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ABSTRACT 

This work concentrates on the effects of homogeneous-heterogeneous chemical reactions on MHD boundary layer flow of Casson fluid over a 
stretching surface. Cattaneo-Christov heat flux model is considered instead of classical Fourier’s law to explore the heat transfer phenomena. 
Appropriate similarity transformations are used to convert the governing partial differential equations into a system of coupled non-linear differential 
equations.  The resulting coupled non-linear differential equations are solved numerically by using the fourth order Runge-Kutta method with 
shooting technique.  The impact of significant parameters on velocity, temperature, concentration, skin friction coefficient and the Nusselt number 
are presented graphically and in tabular form. Our computations disclose that fluid temperature has inverse relationship with the thermal relaxation 
time. Also, the strength of homogeneous and heterogeneous parameters has no effect on the skin friction coefficient and Nusselt number. 
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1. INTRODUCTION 

In our daily life, we come across many non-Newtonian fluids such as 
tomato ketchup, shampoo, sugar solutions, paints, certain oils, 
lubricants and so on. The analysis of non-Newtonian fluids is 
noteworthy because of various industrial and engineering applications. 
Such fluids are encountered in the process of manufacturing coated 
sheets, foods, drilling muds, cosmetic products, dilute polymer 
solutions, polymeric melts etc. For instance, if one uses a non- 
Newtonian fluid as the coolant or heat exchangers, the required 
pumping power may be substantially reduced. Therefore, the 
fundamental analysis of the flow field of non-Newtonian fluids in a 
boundary layer is a vital part in the study of fluid dynamics and heat 
transfer.  A single constitutive equation cannot describe all the 
properties of non-Newtonian fluids. These fluids are complex in nature 
so, several non-Newtonian fluids models have been recommended such 
as Viscoplastic (Hassan et al. 2013), Bingham plastic (Kleppe and 
Marner 1972), Brinkman type (Zakaria et al. 2013), power law 
(Olajuwon 2009), Oldroyd-B (Khan et al. 2012) and Walter-B (Khan et 
al. 2014) models. This is due to the versatility of fluid characteristics in 
nature. Although much information is available on the boundary layer 
flow of viscous fluids, such trails for non- Newtonian fluids are few. 
Actually, in non-Newtonian fluids, the derived differential equations 
are more nonlinear than for a viscous fluid. To find the solution of such 
equations is not an easy job. In the category of non-Newtonian fluids, 
Casson fluid has distinct features. Motivated by the versatility of fluid 
characteristics the Casson fluid model has considered. 

Casson (Casson 1959) introduced a non-Newtonian model which 
was generally known as Casson model, which is utilized to identify the 
non-Newtonian fluid behaviour. Examples of Casson fluid include jelly, 
tomato sauce, honey, concentrated fruit juices etc.  In the previous 
literature, the Casson fluid model is occasionally stated for many 
materials that it fit rheological data better when compared to the general 
viscoplastic models. Casson fluid is elucidated as a shear thinning 
liquid which is supposed to have an infinite viscosity at zero rate of 
shear, a yield stress below which no flow occurs, and a zero viscosity at 
an infinite rate of shear (Dash et al. 1996).  A Casson fluid exhibits a 
yield stress. If the applied shear stress is less than the yield stress on the 
fluid, it behaves like a solid, otherwise, it starts to move.  When blood 
flows through small vessels at low shear rates, the blood flow is 
described by Casson fluid model.  The unsteady heat transfer flow for a 
Casson fluid over a moving flat plate was investigated by Mustafa et al. 
(2011) by using homotopic method and also reported that by increasing 
Casson parameter the surface shear stress and surface heat transfer are 
improved.  The   non-Newtonian fluid   flow over a stretching sheet has 
gained interest because of their extensive applications in industrial 
manufacturing such as wire drawing, drawing of plastic films, glass 
fiber, paper production, hot rolling and manufacturing of polymeric 
sheets. Crane (1970) was the first who describe the analytical solution 
for a stretching sheet in laminar boundary layer flow. The effect of 
increasing the Casson parameter is to suppress the velocity field and the 
temperature is enhanced over a nonlinearly stretching surface was 
reported by Mukhopadhyay (2013). Bhattacharyya (2013) explores that 
similar to Newtonian case, the self-similar solution is of dual nature in 
some situations both cases shrinking sheet and also for stretching sheet   
the solution is always unique in the boundary layer stagnation point 
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flow of Casson fluid. Also, it is found that the velocity and thermal 
boundary layer thicknesses are larger for Casson fluid than that of 
Newtonian fluid.  Swati Mukhopadhyay et al. (2013) investigated 
Casson fluid flow over an unsteady stretching surface where the rate of 
cooling can be increased by using the Prandtl number in conducting 
flows. Some researchers have examined Casson fluid flow over 
stretching surface. 

Heat transfer dynamics is a significant fact in the nature which 
occurs due to temperature difference between two bodies or within the 
same body. The dynamics of heat transfer has enormous applications in 
engineering and industrial processes. For example, nuclear reactor 
cooling, wire drawing, cooper materials, cooling of electronic devices, 
heat conduction in tissues, refrigeration, heat pumps, energy 
production, etc. The heat transfer phenomena can interpret successfully 
by the Fourier's law of heat conduction law. But the unfavorable 
circumstance   for the temperature field is that it produces a parabolic 
energy equation. Cattaneo (1948) introduced the thermal relaxation 
time in the Fourier's model in which the   propagation speed of heat 
disturbance is finite.  Later, Christov (2009) further modified the 
Cattaneo model by replacing the ordinary derivative with the Oldroyd’s 
upper-convected derivative named as Cattaneo - Christov heat flux 
model, which successful preserves the material-invariant formulation.    
Mustafa (2015) suggested the uniqueness of Cattaneo-Christov heat 
flux in the rotating flow of Maxwell fluid over a linear stretching sheet. 
Further fluid temperature has inverse relationship with the relaxation 
time for heat flux and with the Prandtl number. Cattaneo-Christov heat 
flux model is imposed to disclose the heat transfer characteristics of 
variable thermal conductivity viscoelastic fluid over a stretching sheet 
with variable thickness was investigated by Hayat et al. (2015). 
Cattaneo-Christov heat flux model for Sisko fluid flow past a 
permeable non-linearly stretching cylinder was explore by Malik et al. 
(2016). Further, it was found that both the velocity and temperature 
diminished with increasing values of the power-law index and 
stretching parameter whereas, the temperature was found to be 
inversely proportional to the thermal relaxation time. Hayat et al. 
(2016) scrutinized the flow of Jeffrey fluid for Cattaneo-Christov heat 
flux Model, and found that the stretching rates ratio has opposite impact 
on temperature profile. More recently, researchers (Hayat et al (2016), 
Khan et al (2017),Tasawar Hayat et al (2018)) studied the Cattaneo-
Christov heat flux model on different channels.  

 MHD problems occur in several situations like the prediction 
of space weather, damping of turbulent fluctuations in semiconductor 
melts in crystal growth, measurement of flow rates of beverages in food 
industry. Studies on heat transfer of non–Newtonian fluid flows on a 
stretching sheet with MHD find many applications in engineering and 
industry. For example, in the extrusion of polymers through a slit die 
for the manufacture of plastic sheets, the sheet is sometimes stretched. 
In these processes, the final product properties mainly depend on the 
rate of cooling. If such a sheet in an electrically conducting Casson 
fluid under the influence of a magnetic field is drawn, the rate of 
cooling can be controlled, so that the end product can be obtained with 
the desired quality.  Bala Anki Reddy et al. (2016) examined the 
numerical Study of MHD Boundary Layer Slip Flow of a Maxwell 
Nanofluid over an exponentially stretching surface with convective 
boundary condition. Also, found that the thermal boundary layer 
thickness enhances with Brownian motion and thermophoresis 
parameters. Bala Anki Reddy and Bhaskar Reddy (2011) analyzed 
thermal radiation effects on an exponentially stretching sheet with 
MHD. The results obtained by Kirubhashankar (2015) on Casson fluid 
flow and heat transfer over an MHD unsteady porous stretching surface 
may be helpful for possible technological applications in liquid based 
systems involving stretchable materials.  Bhattacharyya et al. (2013) 
studied the analytic solution for MHD boundary layer flow of Casson 
fluid over a stretching/shrinking sheet with mass transfer the magnetic 
field changes the behavior of the entire flow dynamics in the shrinking 
sheet case and also has a major influence in the stretching sheet case. 
Khalid et al. (2015) investigated unsteady MHD flow of Casson fluid 

past over an oscillating vertical plate embedded in a porous medium 
and found that when the Casson parameter is large enough ie., β→∞, 
the non-Newtonian behaviour disappear and the fluid purely behaves 
like a Newtonian fluid. Thus, the velocity boundary layer thickness for 
Casson fluid is larger than the Newtonian fluid. Many researchers have 
been attracted by Casson fluid model and discussed the boundary layer 
flow problem of Casson fluid with various physical effects such as 
magnetic field and stretching sheet [28, 29, 30, 31]. 

Most of the Chemical reactions involve either heterogeneous or 
homogeneous processes. Some reactions are very slow or not at all, 
except in the presence of catalyst. A complex interaction lies between 
the homogeneous and   heterogeneous reactions which is incorporated 
in the production and consumption of reactant species at different rates 
on the fluid and also on the catalytic surfaces, such are happened in fog 
formation and dispersion, food processing, manufacturing of polymer 
production, groves of fruit trees, moisture over agricultural fields, 
equipment design by chemical processing, crops damage via freezing 
etc.  Some kind of chemical reaction is observed if there is a foreign 
mass in air or water. During a chemical reaction heat is generated 
between two species (Bird et al., 2006). Generally, the reaction rate 
depends on the concentration of the mass itself.  If the rate of reaction is 
directly proportional to concentration itself (Cussler 1998), then it is 
said to be first order.  Mukhopadhyay and Gorla (2014) analysed a 
chemically reactive species of a Casson fluid towards an exponentially 
stretching surface by numerical method and examined the first order 
chemical reaction and resolved that by the enhancement of the Casson 
parameter, there is a suppress in the velocity field and the concentration 
is enhanced with rising Casson parameter. Micropolar fluid flow of a 
homogeneous-heterogeneous reactions from a permeable stretching or 
shrinking sheet in a porous medium was analyzed by Shaw et al. 
(2013). Bala Anki Reddy (2016) studied the magnetohydrodynamic 
flow of a Casson fluid over an exponentially inclined permeable 
stretching surface with thermal radiation and chemical reaction and 
revealed as the concentration decreases with increase in the value of 
chemical reaction parameter and solutal buoyancy parameter. Srinivas 
et al. (2014) presented an analysis which will be of special interest for 
clinicians who engaged in the treatment of radiation and chemical 
therapy for cancer and other tumor related diseases. Mariam Sheikh and 
Zaheer Abbas (2015) reported Homogeneous–Heterogeneous reactions 
of Casson fluid due to a stretching/shrinking surface with uniform 
suction and slip effects. 

Motivated by the above-mentioned studies, the aim here is to 
investigate the impact of Cattaneo-Christov heat flux flow of a non-
Newtonian fluid over a stretching surface. Mathematical modelling is 
presented using constitutive equations of a Casson fluid. An aligned 
magnetic field and chemical reaction effects are taken into account. The 
present study is structured in the following fashion. The mathematical 
formulation is completed in the next section. Series solutions by using a 
shooting technique with Runge–Kutta method of order four are 
developed in the subsequent sections. Then convergence analysis and 
discussion are presented. Important results are summarized in the last 
section. To the best of author’s knowledge, such study has not been 
reported earlier in the literature. 

 

2. MATHEMATICAL FORMULATION 
Consider the steady two-dimensional flow of an electrically conducting 
and viscous incompressible Casson fluid flow over a stretching surface. 
The x-axis is taken along the stretching surface in the direction of the 
motion while the y-axis is perpendicular to the surface.  The stretching 
surface has the linear velocity ( ) wU x mx  where m > 0 is the 

stretching sheet, m = 0 is for the static sheet and m < 0 is for the 
shrinking sheet, respectively. We assume that the rheological equation 
of state for an isotropic and incompressible flow of a Casson fluid is as 
(Mukhopadhyay 2013, Pramanik 2015): 
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where B is the plastic dynamic viscosity of the non-Newtonian fluid, 

yP is the yield stress of the fluid, ,ij ije e  ije is the 

( , )thi j component of the deformation rate and c is the critical value 

of this product based on the non-Newtonian model. We also consider a 
simple model for the interaction between a homogeneous (or bulk) and 
heterogeneous (on sheet) reaction involving the two-chemical species A 
and B in a boundary layer flow as stated by Chaudhary and Merkin 
(1995) of the following form: 

 2 3 ,A B B   rate =
2

ck ab                 (1) 

 ,A B  rate = sk a                                                                       (2) 

 
where a and b are concentrations of the chemical species A and B 
respectively, and kc, ks are the rate constants. We also assume that both 
reaction processes are isothermal. Under these assumptions and 
boundary layer approximations, the governing equations can be written 
as: 
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The corresponding boundary conditions are  
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where u and v are the velocity components in the x and y directions 
respectively,  is the Casson parameter,

 
 is the electrical 

conductivity, 0B is the uniform magnetic field,  is the density of the 

fluid,  is the aligned angle, DA is the diffusive species coefficient of A 

and DB is the diffusive species coefficient of B, L is the velocity slip 

parameter, wv is the constant mass flux with wv  <0 for suction and 

wv  > 0 for injection (blowing), T  is the temperature of the fluid, wT is 

the surface temperature of the fluid, ue is the  free stream velocity, c is 
the constant and q is the heat flux satisfies the following relationship:  
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Here  is the relaxation time of heat flux, k is the thermal conductivity 
of the fluid and V is the velocity vector. It may be noted that when 

0  in Eq. (9), the problem will be reduced to Fourier’s heat 
conduction law.  Eliminating q from Eqs. (5) and (9) gives: 
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Now, introducing the following transformation 
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Where  is the similarity variable and ( , )x y  is the stream function 

satisfying , .u v
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Substituting (11) into the Equations (4), (6), (7) and (10), we get the 
following set of ordinary differential equations 
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number. It is assumed that the diffusion coefficients of chemical species 
A and B to be of a comparable size. This argument provides us to make 
further assumption that the diffusion coefficients DA and DB are equal 

i.e., 1  and thus: 
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Also, the quantity of physical interest in this problem is the skin friction 
coefficient and heat transfer rate at the sheet which are defined by  
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Using the similarity variables in Eq. (20), we get  
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The above Skin-friction coefficient and local Nusselt number shows 
that its variation depends on the variation of the factors 
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3. NUMERICAL PROCEDURE 

        The set of nonlinear coupled differential equations (12), (13) and 
(18) subject to the boundary conditions (16) and (19) are solved 
numerically by using Runge-Kutta fourth order technique along with 
shooting method.  For this, we transform the non-linear ordinary 
differential equations (12), (13) and (18) into a system of first order 
differential equations as follows: 
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The boundary conditions (16) and (19) becomes 
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In order to integrate (22)-(24) as an initial value problem, we require 
values of (0)p i.e., (0)f and (0)q i.e., (0).  But no such values are 

given at the boundary. So, the suitable guesses values for (0)f  and 

(0) is chosen and then integration is carried out. The most important 

factor of the shooting method is to choose an appropriate finite value 
of  . In order to determine  for the boundary value problem, start 

with some initial guess values for some particular set of physical 
parameters to obtain (0)f  and  (0).  The solving procedure is 

repeated with another large value of  until two successive values 

of (0)f and (0) differ only by the specified significant digit. The 

last value of  is finally chosen to be the most appropriate value of the 

limit  for that particular set of parameters. The value of  may 

change for another set of physical parameters. Once the finite value of 

 is determined, then the integration is carried out. Compare the 

calculated values for ,f  and  at 10 (say) with the given 

boundary conditions (10) 0, (10) 0  f  , (10) 0 and adjust the 

estimated values, (0)f  and (0) to give better approximation to the 

solution. We take the series values for (0)f  and (0) apply the 

fourth order Runge-Kutta integration with step size h = 0.01 (Pramanik 
[42]). The above procedure is repeated until to get the results up to the 
desired degree of accuracy 610 .

 
 

4. RESULTS AND DISCUSSION 
In order to analyze the results, numerical computations have been 

carried out using the method described in the previous section for 
various values of  Magnetic parameter M, Aligned angle ξ, Casson 
parameter β,  stretching parameter λ, Prandtl number Pr, suction 
parameter S, slip parameter S  , thermal relaxation time γ, Schmidt 
number Sc, measure of the strength of the homogeneous reaction K,   
and measure of the strength of the heterogeneous reaction Ks on 
velocity, temperature and species concentration distributions is 
presented in Figs. 1-11. 

Figure 1 illustrates that the velocity decreases with the increase of 
magnetic parameter M for both stretching and shrinking sheet.  The 
same effect is observed for both suction and blowing. This is due to the 
fact that an increase in magnetic parameter signifies an enhancement of 
Lorentz force, thereby reducing the magnitude of the velocity.  The 
variations in the velocity profiles for changes in the aligned angle  are 

presented in Figure 2.   It can be inferred from this figure, that an 
increase in the aligned angle diminishes the velocity.  It may take place 
due to the reason that an increase in the aligned angle strengthens the 
applied magnetic field. Generally, a raise in the magnetic field produce 
an opposite force to the flow, called Lorentz force. This force has 
tendency to reduce the velocity boundary layer thickness. Also, 
observed the same effect for stretching and shrinking sheet. 

Figure 3 depicts the variation of velocity distribution for different 
values of Casson parameter .   It can be noticed that the velocity of the 

boundary layer reduces with increasing values of Casson parameter i.e., 
the decreasing yield stress (the fluid behaves as Newtonian fluid when 
Casson parameter increases). The decreasing nature of the momentum 
boundary layer thickness with increasing β is noted. However, the 
thermal boundary layer thickness enhances with increasing .   

The effect of the velocity slip parameter Sν on the fluid velocity is 
presented in Figure 4.  It can be observed that an increase in the 
velocity slip enhances the velocity for the shrinking sheet.  With 
stretching of the sheet, the retracting forces reduce momentum 
development and cause deceleration in the boundary layer flow i.e., 
reverse trend is observed for the stretching and blowing cases.  

Figure 5 portrays the behaviour of Prandtl number on the thermal 
boundary layer   for opposing, assisting and steady state cases.  From 
this plot, it is evident that the thickness of the thermal boundary layer 
decreases with an increase in the value of the Prandtl number.  For all 
values of Prandtl number the wall temperature gradient is negative, 
which means that the heat is always transferred from the surface to the 
ambient fluid.  Prandtl number signifies the ratio of momentum 
diffusivity to thermal diffusivity. Fluids with least Prandtl number will 
possess higher thermal conductivities (and thicker thermal boundary 
layer structures), so that heat can diffuse faster from the sheet faster 
than for higher Pr fluids (thinner boundary layers). The suitable Prandtl 
numbers are quite essential in the industrial processes, because they are 
used to control the heat transfer rate during the final product. 

In Figure 6 the impact of temperature on the thermal relaxation 
parameter is sketched. This figure depicts that the thermal boundary 
layer thickness decreases as temperature increases. It is due to the fact 
that as we increase the thermal relaxation parameter, particles of the 
material require more time to transfer heat to its neighbouring particles. 
Specifically, we can say that for higher values of thermal relaxation 
parameter material shows a non-conducting behaviour which is liable in 
declining the temperature distribution. Further it is also noted that for  
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γ =0 heat transfers promptly throughout the material. The Cattaneo-
Christov heat flux model is reduced to Fourier’s law of heat conduction 
when γ=0. 
    Figure 7 displays the effect of aligned angle on temperature profiles. 
It is evident from figure that the temperature overshoot with an increase 
in aligned angle. It is due to the fact that a raise in magnetic field 
parameter enhances the thermal boundary layer thickness. 
The effects of the Schmidt number on the concentration are displayed in 
Figure 8. It is noted that for larger Schmidt number there is an increase 
in the behaviour of concentration profile for stretching case and a 
contradiction is observed for shrinking case. The Schmidt number Sc is 
the ratio of a viscous diffusion rate to a molecular diffusion rate. From 
this figure, it is observed that for a fixed molecular diffusion rate, the 
enhance in Schmidt number is to enhance the viscous diffusion of the 
reactants rate, which reduces the fluid velocity and leads to increase the 
concentration of reactants. 

Figures 9 and 10 elucidate the variations of homogeneous and 
heterogeneous reactions (K, Ks) on the concentration profile. We infer 
from these figures that there is a decrease in concentration when K and 
Ks increased. As more chemical reactants are consumed during the 
strengths of homogeneous and heterogeneous reactions are increased 
which causes the concentration profile to decrease. The concentration 
boundary layer of the reactants is growing with η in both cases and after 
a definite value of η, the homogeneous and heterogeneous reactions 
have no effects on the concentration of the reactants i.e. they all 
coincide. Because near the surface homogeneous and heterogeneous 
reactions reduces the concentration profile but away from the surface 
with an increase in K and Ks diffusion reduces and less diffused 
particles enhance the concentration. 

Figure 11 represents the effect of aligned angle on concentration 
profiles. It is evident from figure that increase in aligned angle slightly 
decreases the concentration profiles of the fluid. This parameter help to 
reduce the concentration boundary layer thickness. A slight decrement 
is observed in the concentration boundary layer of the reactants with η 
and after a certain value of η, the aligned angle has no effect on the 
concentration of the reactants i.e. they all coexist. 
Table 1 shows the comparative values of skin friction coefficient and 
Sherwood number for various values of , M, , Pr,  , λ, Sν, Ks, K 

and S.  Magnitude of  0f  related to skin-friction coefficient and g(0) 

Sherwood number decreases with increasing Casson parameter   , 

magnetic parameter M and aligned angle  .  The thermal relaxation 

parameter  has no effect on  0f  but it two fold the values of g(0).  
The stretching parameter λ has inverse relationship with  0f and 

proportional to g(0) . An increase in the velocity slip parameter Sν 
increases  0f  and a slight decrease is observed with g(0). The 

strength of homogeneous and heterogeneous parameters has no effect 
on the skin friction coefficient and Sherwood number. The suction 
parameter S is proportional to both  0f  and g(0). 

 
5. CLOSING REMARKS 

    We explore the properties of the Cattaneo-Christov heat flux model 
for a two-dimensional hydrodynamic boundary layer flow of a Casson 
fluid flow over a stretching surface. Impacts of homogeneous and 
heterogeneous reactions are also accounted. The key points are listed 
below: 
 The velocity field decreases with an increase in magnetic 
field, aligned angle and casson parameter. 
 Increasing values of Prandtl number, thermal relaxation 
parameter corresponds to low temperature. A reverse trend is observed 
for aligned angle. 
 Increasing the values of the strength of homogeneous and 
heterogeneous parameters and aligned angle decrease the wall 
concentration. 
 

 The strength of homogeneous and heterogeneous parameters 
has no effect on the skin friction coefficient and Nusselt number. 
 The present consideration for the Newtonian fluid case be 
recovered by choosing γ = 0. 
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Fig. 1 Velocity profiles for M
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Fig. 2 Velocity profiles for 

 

Fig. 3 Velocity profiles for 
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Pr = 0.72, 1.0, 1.5 
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Fig. 5 Temperature profiles for Pr  

Fig. 4 Velocity profiles for Sv
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  = 0.1, 0.2, 0.3 

Fig. 6 Temperature profiles for    

 
Fig. 7 Temperature profiles for    
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Sc = 0.22, 0.6, 0.78 

Fig. 8 Concentration profiles for Sc  
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Fig. 9 Concentration profiles for K  
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Table 1 The values of skin friction coefficient and Nusselt number. 
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