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ABSTRACT 

A mathematical model of the inverse heat transfer problem of blast furnace lining is established in this study. Following the identification of the 
boundary conditions of the model, the inverse problem via the conjugate gradient method was decomposed into three issues: the direct problem, the 
sensitivity problem, and the adjoint problem. The feasibility of the model was verified through two types of real inner wall boundary shape functions. 
The effects of the initial inner wall boundary shape function and the number of measuring points are also investigated. Results showed that the 
accuracy of the inverse solution is independent of the initial inner wall boundary shape function. The number of measuring points exerts some 
influence on the inversion results. That is, a large number of measuring points equates to a good capture of curves, but an accurate inverse solution 
also can be obtained with few measuring points, although arranging a large number of points can achieve a slightly better solution. The average 
relative error of this solution is approximately 3%. 
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1. INTRODUCTION 

Blast furnaces are important equipment in the steel production process. 
The erosion problem of blast furnace lining influences the advancement 
of blast furnaces (Zheng et al., 2009). The problem of the erosion 
thickness of blast furnace lining is actually an inverse heat conduction 
problem (IHCP) that involves the calculation of the surface shape of the 
inner lining using temperatures measured in the blast furnace lining 
(Zhang et al., 2008). 

The IHCP (Hadamard and Morse, 1953; Beck and Woodbury, 2016; 
Lin and Yang, 2007) is a heat transfer problem whose outcomes are 
difficult to measure. Since Stolz (Stolz, 1960) published the first paper 
on the IHCP in 1960, many scientists have explored numerical solutions 
to the IHCP, such as Tikhonov’s regularization method (Qiao et al., 
2017), Beck’s serialization method, Blackwell’s time-marching 
algorithm method, Weber’s space propulsion algorithm method 
(Blackwell, 1981), Elden’s Fourier regularization method (Weber, 1981), 
and the conjugate gradient method (Isaac, 2018; Amini et al., 2018; 
Dehghani and Mahdavi-Amiri, 2018). Through these methods, the IHCP 
has undergone significant advancement in practical engineering and 
scientific experiment and measurement. The conjugate gradient method 
(Colaço and Orlande, 2004; Huang and Liu, 2010; Dulikravich and 
Martin, 2012; Rajaraman et al., 2018) is similar to the steepest descent 
method and Newton’s method as it takes only a first derivative 
information; however, it overcomes the slow convergence in the steepest 
descent method and avoids calculating the Hesse matrix in the Newton 
method. The conjugate gradient method is thus widely used to solve the 
IHCP. 

In this paper, the erosion contour lines of a single-layer blast furnace 
are calculated on the basis of the temperatures of the internal lining. This 
problem is a boundary shape IHCP. The mathematical model for solving 
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the inverse heat conduction problem of boundary shape is given in detail, 
the model is solved by the conjugate gradient method. The influence of 
different initial inner wall boundary shape function and the number of 
temperature points on the calculation results is discussed. The work done 
in this paper lays the foundation for predicting the shape of the inner wall 
of the blast furnace by measuring the surface temperature of the blast 
furnace (the wall of the furnace will change due to erosion), and it is will 
be helpful for the safe production of the blast furnace.  

2. MATHEMATICAL MODEL 

The calculation area of the mathematical model in this study is shown in 
Fig. 1. The temperature of the left wall surface was constant, along with 
the heat flow from the right side surface of the calculation area. The upper 
and lower walls were under adiabatic conditions. The wall was equipped 
with several thermocouples for measuring temperature. The measured 
temperatures are used in the mathematical model to calculate the erosion 
curve of the inner wall surface (inner wall boundary shape). 
 

 
Fig. 1 Schematic diagram of the calculation area 
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The conjugate gradient method was used to solve the boundary shape 
IHCP. The calculation process was divided into the direct problem, the 
sensitivity problem, and the adjoint problem. 

2.1 Direct Problem Model 

Under the direct problem model, the temperature distribution throughout 
the area was calculated by solving the two-dimensional state heat 
conduction problem with the erosion curve of the inner wall (inner wall 
boundary shape) being known. The equations and boundary conditions 
are as follows: 
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where k is the thermal conductivity, Wꞏm−1ꞏK−1; q0 is the heat flux 
intensity of the right side, Wꞏm−2; T0 is the temperature of the erosion 
curve surface of the inner wall, K; Ti

c is the temperature measured by the 
thermocouple i, K; and m is the number of the thermocouple. 

2.2 Inverse Problem Model 

Under the inverse problem model, the inner wall boundary shape was 
calculated using the measuring point temperatures. We calculated the 
temperatures by solving the direct problem with the assumption that the 
inner wall boundary shape was x=f(y). We also calculated the square of 
the differences between the measured temperatures and the calculated 
temperatures. When the square was minimum, the supposed inner wall 
boundary shape was the real inner wall boundary shape. The equation of 
the inverse problem model is as follows: 
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where Ti(xi,yi) denotes the calculated temperatures at point i, K; and 
Ti

c(xi,yi) denotes the measured temperatures at point i, K. 

2.3 Sensitivity Problem Model 

Under the sensitivity problem model, the incremental temperature 
(ΔT(x,y)) when the inner wall boundary shape changed (f(y)+Δf(y)) was 
calculated. The equations and boundary conditions of the sensitivity 
problem model are as follows: 
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2.4 Adjoint Problem Model 

The adjoint problem is a functional derivative problem that aims to obtain 
the gradient of the objective function. First, we used Equation 1 (the 
direct problem model) multiplied by a Lagrangian λ(x,y) (the adjoint 

function). Second, we performed regional integration and added it to 
Equation 2 (the inverse problem model). Third, we used T+ΔT to replace 
T and f(y)+Δf(y) to replace f(y). Then, we obtained the function ΔJ[f(y)]. 
Finally, we obtained the equations of the adjoint problem model when 
ΔJ[f(y)] approached 0 by using the boundary conditions of the sensitivity 
problem model. 
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After determining the values of λ(x,y) (the adjoint function), we 
obtained the following derivative of the objective function: 
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2.5 Iterative Search Method 

The conjugate gradient method can be employed to construct a set of 
conjugate directions by using the gradient at known points and searching 
along the conjugate directions. The result is the minimum value of the 
objective function. The equations of the iterative search model are as 
follows: 
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where dn is the n-th search direction, which is the negative gradient 
direction in the first search; Jn’ is the gradient direction; and βn is the 
conjugated factor, which could be calculated with the following equation: 
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The change of the inner wall boundary shape can be obtained from the 
search step αn and the search direction dn. Inner wall boundary shape f(y) 
could be calculated with the following equation: 

1n n n nf f d    (9) 

where αn is the search step, which could be calculated with the following 
equation: 
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The steps of the conjugate gradient method are as follows: 
Step 1: The initial inner wall boundary shape f(y) is considered, and 

the temperatures Ti(xi,yi) of the measuring points are calculated by 
solving Equation 1 (the direct problem model). 

Step 2: The measured temperatures (Ti
c(xi,yi)) and calculated 

temperatures (Ti(xi,yi)) are compared. If the temperatures meet the 
convergence conditions (J(f(y))<ε) of Equation 2 (the inverse problem 
model), then f(y) is the real inner wall boundary shape; otherwise, the 
next step is performed. 
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Step 3: The adjoint problem model is solved, the values of the adjoint 
function in all areas are obtained, and the gradient (J’(f(y))) of the 
objective function is determined. 

Step 4: The conjugated factor and search direction are calculated. 
Step 5: Let Δf=dn. The incremental temperature ΔT is calculated by 

solving the sensitivity problem model (Equation 3). 
Step 6: The search step is calculated by solving Equation 10. The new 

inner wall boundary shape is determined by solving Equation 9, and the 
new temperatures (Ti(xi,yi)) are determined by solving Equation 1. Then 
return to step 2, determine whether the temperatures meet the 
convergence conditions of Equation 2 again. 

3. MODEL VALIDATION AND ANALYSIS OF 
SIMULATION RESULTS 

3.1 Model Validation Criteria 

In this study, the erosion of the blast furnace lining served as the 
background. Thus, the initial parameters were set as follows: 

The inner wall surface temperature T0 was 1150 °C (T0=1150 °C). No 
erosion was noted in the initial phase. Thus, thickness b in the x-axis 
direction was 0.5 m (b=0.5 m), and length L in the y-axis direction was 
1 m (L=1 m). The measuring points were evenly arranged, and the total 
number M was 11 (M=11). The size of the study area was 0.5 m × 1 m. 
The number of mesh was 50 × 100, and the mesh size was 1 cm × 1 cm. 
We supposed that in the beginning, the inner wall boundary shape 
function was x=f(y)=0. The heat flux intensity q0 was 50000 Wꞏm−2 
(q0=50000 Wꞏm−2). 

3.2 Analysis of Results 

(1) The real inner wall boundary shape function 1 

   y 0.35 0.1sin 2 0 1x f y y      (11) 

Under this real shape function, the temperatures of the study area are 
shown in Fig. 2. 

On the basis of the temperatures of 11 measuring points, we solved the 
boundary shape of the inner wall by using the conjugate gradient method. 
When the temperatures met the convergence conditions, we obtained the 
calculated inner wall boundary shape. By comparing the real shape and 
the calculated shape, we concluded that the relative error for each 
corresponding point was approximately 1% and that the average relative 
error was 0.83%. The real shape and the calculated shape are shown in 
Fig. 3. 
(2) The real inner wall boundary shape function 2 
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Fig. 2 Temperatures of the study area 

 

Under this real inner wall boundary shape function, the temperatures 
of the study area are shown in Fig. 4. 

On the basis of the temperatures of 11 measuring points, we solved the 
boundary shape of the inner wall by using the conjugate gradient method. 
When the temperatures met the convergence conditions, we obtained the 
calculated inner wall boundary shape. By comparing the real shape and 
the calculated shape, we noted that the relative error for each 
corresponding point was about 0.1%–2% and the average relative error 
was 0.73%. The real shape and calculated shape are shown in Fig. 5. 

 

 
 

Fig. 3 Real shape and calculated shape 
 

 
 

Fig. 4 Temperatures of the study area 
 

 

 
 

Fig. 5 Real shape and calculated shape 
 

In the two types of real inner wall boundary shape function, all relative 
errors were less than 3%. Thus, we believed that the mathematical model 
we established in this work was accurate. 
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3.3 Effect of the Number of Measuring Points 

We kept the other parameters unchanged, increased the number of 
measuring points (M) from 11 to 21, and recalculated the inner wall 
boundary shape. The results are as follows. 

Under the real inner wall boundary shape function 1, the average 
relative error when M was increased from 11 to 21 changed from 0.83% 
to 0.81%. The real shape and calculated shape are shown in Fig. 6. 

 

 
Fig. 6 Real shape and calculated shape (M=11 and M=21) 

 
Under the real inner wall boundary shape function 2, the average 

relative error when M was increased from 11 to 21 changed from 0.73% 
to 0.66%. The real shape and calculated shape are shown in Fig. 7. 

 

 

Fig. 7 Real shape and calculated shape (M=11 and M=21) 
The results showed that the calculated shapes improved when the 

number of measuring points (M) changed from 11 to 21. That is, the 
average relative errors changed from 0.83% to 0.81% and from 0.73% to 
0.66% under the real inner wall boundary shape functions 1 and 2, 
respectively. Furthermore, all relative errors were less than 3%. Thus, 
increasing the number of measuring points could slightly increase 
calculation accuracy. 

3.4 Effect of Initial Inner Wall Boundary Shape Function 

We supposed that the initial inner wall boundary shape function was 
x=f(y)=0 in the beginning. At this stage, we kept the other parameters 
unchanged and changed the initial inner wall boundary shape function. 
The new initial inner wall boundary shape function is as follows: 
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where q0 is the heat flux intensity of the right side, Wꞏm−2; k is the thermal 
conductivity, Wꞏm−1ꞏK−1; T0 is the temperature of the erosion curve 
surface of the inner wall, K; Ti

c is the temperature measured by the 
thermocouple i, K; and b is the thickness of the x-direction. 

Under the real inner wall boundary shape function 1, the average 
relative error changed from 0.83% to 0.66% when we changed the initial 
inner wall boundary shape function. The real shape and calculated shape 
are shown in Fig. 8. “Calculated shape 1” was calculated on the basis of 

the original initial inner wall boundary shape function (x=f(y)=0), and 
“calculated shape 2” was calculated on the basis of the new initial inner 
wall boundary shape function. 

 

 
Fig. 8 Real shape and calculated shape (two initial inner wall shape 

functions) 
 

Under the real inner wall boundary shape function 2, the average 
relative error changed from 0.73% to 0.74% when we changed the initial 
inner wall boundary shape function. The real shape and calculated shape 
are shown in Fig. 9. “Calculated shape 1” was calculated on the basis of 
the original initial inner wall boundary shape function (x=f(y)=0), and 
“calculated shape 2” was calculated on the basis of the new initial inner 
wall boundary shape function. 

 
Fig. 9 Real shape and calculated shape (two initial inner wall shape 

functions) 
 
The results showed that the calculated shapes remained nearly the 

same when we changed the initial inner wall boundary shape function. 
That is, the average relative errors changed from 0.83% to 0.66% and 
from 0.73% to 0.74% on the basis of the real inner wall boundary shape 
functions 1 and 2, respectively. Furthermore, all relative errors were less 
than 3% under the two initial inner wall shape boundary functions based 
on the two types of real shape function. Thus, the initial inner wall 
boundary shape function had little effect on calculation accuracy. 

4. CONCLUSION 

A mathematical model of the IHCP of blast furnace lining was 
established in this work. After determining the boundary conditions of 
the model, the inverse problem via the conjugate gradient method was 
decomposed into three issues: the direct problem, the sensitivity problem, 
and the adjoint problem. By solving the mathematical model, we arrived 
at the following conclusions: 

(1)  Under the two types of real inner wall boundary shape function, 
the calculated shapes were basically the same as the real shapes. 
All relative errors were less than 3%. Thus, we believed that the 
mathematical model established in this work was accurate. 
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(2)  The calculated inner wall boundary shapes improved when the 
number of measuring points (M) was changed from 11 to 21. That 
is, the average relative errors changed from 0.83% to 0.81% and 
from 0.73% to 0.66% on the basis of the real inner wall boundary 
shape functions 1 and 2, respectively. Furthermore, all relative 
errors were less than 3%. Thus, increasing the number of 
measuring points could slightly increase calculation accuracy. 

(3)  The influence of the initial inner wall boundary shape function is 
studied. When the inner wall boundary shape function is changed, 
the relative error changes under the two kinds of function are 
irregular (0. 83% is reduced to 0.66% and 0.73% is increased to 
0. 74%, compared to the original inner wall boundary shape 
function), and all relative errors are less than 3%, so this paper 
considers that the initial guess curve has little effect on the 
calculation accuracy of the model established in this paper. 
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