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ABSTRACT

The present paper investigates the combined effects of melting phenomenon and viscous dissipation over a steady incompressible mixed convection
boundary layer fluid flow along a vertical plate. Radiation and double dispersion are also taken into consideration. Further effect of homogeneous
chemical reaction of order ’n’ is studied over the non-Darcy porous plate. Continuum equations that characterize fluid flow are transformed to a
set of non linear ordinary differential equations through a suitable similarity transformation. These equations are then solved by MATLAB ’bvp4c’
iterative programming method. As a matter of accuracy and validation, available results are compared with the present study as a special case. Flow
characteristics of the problem are illustrated graphically.
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1. INTRODUCTION

Heat and mass transfer over viscous geometries embedded in porous me-
dia has a considerable interest of many engineering and geophysical ap-
plications such as geothermal reservoirs, process of drying porous solids,
Magnetohydrodynamics(MHD) power generators and underground en-
ergy transport. Considerable literature can be found over combined heat
and mass transfer in free convection boundary layer flow over heated sur-
faces along different geometries. Few researchers (e.g., Gebhart et al.,
1989; Kandasamy et al., 2006; Chaudhary et al., 2006), investigated the
impact of radiation on heat transfer in MHD mixed convection flow with
viscous dissipation and ohmic heating effects. A problem of analyti-
cal conjugate phenomena of heat and mass transfer was examined by
Noor et al. (2012). A discussion on the influence of free convective ef-
fects on Stokes problem when the fluid is driven by applied magnetic
field was focused by Soundalgekar et al. (1979). Effect of align mag-
netic field in a forced convection boundary layer flow was examined by
Seddeek (2002). A study was made over mixed convection flow through
permeable vertical surface in presence of radiation by Aydin and Kaya
(2008).

The unique phenomena used in magma solidification, preparation
of semi conductor materials and the systems where solid-liquid change
materials is melting phenomena. Firstly, in absence of porous medium,
Roberts (1958) examined the steady state effects when ice was placed in
a hot stream of air. Later Epstein and Cho (1976) observed heat transport
in a submerged bodies undergoing melting. Few authors explored the as-

Email: sastry@maths.sastra.edu

pects of the flow with melting phenomena (e.g., Gorla et al., 1999; Cheng
and Lin, 2007). These studies revealed that melting process reduces
the heat transfer through the solid–liquid interface. Effect of melting
on mixed convective flow over a permeable vertical surface was feigned
by Ahmad and Pop (2014). They found dual solution for some spe-
cific values of mixed convection parameter. The results also indicate that
the melting phenomena reduces the heat transfer rate and expedites the
boundary layer separation. Further Sobha et al. (2010) identified the na-
ture of velocity across melting parameter in both aiding and opposing
flows. Also in this study, it is observed that Nusselt number decreases
with melting parameter and increases with increase in thermal dispersion.
Prasad and Hemalatha (2010) examined the combined effects of radiation
and melting over a vertical wall. Radiation effect on heat transfer in a flow
over a vertical surface with uniform surface temperature was noticed by
Hossain and Takhar (1996). Thermal dispersion and radiation effects on
non-Darcy free convection flow through vertical plate were explained by
Abbas et al. (2008). They observed that increasing radiation parameter
enhances the momentum boundary layer thickness. Further Nusselt num-
ber increases with radiation parameter. Melting effect on a convective
heat transfer between a melting body and surrounding fluid was discov-
ered in Tien and Yen (1965). They further noticed that melting retards the
rate of heat transfer.

It is evident from the literature that no work has been carried out
on combined effects of viscous dissipation and melting phenomena in a
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mixed convection boundary layer chemically reacted fluid flow in pres-
ence of radiation over a permeable surface. So, in this paper, these effects
on heat and mass transfer and as well as fluid velocity, temperature and
concentration with in the boundary layer are investigated. The results are
compared with Hemalatha et al. (2015) as a special case and found in
good agreement.

2. MATHEMATICAL ANALYSIS

A problem of mixed convection steady state boundary layer flow through
a vertical surface with melting phenomena is considered. Assume that
the surface forms an interface between solid and liquid phases at the time
of melting inside porous matrix. Plate is kept at constant temperature Tp.
Further the temperatures Ts and T∞ of solid phase and liquid phase far
from the interface and plate respectively are assumed to be constant. Tak-
ing viscous dissipation along with radiation, the boundary layer equations
are framed as

Fig. 1 Physical Model of the Problem (Hemalatha et al., 2015)
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where u, v are velocity components along x, y directions respectively,
cf is the Forchheimer constant, ν is kinematic viscosity of the fluid, g is
acceleration due to gravity, k is permeability of the porous medium, cp is
specific heat at constant pressure, βT is coefficient of thermal expansion,
βC is coefficient of solute expansion, Dsis thermal solute diffusivity, Kn

is chemical reaction rate of order n, ρ is fluid density and C∞ is free
stream concentration, µ is dynamic viscosity of the fluid. The boundary
conditions which govern the fluid flow are

ket
∂T

∂y
= ρ [L+ cs(Tp − Ts)] v, T = Tp, C = Cw, at y = 0 and

u→ u∞, T → T∞, C → C∞ as y →∞ (5)

whereL, cs are latent heat of solid and specific heat of solid phase respec-
tively. Cwis concentration of fluid near the wall and u∞is free stream
velocity. In presence of mechanical dispersion one can write thermal dif-
fusivity ατ = αm + αd where αm is molecular diffusivity and αd =
Dud, is dispersion thermal diffusivity. Further solutal diffusivity Ds =
Dm + Dd where Dm,is molecular solutal diffusivity and Dd = βud, is
dispersion solutal diffusivity. D and β are proportionality constants and
d, is particle mean diameter. The effective thermal conductivity of the
porous medium ket = ατρcp. Assume further the temperature gradient
is sufficiently small within the flow, allows us to represent T 4 as a linear
function of temperature. Then the variation in radiative heat flux based
on Rosseland’s approximation may be modeled as
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where σ̃, is the Stefan-Boltzmanconstant, k∗, is mean absorption coef-
ficient. Define a stream function ψ = f(η)
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Fig. 2 Melting and viscous dissipation effects on velocity profile for
Ra/Pe = Fr = Nr = 2, Nb = γ = γ∗ = Le = n = Γ = 1

Further introduce another set of non-dimensional quantities, temper-
ature and concentration, as

θ(η) =
T − Tp
T∞ − Tp

, φ(η) =
C − Cw
C∞ − Cw

(9)

The equations (6)–(9) transform equations (2)–(5) in the following un-
dimensional form

f ′′(1 + Frf
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Fig. 3 Melting and viscous dissipation effects on temperature profile for
Ra/Pe = Fr = Nr = 2, Nb = γ = γ∗ = Le = n = Γ = 1
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Fig. 4 Melting and thermal dispersion effects on velocity profile for
Ra/Pe = Fr = Nr = 2, Nb = γ∗ = Le = n = Γ = Ec = 1

along with relevant boundary conditions

f(0) + 2Mrθ
′(0) = 0, θ(0) = 0, φ(0) = 0

and
f ′(∞) = 1, θ(∞) = 1, φ(∞) = 1 (13)

where Ra =
kgβT ρ(T∞−Tp)

ναm
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u2
∞
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;

non-Darcy parameter Fr =
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√
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ν

; thermal dispersion parameter γ =
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; buoyancy parameter Nb = Cw−C∞
Tp−T∞ ; radiation parameter Nr =
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p
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; modified chemical reaction parameter
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u∞
and melting parameter Mr =

cf (T∞−Tp)

L+cs(Tp−T0)
.

Nusselt and Sherwood numbers witness the nature of heat and mass trans-
fer respectively in a fluid flow and are defined by

Nux =
xqw(x)

ket(Tp − T∞)
(14)

Shx =
xm̂(x)

Ds(C∞ − Cw)
(15)
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Fig. 5 Melting and thermal dispersion effects on velocity profile for
Ra/Pe = Fr = Nr = 2, Nb = Ec = γ∗ = Le = n = Γ = 1
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Fig. 6 Melting and order of chemical reaction effects on velocity profile
for Ra/Pe = Fr = Nr = 2, Nb = γ = γ∗ = Le = Ec =
Γ = 1

where
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provide heat and mass flux at the wall respectively. Equations (8), (9),
(14)–(17) yield the following dimensionless local Nusselt and Sherwood
numbers respectively.
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3. NUMERICAL SOLUTION WITH MATLAB-BVP4C SOLVER

3.1. Introduction to bvp4c

BVP4C enforces a collocation method for the solution of a boundary
value problem (BVP) of the form y′ = f(x, y, c) subject to general non–
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Fig. 7 Melting and order of chemical reaction effects on concentration
profile for Ra/Pe = Fr = Nr = 2, Nb = γ = γ∗ = Le =
Ec = Γ = 1
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Fig. 8 Mixed convection along with Melting effects on temperature for
Fr = Nr = 2, Nb = γ = γ∗ = Le = n = Γ = 1

linear, two point boundary conditions g(y(a), y(b), c) = 0 where a ≤
x ≤ b. The methodology involves the following two key stages(Jacek
and Lawrence, 2001).
Stage1. Approximate solution S(x)
A cubic polynomial function S(x) is defined over each interval [xn, xn+1]
of each mesh a = x0 < x1 < −−− < xn = b, satisfying the boundary
conditions g(S(a), S(b)) = 0. Also S(x) satisfies the collocates at both
ends and the mid points of each sub interval. S′(xn) = f(xn, S(xn))

S′(
xn+xn+1

2
) = f

[
xn+xn+1

2
, S(

xn+xn+1

2
)
]

and

S′(xn+1) = f(xn+1, S(xn+1)). These are solved iteratively by Simp-
son’s method. With modest assumptions, S(x) may be a fourth order ap-
proximation to an isolated solution y(x), ‖|y(x)− S(x)‖| ≤ Ch4 where
h is the maximum of step sizes hn = xn+1−xn andC is constant. Once
S(x)is evaluated on a mesh with bvp4c, it can be found inexpensively at
any x in [a,b] with ’bvpval’ function.
Stage2. Residual function r(x)
To control the error, define the residual in ordinary differential equation
as r(x) = S′(x) − f [x, S(x)] with boundary condition g(S(a), S(b)).
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Fig. 9 Mixed convection and order of chemical reaction effects on con-
centration profile for Mr = Fr = Nr = 2, Nb = γ = γ∗ =
Le = Ec = Γ = 1

If the residuals are uniformly small, S(x) is a good solution.

3.2. Numerical solution to boundary layer equations with bvp4c

The set of coupled non–linear ordinary differential equations (10)–(12)
are reduced to a set of first order differential equations as follows:
f ′1 = f2; f ′2 = −

(
Ra
Pe

) (
f4+Nbf6
1+Frf2

)
;

f ′3 = f4; f ′4 = −
(

1

1+γf2+( 4
3

)Nr

) (
1
2
f1f4 + γf ′2f4 + PrEcf2

2

)
;

f ′5 = f6; f ′6 = −
(
Le[γ∗f6f ′2+ 1

2
f1f6+Γfn5 ]

1+Leγ∗f2

)
where f1 = f, f2 = f ′,f3 = θ, f4 = θ′, f5 = φ, f6 = φ′ Fur-
ther the boundary conditions (13) are noted as f1(0) + 2Mrf4(0) =
0, f3(0) = 0, f5(0) = 0 and f2(∞) = 1, f3(∞) = 1, f5(∞) = 1
The absolute and relative errors of tolerance on the residuals are set by
options = bvpset(′AbsTol′, 1e− 10,′RelTol′, 1e− 10)
Initial value problems are solved by ’bvpinit’
solinit = bvpinit(linspace(0, 10, 10), [0 10]).
The following code executes the boundary value problem along with
boundary conditions sol = bvp4c(file_ode, file_bc, solinit, options)
dydx = [ y2

− (Ra/Pe) ∗ (y4 +Nb ∗ y6)/(1 + Fr ∗ y2)
y4

(−0.5∗y1∗y4+γ∗y4∗(Ra/Pe)∗(y4+Nb∗y6)/(1+Fr∗y2)−Pr∗
Ec∗((Ra/Pe)∗(y4+Nb∗y6)/(1+Fr∗y2))2)/(1+γ∗y2+(4/3)∗Nr)

y6

(−0.5 ∗ y1 ∗ y6 + γ∗ ∗ y6 ∗ (Ra/pe) ∗ (y4 +Nb ∗ y6)/(1 +Fr ∗
y2) + Γ ∗ yn5 )/(γ∗ ∗ y2 + (1/Le))];
Residual is calculated by the following syntax: res = file_bc(ya, yb)
Advantages:
1. bvp4c is not a shooting method
2. The bound h hold for all x in [a, b]
3. Once S(x) is found on a mesh with bvp4c, it can be computed inexpen-
sively at any value of x in [a, b]
4. bvp4c is based an algorithms that are credible even when the initial
mesh is very poor, yet furnish the correct results as h→ 0
5. The solution y(x) is approximated over the whole interval [a, b] and
the boundary conditions are taken into account at all times, which is not
in the case of shooting method.
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Fig. 10 Heat transfer against Melting parameter for Fr = Nr = 2, Nb =
γ = γ∗ = Le = n = Γ = 1

4. RESULTS AND DISCUSSION

In the present study, the physics of the problem is mainly focused on the
combined effect of viscous dissipation and melting parameter on fluid
characteristics. Prandtl number is fixed as 6.2 for comparative study. Fig.
2 depicts the impact of melting parameter together with Eckert number
on velocity profile. It is observed that increasing the value of melting pa-
rameter shows an increment in both momentum boundary layer thickness
and velocity profile. Further,for a fixed Mr , Eckert number enhances the
velocity profile.

The theoretical phenomena is as follows: Kinetic energy will be con-
verted to internal energy by work done against viscous stream represent-
ing viscous dissipation. The heat developed during this process enhances
the velocity of the fluid particles. So more viscous dissipation triggers
more velocity. From Fig. 3, descents are found in both thermal boundary
layer and temperature profiles on increasing melting parameter. This may
be due to the convective heat transfer is inhibited from liquid–saturated
porous medium to the solid plate. A similar profile is observed in the
case of Eckert number too. Effect of thermal dispersion on momentum
and thermal boundary layers are notified in Fig. 4 and Fig. 5. Boundary
layer thickness decreases with increase in the value of thermal disper-
sion. Also fluid particles attain momentum by increasing the dispersion.
Further increasing thermal dispersion shows a decrement in fluid concen-
tration level.

The influence of order of chemical reaction on velocity and concen-
tration profiles are witnessed in Fig. 6 and Fig. 7. Increasing chemical
reaction parameter reduces the fluid velocity and enhances the concen-
tration profiles. Since it is known that higher order reactions will pro-
duce a kind of resistance and hence momentum will be reduced. Fig.
8 shows the effect of temperature on mixed convection along with vis-
cous dissipation and melting parameter. Temperature is enhanced with
increasing mixed convection parameter. The decrement in temperature
profiles on enhancing Eckert number are more dominant in forced con-
vection (Ra/Pe = 1). In presence of melting these variations are getting
lower.

Fig. 9 depicts the intensity of chemical reaction on concentration
profiles at various convection parameters. It is noticed that increasing
mixed convection parameter yields an increase in concentration profiles.
Further an increase in order of reaction will cause more momentum in
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Fig. 11 Mass transfer against melting parameter for Fr = Nr = 2, Nb =
γ = γ∗ = Le = n = Γ = 1
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Fig. 12 Nusselt number against melting parameter for Fr = Nr =
2, Nb = γ = Le = n = Γ = 1

the molecules so that species will diffuse more rapidly yielding increase
in concentration levels. The same can be viewed from this figure.

Fig. 10 renders the effect of melting on Nusselt number. It is evident
from this figure that a fall in heat transfer occurs with increase in melting
parameter. For a fixed Mr , it is observed that viscous dissipation resists
the rate of heat transfer whereas mixed convection assists. Fig. 11 shows
the effect of Sherwood number, a quantitative measure of mass transfer,
on melting. In absence of melting(Mr = 0), viscous dissipation has no
effect on mass transfer in the case of mixed convection, but the same is
notable for forced convection(Ra/Pe = 1, upper stream).

Sherwood number decreases with increasing melting parameter. Also
we found the mass transfer is high in inviscid flows(Ec = 0). The effect
of solute dispersion on heat and mass transfer is described in Fig. 12 and
Fig. 13 respectively. Nusselt number increases with increasing solute
dispersion. This is very significant in a mixed convective viscous fluid
(Ra/Pe = 2, Ec = 1). Fig. 13 points out the solute dispersion en-
hances the local Sherwood number. It is observed from the same figure
that this variation is more significant in presence of dispersion. Table1
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Table 1 Comparision of f ′(0)with previous work for Fr = Nr = Nb =
γ = γ∗ = Le = Ec = 0

Ra/Pe f’(0) (Hemalatha et al., 2015) f’(0)(present)
0.0 1.000 1.000
1.4 2.400 2.400
3.0 4.000 4.000
8.0 9.000 9.000
10.0 11.00 11.00
20.0 21.00 21.00

and Table2 show the agreement of the results with previous work in ab-
sence of viscous dissipation.

5. CONCLUSIONS

A two dimensional incompressible viscous fluid over a flat vertical plate
is studied under chemical reaction and melting effect. The flow equations
are numerically solved by means of MATLAB bvp4c solver. Results are
obtained graphically. Melting causes an increase in velocity and decrease
in temperature profiles. Viscous dissipation enhances velocity and re-
duces temperature profiles. Concentration decreases by increasing ther-
mal dispersion. Solute dispersion increases both heat and mass transfer
rates.
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NOMENCLATURE

C Concentration of the fluid
cf Forchheimer constant
cp specific heat
cs Specific heat of solid phase
cw Concentration of the wall
Dd Dispersion solutal diffusivity
Dm Molecular solutal diffusivity
Ds Thermal solute diffusivity
d Particle mean diameter
g Acceleration due to gravity
Kn Chemical reaction rate of order n

Table 2 Comparision of θ′(0)with previous work for Fr = Nb = γ =
γ∗ = Le = Ec = 0

Ra/Pe θ′(0) (Hemalatha et al., 2015) θ′(0)(present)
0.0 0.2706 0.2706
1.4 0.3801 0.3801
3.0 0.4745 0.4746
8.0 0.6902 0.6901

10.0 0.7594 0.7594
20.0 1.0383 1.0383

k Permeability of porous medium
ket Effective thermal conductivity
k∗ Mean absorption coefficient
L Latent heat of solid
Qr Radiative heat flux
Ra Rayleigh number
Pe Peclet number
T Temperature of the fluid
Tp Temperature of the plate
Ts Temperature of solid phase far from interface
(u, v) Velocity components along x,y axes respectively
Greek Symbols
αT Thermal diffusivity
αm Molecular diffusivity
αd Dispersion thermal diffusivity
βT Coefficient of thermal expansion
βC Coefficient of solute expansion
η Similarity variable
ρ fluid density
µ dynamic viscosity
ν Kinematic viscosity
σ̃ Stefan Boltzman constant
Subscripts
∞ ambient enviroment
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