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ABSTRACT 

The present study deals with the computational analysis on an electrically conducting magneto viscoelastic fluid over a circular cylinder. Prescribed 
partial slip effects are also taken into account. The governing physical problem is tackled numerically by using the highly efficient and reliable Keller 
box algorithm. Impact of sundry physical parameters on physical quantities of interest are evaluated. The influence of Williamson viscoelastic fluid 
parameter, magnetic body force parameter, Thermal and velocity (hydrodynamic) slip parameters, stream wise variable and Prandtl number on 
thermos-fluid characteristics are studied graphically.  The model is relevant to the simulation of magnetic polymer materials processing.  
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1. INTRODUCTION 

Recent era is transferring of heat through lubricants due to circular 
cylinder plays major role in the extrusion process of fibre technology, 
making of polymer sheets and plastic films, manufacturing paper, glass 
blowing, spinning of metals and plastic films, etc. Hunegnaw and 
kishan (2014) discussed the effects of variable viscosity on MHD flow 
past a stretching sheet in porous medium. Over an exponentially 
stretching sheet, the slip effects on MHD flow is analyzed by Hayat et 
al. (2016) Swati and Anuar (2012) explained in detail regarding the 
Convection flow past stretching cylinder. Rasekh (2012) analyzed the 
heat source effect due to a stretching circular cylinder. Salahuddin et al. 
(2016) investigated by Keller box method on MHD Pseudo-plastic flow 
past a stretching cylinder. Williamson (1929) first studied the flow of 
pseudo plastic materials. The Williamson fluid model tends to a 
Newtonian fluid at a very high wall shear stress i.e. when the wall stress 
is far greater than yield stress. To improve processing of many types of 
polymers, numerous investigators have conducted simulations of 
Williamson flow dynamics using many computational and analytical 
methods. These studies have included heat transfer (important for 
thermal treatment), mass transfer (critical to doping modification of 
polymers), viscous heating, Magnetohydrodynamic (for electro-
conductive polymers) and many other phenomena. Salleh et al. (2011) 
used the Crank–Nicolson method to analyze flow from a circular 
cylinder with Newtonian heating. Hayat et al. (2016) used Homotopy 
analysis method (HAM) to simulate the MHD flow of Powell-Eyring 
fluid by a stretching cylinder. Makanda et al. (2015) analyzed the 
radiative heat flux effect on hydromagnetic dissipative Casson slip fluid 
flow from a horizontal circular cylinder in porous media. Rao and 
Sekhar (2000) investigated MHD flow past a circular cylinder with 
applied magnetic field. Grigoriadis et al. (2010) analyzed the MHD 
flow past a circular cylinder using the immersed boundary method. 
These studies however did not consider the Williamson model. This is a 
shear thinning non-Newtonian model which quite accurately simulates 

polymer viscoelastic flows over a wide spectrum of shear rates. In 
Williamson fluids the viscosity is reduced with rising shear stress rates. 
This model has found some popularity in engineering simulations. 
         Magnetic field effects on a conducting fluid received good 
attention from researchers. This is because hydromagnetic flow and 
heat transfer have become more important in industrially. For example, 
many metallurgical processes such as drawing, annealing and tinning of 
copper wires involve cooling of continuous strips or filaments by 
drawing them through a quiescent fluid. Controlling the rate of cooling 
in these processes can affect the properties of the final product. This can 
be done by using an electrically-conducting fluid and applying a 
magnetic field. The similar solutions to study the effects of mass 
transfer (suction/injection) and chemical reaction on the steady mixed 
convection boundary-layer flow over a rotating cone were presented by 
Saleem et al. (2016). Mahapatra et al. (2014) analyzed the natural 
convection upon a horizontal flat plate with magnetic effects. The 
influence of heat absorption and source on MHD past stretching sheet 
in a non-Darcian medium was examined by Ibrahim and Shankar 
(2016). Amanulla et al. (2018) analyzed a boundary layer in natural 
convection in the presence of MHD convective heating and thermal 
radiation effects on Williamson fluid flow past a vertical plate using the 
finite difference method. 
         The previous studies invariably assumed the classical “no-slip” 
condition at the boundary. Slip effects have however shown to be 
important in numerous polymeric transport processes including the 
production stage of polymers from the raw (monomeric) materials and 
in converting high-molecular-weight products into specific products by 
W.B. Black (2000). Many researchers, primarily in chemical 
engineering have therefore studied, both experimentally and 
numerically, the influence of wall slip on polymer dynamics. Important 
works in this regard include Wang et al. (1996) who considered low 
density polyethylene liquids, Piau et al. (1995) who addressed polymer 
extrudates, Piau and Kissi (1994) who quantified macroscopic wall slip 
in polymer melts, Lim and Schowalter (1989) who studied boundary 
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slip in polybutadiene flows and Hatzikiriakos and Kalogerakis (1994) 
who also studied molten polymer wall slip. Wall slip in thermal 
polymer processing was considered by Liu and Gehde (2016) in which 
slip was shown to significantly modify temperature distribution in 
polymers. Saleem and Nadeem (2015) used optimal Homotopy analysis 
method (OHAM) for nonlinear boundary layer flow from a rotating 
cone with presence of slip and viscous dissipation effects. Amanulla et 
al. (2017) carried out a heat slip flow analysis on the basis of a 
mathematical model managed by the boundary layer hypotheses while 
using the non-similarity method to reduce the governing equations. 
Hatzikiriakos and Mitsoulis (2009) presented closed-form solutions and 
finite element computations for wall slip effects on pressure drop of 
power-law fluids in tapered dies. Many studies of both momentum 
(hydrodynamic or velocity) slip and thermal slip on transport 
phenomena have also been reported. A Computational analysis of the 
heat and mass transfer through a Nanofluid flow over the semi-infinite 
plate was established by Amanulla et al. (2018). Another study was 
carried out by Amanulla (2017) on boundary layers of a non-Newtonian 
Nanofluid subject to convective boundary conditions. A study was 
conducted by Amanulla et al. (2017) to analyze a boundary layer in 
Magnetohydrodynamic free convection while employing a non-
similarity technique to which partial differential equations are reduced 
to ordinary differential equations.   For some non-Newtonian fluids, 
such as polymer melts, it is nowadays consensually accepted the 
existence of slip velocity between the fluid and the solid wall (Kaoullas 
and Georgiou (2015), Chiu-On Ng (2016), Afonso et al. (2013), 
Philippou et al. (2017), Panaseti and Georgiou (2017)). Ferrás et al. 
(2012,2013, 2014, 2017) gives a detailed overview of the viscoelastic 
fluid slip flows. 
         The main objective of the present investigation is to study the 
effect of velocity and thermal slip effects on natural convection flow of 
Williamson fluid past a circular cylinder with magnetic field. The 
method of solution involves non-similarity transformation which 
reduces the partial differential equations into a set of non-linear 
ordinary differential equations. These non-linear ordinary differential 
equations have been solved by applying Keller Box Method with help 
of finite difference technique. The velocity, temperature, skin friction 
and heat transfer profiles for different values of flow parameters are 
presented in the figures. It is observed from all figures that the 
boundary conditions are satisfied asymptotically in all the cases which 
support the accuracy of numerical results. 
         

2. MATHEMATICAL THERMO-VISCOELASTIC 
FLOW MODEL 

 

Consider a steady incompressible flow along a continuously 
circular cylinder. The fluid is electrically conducting, so that the 
magnetic field is applied transversely. The cylinder is completely 
immersed in thermally stratified saturated medium with a variable 
ambient temperature T∞ (x), where Tw (x) > T∞ (x). Fig.1 below gives 
the brief description of flow considered. 
 

div V= 0,                                                                                             (1) 
 

dV
ρ = divS+ρb,

dt
                                                                               (2) 

 

Where ρ  is the density of the fluid, V  is the velocity vector, S  is the 

Cauchy stress tensor, b represents the specific body force vector, and 
d/dt represents the material time derivate. The constitutive equations of 
the Williamson fluid model (2017, 2016, 2014, 2013, 2007) are given 
as: 
 

S= -pI+ τ                                                                                              (3) 
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Here p  is the pressure, I  is the identity vector,  is the extra stress 

tensor, 0 are the limiting viscosities at zero and at infinite shear rate, 

 is the time constant (>0), 1A is the first Rivlin-Erickson tensor and 

γ is defined as follows: 
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Here we considered the case for which 0  and Γ 1.  Thus eq. 

(4) can be written as: 
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By using binomial expansion, we get: 
 

 0 11 A                                                                                     (8) 
 

 
Fig. 1 Magnetohydrodynamic non-Newtonian heat transfer 

 

         The two-dimensional mass, momentum and energy boundary 
layer equations governing the flow in an (x,y) coordinate system may 
be shown to take the form: 
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The boundary conditions for the velocity and temperature fields are 
 

At 0 00, , 0, w
u T

y u N v T T K
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Here 0N  is the velocity slip factor, 0K  is the thermal slip factor and T  

is the free stream temperature. For 0 00N K  , one can recover the 

no-slip case. The stream function   is defined by u
y





 

and v
x


 


, and therefore, the continuity equation is automatically 

satisfied. In order to write the governing equations and the boundary 
conditions in dimensionless form, the following non-dimensional 
quantities are introduced:  
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The emerging momentum and heat (energy) conservation equations in 
dimensionless from assume the following form:  
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The transformed dimensionless boundary conditions are reduced to: 
 

At 0, 0, (0), 1 (0)f Tf f S f S           
 

As , 0, 0f                                                                 (16) 
 

The skin-friction coefficient (surface shear stress) and the local Nusselt 
number (surface heat transfer rate) can be defined, respectively, using 
the transformations described above with the following expressions:  
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All parameters are defined in the nomenclature.  
 

3. COMPUTATIONAL SOLUTION WITH 
KELLER BOX IMPLICT METHOD 

 

The transformed, nonlinear, multi-physical boundary value 
problem defined by Eqns. (14) -(16) can be solved via a number of 
numerical schemes. Here we implement a popular, second order 
accurate implicit finite difference method originally developed by 
Keller (1976). It has been used recently in MHD polymeric flow 
dynamics by (2016, 2017, 2018) for viscoelastic models. The key stages 
involved are as follows: 
 

a. Reduction of the Nth order partial differential equation system to N 
first order equations 
b. Finite difference discretization 
c. Quasilinearization of non-linear Keller algebraic equations 
d. Block-tridiagonal elimination of linear Keller algebraic equations 

In the Keller box scheme, the multi-degree, multi-order 
coupled partial differential equations defined in (14) and (15) are first 
reduced to a system of first order equations. These equations are then 
discretized with the finite difference approximations with appropriate 
step lengths in each coordinate direction. Introducing the new variables: 
    
f u                                                                                                  (19) 
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Eqns. (14) - (15) reduce then to the form: 
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where primes denote differentiation with respect to  . In terms of the 
dependent variables, the boundary conditions (16) become: 
 

At 0 , 0 , (0 ), 1 ( 0 )f Tf f S f S          
 

As , 0, 0f                                                           (24)                                              
 

A two-dimensional computational mesh (grid) is imposed on the -η 
plane as shown in Fig.2. The stepping process is defined by:  

 

0 10, , 1,2,..., ,j j j Jh j J                                               (25) 
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nk n N       .                                              (26) 

 

where kn and hj denote the step distances in the ξ and η directions 
respectively. 
 

 
Fig. 2 Keller Box element and boundary layer mesh 
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The finite-difference approximation of equations. (19) – (23) for the 

mid-point  1/2, n
j   assume the form given below: 
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Here the following abbreviations apply: 
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The boundary conditions take the form: 

0 0 00, 1, 0, 0, 0n n n n n n
J J Jf u u v                                              (38) 

 

The emerging non-linear system of algebraic equations is 
linearized by means of Newton’s method and then solved by the block-
elimination method. The accuracy of computations is influenced by the 
number of mesh points in both directions. After experimenting with 
various grid sizes in the η-direction (radial coordinate) a larger number 
of mesh points are selected whereas in the ξ direction (tangential 
coordinate) significantly less mesh points are utilized. ηmax has been set 
at 10 and this defines a sufficiently large value at which the prescribed 
boundary conditions are satisfied. ξmax is set at 3.0 for this flow domain. 
Mesh independence is therefore achieved in the present computations. 
The computer program of the algorithm is executed in MATLAB 
running on a PC. 

If we assume 1 1 1 1 1
1 1 1 1 1, , , ,n n n n n

j j j j jf u v s t    
     to be known for 

0 j J  , Eqs.(30) - (34) are a system of 5J+5 equations for the 

solution of 5J+5 unknowns , , , ,n n n n n
j j j j jf u v s t , j = 0, 1, 2 … J. This non-

linear system of algebraic equations is linearized by means of Newton’s 
method which then solved in a very efficient manner by using the 
Keller-box method, which has been used most efficiently by Cebeci and 
Bradshaw (1984), taking the initial interaction with a given set of 
converged solutions at n  . To initiate the process with 0  , we 

first prescribe a set of guess profiles for the functions , , ,f u v   and t  
which are unconditionally convergent. These profiles are then 
employed in the Keller-box scheme with second-order accuracy to 
compute the correct solution step by step along the boundary layer. For 
a given   the iterative procedure is stopped to give the final velocity 

and temperature distribution when the difference in computing these 
functions in the next procedure become less than 510 , i.e., 

510if  , where the superscript i denotes the number of iterations. 

For laminar flows the rate of convergence of the solutions of the 
equations (30) - (34) is quadratic provided the initial estimate to the 
desired solution is reasonably close to the final solution. Calculations 
are performed with four different  spacing show that the rate of 
convergence of the solutions is quadratic in all cases for these initial 
profiles with typical iterations. The fact that Newton’s method is used 
to linearize the non-linear algebraic equations and that with proper 
initial guess n usually obtained from a solution at 1n  , the rate of 

convergence of the solutions should be quadratic can be used to test the 
code for possible programming errors and to aid in the choice of 
 spacing in the downstream direction. To study the effect of 

 spacing on the rate of convergence of solutions, calculations were 

performed in the range 0 0.4  with uniform  spacing correspond
ing to 0.08, 0.04, 0.02 and 0.01. Except for the results obtained 
with 0.08  , the rate of convergence of the solutions was essentially 

quadratic at each   station. In most laminar boundary layer flows, a 

step size of 0.02y  to 0.04 is sufficient to provide accurate and 
comparable results. In fact in the present problem, we can even go up to 

0.1y  and still get accurate and comparable results. This particular 

value of 0.1y   has also been used successfully by Merkin (1976). A 
uniform grid across the boundary is quite satisfactory for most laminar 
flow calculations, especially in laminar boundary layer. However, the 
Keller-box method is unique in which various spacing in both   and 

  directions can be used (Aldoss et al.,(1996).  
 

4. VALIDATION OF KELLER BOX 
SOLUTIONS 

 

The present Keller box solutions have been validated for the 
special case of non-magnetic (M=0) Newtonian flow (We =0) in the 
absence of thermal and partial slip (Sf=ST=0). It is also possible to make 
a comparison as the momentum equation and boundary conditions 
assume the following reduced form: 

 

/
/ / / / / /2 / / /sin f f

f ff f f f
  

  
  

        
 

At    /0; 0; 0, 1f f      

At     /: 0; 0f     
 

           The energy equation (15) is identical to that considered in 
Merkin (1976), Molla et al. (2011) and Javed et al. (2015). The 
comparison of solutions is documented in Table 1.1 & 1.2 Excellent 
correlation is achieved and confidence in the present solutions is 
therefore justifiably high. 
 

Table 1.1: Variations of the local heat transfer coefficient 

fC  for various values of   with 0.0f TWe S S M     

  
fC  

Merkin 
(1976) 

Molla et al. 
(2011) 

Javed et al. 
(2015) 

Present 
Solutions 

0 0.0000 0.0000 0.0000 0.0000 
/ 6  0.4151 0.4139 0.4150 0.4247 
/ 3  0.7558 0.7527 0.7557 0.7559 
/ 2  0.9579 0.9526 0.9578 0.9576 

2 / 3  0.9756 0.9677 0.9555 0.9551 
5 / 6  0.7822 0.7717 0.7822 0.7821 
  0.3391 0.3238 0.3388 0.3385 
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Table 1.2: Variations of the local heat transfer coefficient 
Nu  for various values of   with 0.0f TWe S S M     

  
Nu  

Merkin 
(1976) 

Molla et al. 
(2011) 

Javed et al. 
(2015) 

Present 
Solutions 

0 0.4214 0.4216 0.4215 0.4218 
/ 6  0.4161 0.4163 0.4163 0.4265 
/ 3  0.4007 0.4006 0.4009 0.4011 
/ 2  0.3745 0.3741 0.3747 0.3752 

2 / 3  0.3364 0.3355 0.3355 0.3354 
5 / 6  0.2825 0.2810 0.2824 0.2839 
  0.1945 0.1911 0.1943 0.1954 

5. RESULTS AND DISCUSSION 

Extensive computations have been conducted using the Keller box code 
to study the influence of the key thermo-physical parameters on 
velocity, temperature, skin friction and Nusselt number. These are 
visualized in figs. 3a-b to 12a-b. In the present computations, the 
following default parameters are prescribed (unless otherwise stated): 
We=0.3, Pr =7.0,  M=1.0, Sf=0.5, ST=1.0, =1.0.  
 

 
 

Fig. 3a Effect of Sf on velocity profiles 
 

 
 

Fig. 3b Effect of Sf on temperature profiles 

 

 
Fig. 4a Effect of ST on velocity profiles 

 

 
 

Fig. 4b Effect of ST on temperature profiles 
 

Fig.3a-b presents the evolution in temperature function, ( )  , with 

transverse coordinate with variation in hydrodynamic slip parameter, 

Sf. Temperature profiles consistently decay monotonically from a 
maximum at the cylinder surface to the free stream. All profiles 
converge at a large value of transverse coordinate, again showing that a 
sufficiently large infinity boundary condition has been utilized in the 
numerical computations. Greater momentum slip substantially increases 
temperatures in the boundary layer and therefore also elevates thermal 
boundary layer thickness. The regime is therefore coolest when slip is 
absent (Sf =0 i.e. no-slip classical case) and hottest with strong 
hydrodynamic wall slip. 

Figs. 4a and 4b illustrate the influence of thermal slip 
parameter (ST) on the velocity and temperature. Both velocity and 
temperature are consistently suppressed with an increase in ST. 
Temperatures are strongly depressed in particular at the cylinder 
surface. Greater thermal jump therefore decelerates the flow and cools 
the boundary layer. Momentum boundary layer thickness is enhanced 
whereas thermal boundary layer thickness is decreased with increasing 
thermal slip. A similar response has been observed by Basir et al. 
(2016). Physically, as the thermal slip parameter rises, the fluid flow 
within the boundary layer becomes progressively less sensitive to the 
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heating effects at the cylinder surface and a decreased quantity of 
thermal energy (heat) is transferred from the hot cylinder surface to the 
fluid, resulting in a fall in temperatures, manifesting in a cooling and 
thinning of the thermal boundary layer. This has important implications 
in thermal polymer enrobing, since thermal slip modifies the heat 
transferred to the polymer material which in turn alters characteristics 
of the final product (1990).  

Fig.5a-b illustrates that the velocity is reduced with an 
increase in M. This indicates that the transverse magnetic field opposes 
the transport phenomena since an increase in M leads to an increase in 
the Lorentz force, which opposes the transport process. This stronger 
Lorentz force produces more resistance to the transport. The higher the 
value of M, the more prominent is the reduction in hydrodynamic 
boundary layer thickness. But from Figs.5b, the opposite phenomenon 
is observed with an increase in Magnetic field parameter M on 
temperature filed. The excess work expended in dragging the polymer 
against the action of the magnetic field is dissipated as thermal energy 
(heat). This energizes the boundary layer and increases thermal 
boundary layer thickness. Again the influence of magnetic field is 
sustained throughout the entire boundary layer domain. These results 
concur with other investigations of magnetic non-Newtonian heat 
transfer including Kasim et al. (2013) and Megahed (2012). 

 

 
 

Fig. 5a Effect of M on velocity profiles 
 

 
 

Fig. 5b Effect of M on temperature profiles 

 

 
 

Fig. 6a Effect of We on velocity profiles 
 

 
 

Fig. 6b Effect of We on temperature profiles 
 

Figs. 6a-b, depict the effect of Williamson viscoelastic fluid parameter, 
We on velocity and temperature profiles. It is shown that the effect of 
We reduces velocity near the cylinder surface but depletes it further 
away. Increasing Williamson viscoelastic fluid parameter however 
consistently weakly increases temperatures throughout the boundary 
layer. The influence on velocity field is significantly greater however 
since the viscoelastic effect is simulated solely in the momentum 
equation (14) via the shear term (mixed derivative) We f f  . 

Williamson viscoelastic fluid parameter (We) measures the relative 
effects of viscosity to elasticity. Williamson viscoelastic fluid parameter 
of zero corresponds to a purely Newtonian fluid, and infinite 
Weissenberg number corresponds to a purely elastic solid. The effect of 
viscoelastic parameter is indirectly transmitted to the temperature field. 
Since the Williamson viscoelastic fluid parameter is also present in the 
wall boundary condition, the acceleration effect is only confined to the 
region close to the cylinder surface. Overall however the dominant 
influence of We, is near the wall and is found to be assistive to 
momentum development. Only a very small decrease in temperature is 
observed with a large enhancement in Weissenberg parameter, as 
shown in Fig.6b. Thermal boundary layer thickness is therefore 
enhanced with increasing We values i.e. decreasing viscosity and 
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increasing elastic effects. Effectively therefore Newtonian fluids (We 
=0) achieve lower velocities and temperatures than Williamson fluids. 
Similar trends have been reported by Hayat et al. (2016) and Khan and 
Khan (2014). 

 

 
Fig. 7a Effect of Pr on velocity profiles 

 

 
Fig. 7b Effect of Pr on temperature profiles 

 

Figs. 7a – 7b, present the impact of Prandtl number (Pr) on 
the velocity and temperature profiles along the transverse coordinate i.e. 
normal to the cylinder surface. Prandtl number epitomizes the ratio of 
momentum diffusion to thermal diffusion in the boundary layer regime. 
It also represents the ratio of the product of specific heat capacity and 
dynamic viscosity, to the fluid thermal conductivity. For Pr equal to 
unity both the momentum and thermal diffusion rates are the same, as 
are the momentum and thermal boundary layer thicknesses. An 
increment in Pr from 7.0 through 10, 15, 25, 50, 75 to 100, which 
corresponds to increasing momentum diffusivity and decreasing 
thermal diffusivity, results in a tangible reduction in velocity 
magnitudes throughout the boundary layer. For Pr <1, thermal 
diffusivity surpasses momentum diffusivity i.e. heat will diffuse at a 
faster rate than momentum. In this manner for lower Pr fluids (e.g. Pr 
= 0.01 which physically relate to liquid metals), the flow will be 
accelerates whereas for greater Pr fluids (e.g. Pr = 1 for low weight 
molecular polymers (2004,2015) it will be strongly decelerated, as 
observed in Fig.7b. For Pr < 1, the momentum boundary layer 

thickness is lesser than thermal boundary layer thickness. The 
asymptotically smooth profiles in the free stream (high  values) 
confirm that an adequately large infinity boundary condition has been 
imposed in the Keller box numerical code. 

 

 
Fig. 8a Effect of  on velocity profiles 

 

 
Fig. 8b Effect of  on temperature profiles 

 

Figs. 8a-b illustrate the influence of the stream wise 
(tangential) coordinate, ξ, on the velocity and temperature distributions. 
A weak deceleration in the boundary layer flow is experienced with 
greater ξ, values i.e. with progressive distance along the cylinder 
surface from the lower stagnation point (ξ=0), as shown in fig. 8a. 
Momentum boundary layer thickness is therefore increased marginally 
with ξ values. Conversely a weak enhancement in temperature is 
computed in fig. 8b, with increasing ξ values. Thermal boundary layer 
thickness is increased therefore as we progress from the lower 
stagnation point on the cylinder surface around the cylinder periphery 
upwards. 

Figs. 9a-b presents the variation in surface shear stress (skin 
friction) and Nusselt number (wall heat transfer gradient) with 
Weissenberg number with both thermal and velocity slip present. In 
consistency with the near-wall behaviour computed for the velocity 
field in fig. 6a, there is a significant elevation in skin friction with 
increasing We values. With progressively greater We values the 
elasticity in the polymer is increased. This aids in momentum 
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development and accelerates the boundary layer flow. A similar trend 
has been computed in the studies by Hayat et al. (2016). The 
Weissenberg number indicates the degree of anisotropy or orientation 
generated by the deformation, and is appropriate to describe flows with 
a constant stretch history, and therefore appropriate for polymers. A 
strong reduction in Nusselt number arises with an elevation in 
Weissenberg number i.e. heat is transferred from the cylinder surface to 
the boundary layer. This concurs with fig. 6b wherein temperature (and 
thermal boundary layer thickness) are found to be enhanced with 
Weissenberg number. The cylinder surface is therefore effectively 
cooled with greater Weissenberg numbers.  

 

 
 

Fig. 9a Skin friction profiles for various values of We 
 

 
 

Fig. 9b Nusselt number profiles for various values of We 
 

Figs. 10a-b illustrate the skin friction and Nusselt number 
distributions with various values of momentum slip parameter (Sf). A 
marked depreciation in skin friction is observed with greater 
momentum slip (fig. 10a). Conversely a strong elevation in Nusselt 
number is generated with greater momentum slip effect (fig. 10b). In 
both plots the profiles never intersect i.e. the momentum slip effect is 
consistent for all values of stream wise parameter (ξ). The influence of 
momentum (hydrodynamic) slip is non-trivial and demonstrates that a 
sizeable modification in surface thermo fluid characteristics is induced 
with slip and indeed that the methodology employed to simulate it quite 

realistically simulates real macroscopic effects of certain molecular 
phenomena at polymer/solid interfaces. 

 
 

Fig. 10a Skin friction profiles for various values of Sf 
 

 
Fig. 10b Nusselt number profiles for various values of Sf 

 

Table 2: Values of ( ,0)f   for different ,f TS S and   

fS  
TS  

( ,0)f   

0.0   / 6   / 4   

0.0 

1.0 

0 0.1908 0.2592 
0.1 0 0.1858 0.2522 
0.2 0 0.1807 0.2453 

0.3 0 0.1757 0.2383 
0.5 0 0.1657 0.2244 
0.8 0 0.1506 0.2036 
1.0 0 0.1406 0.1897 

0.5 

0.0 0 0.1871 0.2536 
0.5 0 0.1765 0.2391 
1.5 0 0.1547 0.2096 

2.0 0 0.1437 0.1945 
2.5 0 0.1324 0.1792 
3.0 0 0.1210 0.1636 
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Table 3: Values of ( ,0)   for different ,f TS S and   

fS  
TS  

( ,0)   

0.0   / 6   / 4   

0.0 

1.0 

0.7199 0.7015 0.6857 

0.1 0.7326 0.7140 0.6981 
0.2 0.7454 0.7266 0.7105 
0.3 0.7582 0.7393 0.7229 
0.5 0.7839 0.7645 0.7475 

0.8 0.8225 0.8026 0.7850 
1.0 0.8483 0.8279 0.8100 

0.5 

0.0 0.9259 0.9032 0.8835 
0.5 0.8543 0.8333 0.8151 

1.5 0.7147 0.6979 0.6814 
2.0 0.6469 0.6308 0.6166 
2.5 0.5804 0.5659 0.5532 
3.0 0.5154 0.5025 0.4911 

 

 
 

Fig. 11a Skin friction profiles for various values of ST 
 

 
 

Fig. 11b Nusselt number profiles for various values of ST 

 

 
Fig. 12a Skin friction profiles for various values of M 

 

 
Fig. 12b Nusselt number profiles for various values of M 

 

Figs. 11a-b present the distributions in skin friction and Nusselt number 
with thermal slip effect (ST). Both skin friction and Nusselt number are 
strongly reduced with an increase thermal slip. The boundary layer is 
therefore decelerated and heated with stronger thermal slip. With 
thermal slip absent therefore the skin friction is maximized at the 
cylinder surface. The inclusion of thermal slip, which is encountered in 
various slippy polymer flows, is therefore important in more physically 
realistic simulations. 

Figs. 12a-b illustrate the influence of magnetic parameter (M) 
on skin friction and Nusselt number. A significant depletion is caused 
in skin friction (fig. 12a) with greater magnetic field, which 
corresponds to a retardation of the boundary layer flow. The maximum 
skin friction therefore is achieved only in the absence of a radial   
magnetic field i.e. M = 0. For M < 1, the magnetic body force is 
exceeded by the viscous hydrodynamic force in the regime. For M > 1 
the contrary is the case. The reduction in Nusselt number with greater 
M values implies that the transfer of heat from the boundary layer to the 
wall (cylinder surface) is reduced. This physically indicates therefore 
that greater heat is conveyed away from the cylinder surface to the fluid 
which explains the higher temperatures associated with strong magnetic 
field in the earlier computations (fig. 5b). Magnetic field is therefore a 
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potent mechanism for controlling thermal and velocity characteristics in 
electrically-conducting polymer dynamics. 

 

Table 4: Values of ( ,0)f   for different ,f TS S and   

fS  
TS  

( ,0)f   

/ 3   / 2   2 / 3   

0.0 

 
 

1.0 
 

0.3473 0.4415 0.4506 
0.1 0.3376 0.4280 0.4344 

0.2 0.3280 0.4144 0.4182 
0.3 0.3183 0.4009 0.4020 
0.5 0.2989 0.3738 0.3694 
0.8 0.2699 0.3330 0.3204 

1.0 0.2504 0.3058 0.2876 

 
 

0.5 
 
 
 

0.0 0.3382 0.4241 0.4218 
0.5 0.3187 0.3991 0.3957 

1.5 0.2790 0.3481 0.3427 
2.0 0.2587 0.3222 0.3157 
2.5 0.2381 0.2958 0.2884 
3.0 0.2172 0.2690 0.2606 

 
 

Table 5: Values of ( ,0)   for different ,f TS S and   

fS  
TS  

( ,0)   

/ 3   / 2   2 / 3   

0.0 

 
 

1.0 
 

0.6521 0.5687 0.4466 
0.1 0.6641 0.5795 0.4554 
0.2 0.6761 0.5904 0.4638 
0.3 0.6883 0.6013 0.4727 

0.5 0.7125 0.6234 0.4904 
0.8 0.7492 0.6563 0.5173 
1.0 0.7726 0.6786 0.5351 

 
 

0.5 
 
 
 

0.0 0.8421 0.7374 0.5814 

0.5 0.7767 0.6798 0.5355 
1.5 0.6494 0.5678 0.4462 
2.0 0.5875 0.5134 0.4029 

2.5 0.5272 0.4601 0.3607 

3.0 0.4680 0.4080 0.3194 

 
Table 6: Values of ( ,0)f   for different values of We, M and Pr 

We M 
( ,0)f   

Pr 7  Pr 10  Pr 20  Pr 25  

0.0 

1.0 

0.2960 0.2730 0.2294 0.2157 
0.5 0.3008 0.2769 0.2316 0.2176 
1.0 0.3049 0.2803 0.2341 0.2198 

2.0 0.3122 0.2864 0.2382 0.2234 
3.0 0.3185 0.2916 0.2417 0.2265 
4.0 0.3240 0.2964 0.2449 0.2294 

0.3 

0.0 0.3760 0.3444 0.2870 0.2698 

0.5 0.3302 0.3029 0.2529 0.2376 
1.0 0.2989 0.2753 0.2308 0.2170 
2.0 0.2538 0.2352 0.1988 0.1872 

3.0 0.2203 0.2052 0.1745 0.1645 
4.0 0.1936 0.1809 0.1546 0.1457 

 

Tables 2-7 present numerical values for the influence of the 
various parameters on skin friction and Nusselt number functions. 

These confirm the trends already elaborated in figs 9a-b to 12a-b and 
furthermore provide benchmarks against which other researchers may 
validate extensions of the present model. 

 
Table 7: Values of ( ,0)   for different values of We, M and Pr 

We M 
( ,0)   

Pr 7  Pr 10  Pr 20  Pr 25  

0.0 

1.0 

0.7145 0.8098 1.0370 1.1239 
0.5 0.7104 0.8063 1.0322 1.1190 
1.0 0.7072 0.8028 1.0289 1.1158 
2.0 0.7012 0.7966 1.0226 1.1095 

3.0 0.6961 0.7912 1.0168 1.1036 
4.0 0.6917 0.7865 1.0117 1.0986 

0.3 

0.0 0.8013 0.9019 1.1364 1.2267 
0.5 0.7497 0.8463 1.0747 1.1628 

1.0 0.7125 0.8089 1.0330 1.1213 
2.0 0.6568 0.7512 0.9736 1.0593 
3.0 0.6144 0.7072 0.9277 1.0122 
4.0 0.5799 0.6710 0.8902 0.9735 

 
Table 8: Values of ( ,0)f   for different values of We, 

M and Pr 

We M 
( , 0)f   

Pr 50  Pr 75  Pr 100  

0.0 

1.0 

0.1749 0.1524 0.1370 

0.5 0.1762 0.1533 0.1377 
1.0 0.1771 0.1541 0.1383 
2.0 0.1795 0.1557 0.1393 
3.0 0.1815 0.1571 0.1407 

4.0 0.1833 0.1584 0.1417 

0.3 

0.0 0.2194 0.1924 0.1745 
0.5 0.1923 0.1677 0.1512 
1.0 0.1757 0.1529 0.1374 

2.0 0.1517 0.1315 0.1175 
3.0 0.1332 0.1149 0.1022 
4.0 0.1177 0.1011 0.0893 

 

Table 9: Values of ( ,0)   for different values of  

We, M and Pr 

We M 
( ,0)   

Pr 50  Pr 75  Pr 100  

0.0 

1.0 

1.4513 1.6946 1.8975 
0.5 1.4473 1.6911 1.8942 
1.0 1.4430 1.6879 1.8913 

2.0 1.4376 1.6821 1.8846 
3.0 1.4321 1.6769 1.8812 
4.0 1.4272 1.6724 1.8770 

0.3 

0.0 1.5630 1.8118 2.0183 

0.5 1.4925 1.7373 1.9413 
1.0 1.4489 1.6925 1.8955 
2.0 1.3850 1.6270 1.8289 

3.0 1.3355 1.5762 1.7772 
4.0 1.2928 1.5333 1.7334 
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6. CONCLUSIONS 

A theoretical study has been conducted of laminar incompressible free 
convection boundary layer flow of a viscoelastic (Williamson) fluid 
from a vertical truncated cylinder. Magnetic field, Momentum and 
thermal slip effects have been incorporated in the model. The 
transformed boundary layer equations for heat and momentum 
conservation have been solved using a finite difference method for the 
case of non-similar solutions present at the cylinder surface. 
Verification of the accuracy of the Keller box computational code has 
been achieved via comparison with previous Newtonian solutions 
reported in the literature. The present investigation has shown that:  
1) Increasing the velocity slip parameter (Sf) reduces the velocity near 
the cylinder surface and increases the temperature i.e. enhances 
momentum boundary layer thickness and decreases thermal boundary 
layer thickness. However, flow reversal is never computed. 
2) Increasing thermal slip parameter, (ST) consistently decelerates the 
flow and also decreases temperature (and thermal boundary layer 
thickness). 
3) Increasing Williamson viscoelastic fluid parameter (We), decreases 
the velocity near the surface and also fractionally lowers the 
temperature throughout the boundary layer regime i.e. enhances thermal 
boundary layer thickness. 
4) Increasing Prandtl number (Pr) decelerates the flow and also 
strongly depresses temperatures, throughout the boundary layer regime. 
 

NOMENCLATURE 
 

B0   externally imposed radial magnetic field 
Cf   skin friction coefficient 
f   non-dimensional steam function 
Gr    Grashof number 
g    acceleration due to gravity 
k    thermal conductivity of fluid 
K0    thermal jump factor 
Nu    local Nusselt number 
M         magnetic body force parameter 
Pr       Prandtl number  
N0    velocity (momentum) slip factor 
Sf    non-dimensional velocity slip parameter 
ST    non-dimensional thermal jump parameter 
T    temperature 
u, v     non-dimensional velocity components along the x- and y- 

  directions, respectively 
We     Weissenberg (viscoelasticity) number 
x     stream wise coordinate 
y  transverse coordinate  
 

Greek Symbols  
 

      thermal diffusivity 
      coefficient of thermal expansion  

       dimensionless transverse coordinate 

      kinematic viscosity 
      non-dimensional temperature 
      density of viscoelastic fluid 

      electrical conductivity of viscoelastic fluid 
      dimensionless steam wise coordinate 

      dimensionless stream function 

      time-dependent material constant 
 

Subscripts  
 

w     conditions on the wall 
       Free stream conditions 
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