730 -103.2520

-10 -33.6745 -33.6688 -107.3600 -107.3390
-15 -34.0371 -34.0308 -111.2690 -111.2470
-20 -34.4119 -34.4090 -115.0180 -114.9970
-25 -34.7970 -34.7912 -118.6230 -118.6000
-30 -35.1905 -35.1834 -122.0980 -122.0750
1 0.5 -32.9236 -32.9175 -98.0790 -98.0622
5 -32.6767 -32.6696 -94.4510 -94.4326

10 -32.3893 -32.3805 -89.6854 -89.6669
15 -32.1292 -32.1213 -84.6297 -84.6120
20 -31.9007 -31.8909 -79.2401 -79.2240
25 -31.7086 -31.7029 -73.4624 -73.4445
30 -31.5585 -31.5538 -67.2280 -67.2091
-1 -33.0522 -33.0455 -99.8370 -99.8159
-5 -33.3184 -33.3123 -103.2500 -103.2300

-10 -33.6665 -33.6577 -107.3380 -107.3180
-15 -34.0291 -34.0209 -111.2480 -111.2260
-20 -34.4040 -34.3970 -114.9980 -114.9750
-25 -34.7891 -34.7806 -118.6040 -118.5830
-30 -35.1827 -35.1772 -122.0790 -122.0560

Table 2 Values of skin friction coefficient when γ = 0.3

A = 0.5 A = −0.5

R M HPM FDM HPM FDM
1 0.1 -12.9363 -12.9334 -38.1083 -38.1007
5 -12.7072 -12.7037 -34.2888 -34.2818

10 -12.4903 -12.4871 -28.7761 -28.7694
15 -12.3818 -12.3803 -22.0669 -22.0599
20 -12.4263 -12.4228 -13.3769 -13.3689
25 -12.6848 -12.6836 -0.7245 -0.7175
30 -13.2404 -13.2403 22.3176 22.0709
-1 -13.0648 -13.0618 -39.8660 -39.8582
-5 -13.3432 -13.3405 -43.1340 -43.1255

-10 -13.7210 -13.7191 -46.8404 -46.8318
-15 -14.1201 -14.1171 -50.2154 -50.2061
-20 -14.5317 -14.5286 -53.3271 -53.3177
-25 -14.9493 -14.9461 -56.2249 -56.2152
-30 -15.3685 -15.3658 -58.9777 -58.9346
1 0.3 -12.9323 -12.9295 -38.0960 -38.0884
5 -12.7032 -12.7013 -34.2749 -34.2681

10 -12.4865 -12.4840 -28.7594 -28.7521
15 -12.3783 -12.3770 -22.0457 -22.0399
20 -12.4234 -12.4220 -13.3477 -13.3413
25 -12.6828 -12.6819 -0.6775 -0.67114
30 -13.2397 -13.2392 22.4160 22.1676
-1 -13.0608 -13.0578 -39.8543 -39.8465
-5 -13.3393 -13.3369 -43.1234 -43.1151

-10 -13.7170 -13.7152 -46.8309 -46.8221
-15 -14.1163 -14.1135 -50.2066 -50.1976
-20 -14.5279 -14.5252 -53.3190 -53.3096
-25 -14.9457 -14.9434 -56.2173 -56.2067
-30 -15.3648 -15,3623 -58.9702 -58.9277
1 0.5 -12.9243 -12.9223 -38.0713 -38.0629
5 -12.6953 -12.6926 -34.2470 -34.2397

10 -12.4789 -12.4751 -28.7258 -28.7189
15 -12.3713 -12.3705 -22.0031 -22.9959
20 -12.4175 -12.4160 -13.2892 -13.2825
25 -12.6787 -12.6776 -0.5832 -0.5756
30 -13.2385 -13.2378 22.6135 22.3546
-1 -13.0528 -13.0502 -39.8309 -39.8229
-5 -13.3313 -13.3279 -43.1021 -43.0938

-10 -13.7092 -13.7069 -46.8117 -46.8023
-15 -14.1086 -14.1061 -50.1891 -50.1801
-20 -14.5204 -14.5182 -53.3027 -53.2930
-25 -14.9384 -14.9353 -56.2021 -56.1918
-30 -15.3577 -15.3548 -58.9548 -58.9133
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Table 3 Values of the dimensional x pressure px when γ = 0.1

A = 0.5 A = −0.5

R M HPM FDM HPM FDM
1 0.1 -64.5151 -64.4934 -190.068 -190.0230
5 -11.7185 -11.719 -31.6523 -31.6491

10 -5.1174 -5.1186 -11.8151 -11.8179
15 -2.9159 -5.1186 -5.1743 -5.1795
20 -1.8144 -1.8155 -1.8304 -1.8357
25 -1.1528 -1.1538 0.1970 0.1913
30 -0.7113 -0.7124 1.5688 1.5624
-1 67.4722 67.4455 205.882 205.8080
-5 14.6756 14.6700 47.4685 47.4475

-10 8.0745 8.0695 27.637 27.6225
-15 5.8729 5.8685 21.0059 20.9930
-20 4.7712 4.7668 17.6759 17.6643
-25 4.1095 4.1054 15.6672 15.6561
-30 3.6677 3.6637 14.3197 14.3089
1 0.3 -64.4670 -64.4462 -189.9230 -189.8130
5 -11.7089 -11.7071 -31.6232 -31.6192

10 -5.1126 -5.1139 -11.8004 -11.8025
15 -2.9127 -2.9138 -5.1644 -5.1686
20 -1.8120 -1.8131 -1.8228 -1.8286
25 -1.1509 -1.1518 0.2031 0.1971
30 -0.7096 -0.7111 1.5739 1.5674
-1 67.4243 67.4048 205.738 205.6730
-5 14.6661 14.6575 47.4400 47.4187

-10 8.0697 8.0650 27.6228 27.6081
-15 5.8697 5.8654 20.9965 20.9839
-20 4.7689 4.7644 17.6689 17.6572
-25 4.1076 4.1036 15.6616 15.6506
-30 3.6661 3.6621 14.3151 14.3042
1 0.5 -64.371 -64.3520 -189.6350 -189.5730
5 -11.6896 -11.6874 -31.5651 -31.5618

10 -5.1029 -5.1033 -11.7710 -11.7731
15 -2.9062 -2.9071 -5.1446 -5.1487
20 -1.8071 -1.8086 -1.8078 -1.8134
25 -1.1469 -1.1484 0.2153 0.2094
30 -0.7063 -0.7087 1.5842 1.5779
-1 67.3283 67.3103 205.4510 205.388
-5 14.6470 14.6412 47.3829 47.3622

-10 8.0602 8.0559 27.5945 27.5801
-15 5.8634 5.8593 20.9777 20.9655
-20 4.7641 4.7601 17.6550 17.6435
-25 4.1038 4.1000 15.6505 15.6394
-30 3.6631 3.6591 14.3059 14.2949

Table 4 Values of the dimensional x pressure px when γ = 0.3

A = 0.5 A = −0.5

R M HPM FDM HPM FDM
1 0.1 -24.5145 -24.5112 -70.0563 -70.0419
5 -3.7159 -3.7175 -7.5912 -7.5953

10 -1.1123 -1.1136 0.3220 0.3162
15 -0.2418 -0.2428 3.0662 3.0593
20 0.1958 0.1947 4.5814 4.5737
25 0.4612 0.4604 5.8065 5.7976
30 0.6428 0.6424 7.7649 7.7077
-1 27.4717 27.4644 85.8712 85.8378
-5 6.6729 6.6689 23.4180 23.4048

-10 4.0690 4.0648 15.5440 15.5326
-15 3.1980 3.1940 12.8770 12.8665
-20 2.7602 2.7562 11.5169 11.5066
-25 2.4959 2.4916 10.6827 10.6726
-30 2.3183 2.3138 10.1130 10.1037
1 0.3 -24.4664 -24.4613 -69.9116 -69.8960
5 -3.7062 -3.7066 -7.5617 -7.5655

10 -1.1074 -1.1088 0.3372 0.3313
15 -0.2385 -0.2397 3.0768 3.0699
20 0.1983 0.1973 4.5899 4.5822
25 0.4632 0.4624 5.8147 5.8058
30 0.6445 0.6440 7.7781 7.7203
-1 27.4238 27.4135 85.7278 85.6941
-5 6.6634 6.6590 23.3898 23.3764

-10 4.0643 4.0601 15.5301 15.5189
-15 3.1949 3.1907 12.8679 12.8574
-20 2.7579 2.7538 11.5102 11.4996
-25 2.4940 2.4898 10.6774 10.6674
-30 2.3167 2.3123 10.1086 10.0992
1 0.5 -24.3702 -24.3649 -69.6222 -69.6109
5 -3.6868 -3.6879 -7.5026 -7.5062

10 -1.0976 -1.0991 0.3677 0.3613
15 -0.2319 -0.2329 3.0980 3.0910
20 0.2033 0.2023 4.6070 4.5992
25 0.4673 0.4666 5.8313 5.8223
30 0.6479 0.6475 7.8046 7.7452
-1 27.3280 27.3165 85.4411 85.4107
-5 6.6444 6.6403 23.3333 23.3201

-10 4.0549 4.0508 15.5024 15.4914
-15 3.1887 3.1847 12.8497 12.8393
-20 2.7533 2.7492 11.4967 11.4865
-25 2.4904 2.4863 10.6667 10.6566
-30 2.3137 2.3093 10.0998 10.0904
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Fig. 18 Variation of the θ(η) with Ec, whenR = 1, Pr = 0.5, M = 0.3,
δ = 0.1, γ = 0.1, A = 0.5
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Fig. 19 Variation of the θ(η) with δ, whenR = 1, Pr = 0.3, M = 0.3,
γ = 0.1, A = 0.5, Ec = 0.3
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Fig. 20 Variation of the θ(η) with γ, whenR = 1, Pr = 0.5, M =
0.3,δ = 0.1 Ec = 0.3

Table 5 Values of θ′(1) when Pr = 0.5, M = 0.3, Ec = 0.1, δ = 0.1

A = 0.5 A = −0.5

R γ HPM FDM HPM FDM
1 0.3 -0.62097 -0.62065 -6.14852 -6.14594
5 -0.52930 -0.52907 -7.55316 -7.55087

10 -0.46867 -0.46853 -10.12360 -10.12190
15 -0.44496 -0.44445 -13.58400 -13.5850
20 -0.44629 -0.44606 -17.01380 -17.0201
25 -0.46910 -0.46812 -17.2560 -17.2892
-1 -0.68867 -0.68835 -5.62463 -5.62193
-5 -0.89042 -0.88993 -4.85438 -4.85142

-10 -1.34525 -1.34418 -4.27193 -4.26867
-15 -2.21880 -2.2198 -3.96167 -3.95822
-20 -3.90851 -3.90928 -3.81556 -3.81177
-25 -7.19876 -7.20072 -3.76447 -3.76229
1 0.5 -0.43011 -0.429909 -4.25700 -4.25524
5 -0.37105 -0.37087 -5.23339 -5.23189

10 -0.34151 -0.34125 -6.95770 -6.95685
15 -0.34703 -0.34644 -8.75793 -8.76180
20 -0.38714 -0.38634 -7.76800 -7.97814
25 -0.48020 -0.47805 -5.6942 -5.6938
-1 -0.47699 -0.47679 -3.89429 -3.89240
-5 -0.62331 -0.62301 -3.36877 -3.36669

-10 -0.96882 -0.96901 -2.98598 -2.98362
-15 -1.65783 -1.65706 -2.79694 -2.79427
-20 -3.03244 -3.03330 -2.70135 -2.7195
-25 -5.78143 -5.78817 -2.6953 -2.71075
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