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ABSTRACT

The present study deals with the two dimensional steady laminar forced MHD Hiemenz flow past a flat plate in a porous medium. The effects of
thermal radiation and partial slips on the flow field have been investigated under the variable wall temperature condition of the plate. The governing
equations have been transformed into a set of coupled non-linear ordinary differential equations (ODEs) by using suitable similarity transformations.
These equations have been solved analytically by using homotopy analysis method (HAM). The effects of Prandtl number, suction/blowing parameter,
permeability parameter, velocity slip parameter, radiation parameter, magnetic parameter, wall temperature exponent and thermal slip on velocity and
temperature profiles have also been studied graphically. Our results have been validated with the help of results that have already been published.
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1. INTRODUCTION

A point on the surface of an object in the flow field where the local fluid
velocity is zero is called stagnation point. The stagnation point flow anal-
ysis plays a significant role in the study of numerous natural and industrial
phenomena, because of its applications in the exploring of flows over the
tips of submarines, tip of ships, and aircrafts. Also, this study is important
in various engineering disciplines like hydrodynamic processes, cooling
of nuclear reactors, cooling of electronic devices by fans, etc. On account
of the afore-mentioned applications only, Hiemenz (1911) was the very
first researcher to do a pioneering work so as to investigate the viscous
fluid motion generated by a two-dimensional stagnation point flow over
a flat plate. Due to this reason only, the planar laminar flow of an incom-
pressible viscous fluid in a steady state close to a stagnation point is also
called Hiemenz flow. For this flow in a plane, Hiemenz gave similarity
solutions of the governing Navier-Stokes equations. Thereafter, this kind
of study was carried forward by researchers like Eckert (1942) and Beard
et al. (1964).

The process of suction/injection is of special significance with ref-
erence to the practical problems related to the boundary control applica-
tions e.g. film cooling, fibre coating, and coating of wires. Due to this
reason, Schlichting and Bußmann (1943) were the first to analyze the ef-
fect of suction on the Hiemenz flow. This problem was further extended
by Preston (1948). Ariel (1994) made the analysis of the same problem
by way of considering uniform suction. As the magnetohydrodynamic
(MHD) stagnation point flow problems are having their theoretical as
well as practical applications in manufacturing processes like boundary
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layer along material handling conveyers, blood flow problems, extrusion
of plastic sheets, cooling of infinite metallic plate in cooling bath, etc.,
these problems have attracted in the recent past the attention of many a
researchers such as Sparrow et al. (1963); Na (1979), and Ariel (1994).
Recently, Rehman et al. (2017a) ; Rehman et al. (2017b); Rehman et al.
(2017c); Rehman et al. (2017d) and Rehman et al. (2017e) investigated
the stagnation point flow over different geometrical configuration.

Because of the numerous engineering applications of porous me-
dia related heat transfer problems in geothermal energy recovery, crude
oil extraction, thermal energy storage etc., Ingham and Pop (1998);Vafai
(2005); Nield et al. (2006) and Raptis et al. (1982) analyzed hydromag-
netic free convection flows through porous media. Thereafter, Takhar
and Ram (1994) and Yih (1998) investigated the problem under different
conditions. Yih studied the effect of uniform suction on the flow field
by invoking the model of the porous medium developed by Raptis and
Takhar (1987). The problem of Yih was revisited by Kechil and Hashim
(2009); Rashidi and Erfani (2011); Yildirim and Sezer (2012); Ghasemi
et al. (2012); Mabood and Khan (2014); Mohammadi et al. (2016) and
Bhatti et al. (2016) by using various numerical and analytical methods.
Further, the work of Rashidi and Erfani (2011) was extended by Kudenatti
et al. (2017) by way of including the non-Darcy velocity in the governing
boundary layer equations.

The radiation effects become more important at high absolute tem-
peratures in the context of space technology, comical flight aerodynamics,
plasma physics, space craft re-entry aerodynamics, etc. As a consequence
of this, the effects of thermal radiation for different geometrical config-
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urations have been investigated by various researchers such as Viskanta
and Grosh (1962); Chen et al. (1984); Elbashbeshy (2000); Raptis et al.
(2004); Ouaf (2005); Hayat et al. (2007); Sajid and Hayat (2008); El-Aziz
(2009); Jat and Chaudhary (2010); Akbar et al. (2013); Ene and Marinca
(2015); Haq et al. (2015); Prasannakumara et al. (2015); Sheikholeslami
et al. (2016); Narayana and Babu (2016); Rehman et al. (2017b) and
many others.

The fluids exhibiting wall slips properties are very important on ac-
count of their technological applications e.g. the polishing of artificial
heart valves and internal cavities. So, in order to have a better under-
standing of the slips phenomena, many a researchers like Mooney (1931);
Rao and Rajagopal (1999);Khaled and Vafai (2004); Wang (2002); Wang
(2006) and Hayat et al. (2007) examined the effects of slips boundary
conditions on fluid flows through different geometries.

Motivated by the work of Yih (1998) and others, we have attempted
to investigate the two-dimensional steady laminar forced MHD Hiemenz
flow against a flat plate with variable wall temperature in a porous medium
with velocity and thermal slips conditions in the presence of thermal ra-
diation using HAM. In this analysis, the system of the coupled nonlinear
ODEs governing the afore-mentioned problem is solved by means of the
Mathematica package BVPh 2.0 Zhao and Liao (2013) , which is valid for
nonlinear boundary-value or eigen-value problems with boundary condi-
tions at multiple points, and is governed by coupled nonlinear ODEs. It
is based on the HAM Liao Liao (2003), which is an analytic approxima-
tion method for solving highly nonlinear problems. As an analytic tool
to solve nonlinear differential equations, the HAM Liao (2003) has been
used successfully to investigate a variety of nonlinear problems in sci-
ence, engineering and finance. Unlike perturbation techniques, the HAM
has nothing to do with small/large physical parameters, so that it is es-
sentially a non-perturbation method. Besides, based on the homotopy in
topology, the HAM enjoys great freedom in choosing auxiliary linear op-
erators and initial guess. Unlike all other analytic techniques, the HAM
especially provides us a convenient way to control and adjust the conver-
gence of solution-series, so that the convergence of solution-series can be
guaranteed.

The BVPh 2.0 Zhao and Liao (2013) is a HAM-based Mathematica
package, providing us an easy-to-use tool for solving coupled nonlinear
ODEs governing the boundary value or eigenvalue problems. BVPh 2.0 is
a free-available online (http://numericaltank.sjtu.edu.cn/BVPh.htm) pack-
age. Different from numerical packages (such as BVP4c), it is based on
the idea- computing numerically with functions instead of numbers. Un-
like all the other packages, the convergence of results given by the BVPh
2.0 is especially guaranteed by means of the so-called convergence-control
parameter in the frame of the HAM. It is well known that the convergence-
control parameters control the convergence-rate of HAM solutions-series.
As for now, two different techniques have been developed for the choice
of the convergence-control parameters. One is called }−curve Liao (2003)
method and the other technique is minimum error method Liao (2012).

In the normal HAM, }−curve method is used in which }−curves are
plotted to guess the convergence-control parameters on the lines of Guled
and Singh (2016) and Xinhui et al. (2011). But in this analysis, the deter-
mination of the optimal value of the convergence-control parameter is not
easily possible. As a matter of this fact, more number of approximations
are required to get an accurate solution-series. On the contrary, the op-
timal homotopy analysis method (OHAM), on which the present mathe-
matica package BVPh 2.0 is based, takes into account the minimum error
method. In OHAM, the optimal value of the convergence-control param-
eter is obtained by minimizing the total average squared residual error at
certain order of HAM approximation. So, we are able to find a more ac-
curate and convergent solution-series after less number of approximations
using this mathematica package which is based on OHAM. Moreover, in
this package, the optimal value of the convergence-control parameter is
obtained with the help of an in-built facility of ‘GetOptiVar ’command.

As a consequence, the mathematica package BVPh 2.0 has recently

been used successfully by numerous researchers like Farooq and Zhi-
Liang (2013); Farooq et al. (2014); Farooq et al. (2015); and many others,
to deal with various flow problems pertaining to nano-fluids for different
geometries.

2. PROBLEM STATEMENT AND MATHEMATICAL
FORMULATION

Fig. 1 Physical Model

Here we intend to study the two dimensional steady laminar forced
convection in MHD Hiemenz flow at the stagnation region against a flat
plate through a porous medium with thermal radiation. We choose the
cartesian co-ordinate system in such a way that the x−axis is parallel and
y−axis is normal to the sheet. The incompressible fluid is electrically
conducting. A constant magnetic field of strength B0 is applied in y-
direction. In the formulation, the wall temperature has been taken as
variable and the surface mass flux as uniform. The induced magnetic
field, the Hall effects and the viscous dissipation terms are neglected.

Following the Raptis and Takhar (1987) model for the porous medium
and by introducing the boundary-layer approximation, the governing con-
tinuity, momentum and energy equations can be written as follows:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
− ν

K
u− σB2

0

ρ
u, (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρcp

∂qr
∂y

, (3)

where u and v are velocity components in x− and y−directions, respec-
tively; P is the pressure; ρ is the fluid density; ν = µ

ρ
is the kinematic vis-

cosity where µ is the coefficient of fluid viscosity; K is porosity parame-
ter, σ is the electrical conductivity; B0 is the applied magnetic field along
y−direction; T is the temperature of the fluid and the porous medium
which are in local thermal equilibrium; α = k

ρcp
is the equivalent ther-

mal diffusivity, where k is coefficient of thermal conductivity; cp is the
specific heat at constant pressure, and qr is the radiative heat flux. The
boundary conditions are defined as follows:

y = 0; v = vw, u = uw + uslip = 0 +Nν
∂u

∂y
,

T = Tw + Tslip = T∞ +Axλ +D
∂T

∂y
,

y →∞; u = ue = ax, T = T∞,

(4)

Here vw is the uniform surface mass flux positive (i.e. vw > 0) for
blowing and negative (i.e. vw < 0) for suction; uslip is velocity slip,
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which is proportional to the local wall shear stress and is given by Nν ∂u
∂y

, where N is Navier’s constant slip length; λ is the exponent of the wall
temperature; D is temperature slip factor, and ue = ax is the free stream
velocity where ‘a’is a positive number.

With the help of free stream, Eq. (2) takes the new form

ue
due
dx

= −1

ρ

∂P

∂x
− ν

K
ue −

σB2
0

ρ
ue. (5)

On solving the Eqs. (2) and (5), we obtain

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂2y
+ ue

due
dx
− ν

K
(u− ue)−

σB2
0

ρ
(u− ue). (6)

From Eq. (6), it is evident that the free stream velocity affects the flow of
a fluid, and hence convection of heat will be affected considerably. That
is why, this flow is of forced convection type.

Using Rosseland approximation for radiation Brewster (1992), we
can write

qr = −4σ1

3k1

∂T 4

∂y
, (7)

in which σ1 depicts the Stefan-Boltzmann constant and k1 is the absorp-
tion coefficient. We presume that the temperature variation within the
flow is such that T 4 may be expanded in a Taylor?s series.

On expanding T 4 about T∞ and neglecting higher order terms, we
get

T 4 ≈ 4T 3
∞ − 3T 4

∞. (8)

Therefore, we have from Eqs. (7) and (8)

∂qr
∂y

= −16σ1T
3
∞

3k1

(
∂2T

∂y2

)
. (9)

Using Eq. (9) in Eq. (3), one gets

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

16σ1T
3
∞

3k1ρcp

∂2T

∂y2
. (10)

The stream function satisfying Eq. (1) is defined as u = ∂ψ
∂y

and v =

− ∂ψ
∂x

. The following similarity variables have been defined:

η = y

√( a
α

)
, ψ =

√
(aα)xf(η), θ =

T − T∞
Tw − T∞

,

u = axf ′(η) and v = −
√
aαf(η),

(11)

where η is similarity variable and primes denote differentiation with re-
spect to η.

The following ordinary differential equations can be obtained by
substituting (11) into Eqs. (6) and (10):

Prf ′′′ + ff ′′ + (1− f ′2) + (Ω +M2)(1− f ′) = 0, (12)(
1 +

4

3
R

)
θ′′ + fθ′ − λfθ′ = 0, (13)

with the boundary conditions which are transformed to

f(0) = s, f ′(0) = βf ′′(0), θ(0) = 1 + γθ′(0);

f ′(∞) = 1, θ(∞) = 0,
(14)

where primes denote differentiation with respect to η; Pr
(
= ν

α

)
is the

Prandtl number; Ω
(
= ν

Ka

)
is the permeability parameter;M

(
=

√
σB2

0
ρa

)
is the magnetic parameter; s

(
= − vw√

aα1

)
is the mass transfer parame-

ter where s > 0 for suction, s < 0 for blowing and s = 0 reflects
the impermeable surface; β

(
= Nν

√
a
α

)
is the dimensionless velocity

slip parameter; γ
(
= D

√
a
α

)
is the dimensionless thermal slip parame-

ter; R
(

=
4σ1T

3
∞

kk1

)
is the radiation parameter and λ is the exponent of

wall temperature.

3. HOMOTOPY TREATMENT

It was Liao (2012) who first of all in the year 2012 developed the HAM-
based BVPh 1.0 Mathematica package to find the solutions of highly non-
linear ODEs governing boundary-value and eigenvalue problems having
singularity, multi-point boundary conditions and having multiple solu-
tions to their credit. But, Zhao and Liao (2013) developed a new version
of this package to deal with the solutions of coupled nonlinear ODEs
in the following year. To this package, Liao gave the name BVPh 2.0.
As this package is more efficient than the earlier one, the authors in the
present work have used it successfully to find the solutions of Eqs. (12)
and (13); together with the boundary conditions (14).

For the detailed study of HAM and the package BVPh 2.0, one can
refer to the paper of Liao (2013), (2012).

For the application of the package BVPh 2.0, one needs to define the
governing equations of the problem in conjunction with the given bound-
ary conditions. Thereafter, an auxiliary linear operator for each governing
equation is chosen in such a way that it defines the equation-type of the
corresponding high-order equations, and gives a proper guess for each un-
known function. With this input, the package automatically provides us
with the approximate analytic solutions at any order one would like. Here
it is worth mentioning that there exists a convergence-control parameter
for each governing equation. This parameter ensures the convergence of
solution series. The optimal values of the convergence-control parame-
ters are determined based on the minimum values of the residual squares
of governing equations, and also of boundary conditions in some cases.

The HAM is based on the concept of homotopy in topology. This
method converts a nonlinear problem into an infinite number of linear
sub-problems without taking into consideration the magnitude of the phys-
ical parameters. For the given problem, we can have the following solu-
tions

f(η) = f0(η) +

∞∑
m=1

fm(η), (15)

θ(η) = θ0(η) +

∞∑
m=1

θm(η), (16)

Here fm(η) and θm(η) are evaluated by the high-order deformation equa-
tions that are governed by the chosen auxiliary linear operators. Based on
the governing Eqs. (12) and (13) and the boundary conditions (14) at
infinity, it is clear that the above solutions can also be written in the fol-
lowing forms:

f(η) =
∞∑
m=0

∞∑
k=0

am,kη
ke−mη, (17)

θ(η) =

∞∑
m=0

∞∑
k=0

bm,kη
ke−mη, (18)

Here am,k and bm,k are coefficients to be determined by the package
BVPh 2.0. The Eqs. (17) and (18) represent the solution-expressions,
which guide us in choosing the auxiliary linear operators, initial approxi-
mations and the auxiliary functions. Thus these solution expressions play
a vital role in HAM. As per the solution expressions (17) and (18), we
choose the following auxiliary linear operators:

L1(f) =
d3f

dη3
+
d2f

dη2
, (19)

L2(θ) =
d2θ

dη2
− θ. (20)

The above operators have the following properties:

L1(c1 + c2η + c3e
−η) =0,

L2(c4e
η + c5e

−η) =0,
(21)
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where c1, c2, c3, c4 and c5 are arbitrary constants. Within the frame-
work of HAM, we can also choose the following initial approximations:

f0(η) = s+ η +

(
1

1 + β

)
(e−η − 1), (22)

θ0(η) =

(
1

1 + γ

)
e−η, (23)

and the following auxiliary functions

Hf (η) = e−η; Hθ(η) = e−η. (24)

The initial approximations given by Eqs. (22) and (23) must satisfy the
conditions (14). This is the first and foremost requirement for the suc-
cessful application of the package BVPh 2.0. The analytic solutions of
the nonlinear ODEs (12) and (13) under the boundary conditions (14)
can be gained automatically with the help of the auxiliary linear oper-
ators given by Eqs. (19) and (20), the initial approximations given by
Eqs. (22) and (23) and by the auxiliary functions given by Eq. (24). The
solutions f(η) and θ(η) given by the BVPh 2.0 contain two unknown
convergence-control parameters cf0 and cθ0. These convergence-control
parameters are used to ensure the convergence of the series solutions.
These convergence-control parameters play a significant role in the HAM.
It is the convergence-control parameter that differentiates the HAM from
the other analytic approximation methods. Liao and Zhao (2013) used
the following average residual error at themth-order of approximation in
order to decrease the CPU time:

Efm(cf0 , c
θ
0) =

1

N + 1

N∑
j=0

N1

(
m∑
i=0

fi

)∣∣∣∣∣
η=jδη

 , (25)

Eθm(cf0 , c
θ
0) =

1

N + 1

N∑
j=0

N2

(
m∑
i=0

fi,

m∑
i=0

θi

)∣∣∣∣∣
η=jδη

 , (26)

Here N is an integer and N1, N2 are the nonlinear differential operators
defined as:

N1(f) =Pr
∂3f

∂η3
+ f

∂2f

∂n2
+

[
1−

(
∂f

∂η

)2
]

+ (Ω +M2)

[
1− ∂f

∂η

]
,

N2(f, θ) =

(
1 +

4

3
R

)
∂2θ

∂η2
+ f

∂θ

∂η
− λ∂f

∂η
θ.

(27)
The total error for the mth?order of approximation is defined as follows:

Etm(cf0 , c
θ
0) = Efm(cf0 , c

θ
0) + Eθm(cf0 , c

θ
0). (28)

It may here be emphasized that all the boundary conditions are linear and
are being satisfied exactly. Further, the optimal values of cf0 and cθ0 at the
mth?order of approximation are determined by the minimum of the total
error Etm . This is done simply by using ‘GetOptiVar’- a command of
the package BVPh 2.0.

4. RESULTS AND DISCUSSION

Table 1 Optimal convergence-control parameters at different orders of
approximation in the case of Pr = Ω = s = R = λ = 1,
M = 2 and α1 = −0.5.

m (order of
approximation) ~f ~θ Etm

1 -0.508917 -0.44336 4.5× 10−1

3 -0.559375 -0.653415 1.73965× 10−2

6 -0.582061 -0.716945 7.17604× 10−4

Table 2 Averaged squared residual error using hf = −0.198367 and
hθ = −0.73158 where Pr = 7,Ω = M = 2, s = R = λ =
1, β = 0.3 and γ = 0.2

m 10 20 30 40
(order of approximation)

Eθm 1.12917 2.17521 1.11802 4.74592
×10−4 ×10−4 ×10−5 ×10−6

Etm 1.43183 5.30636 2.4316 1.00506
×10−4 ×10−5 ×10−6 ×10−6

Efm 2.561 7.48157 1.36118 5.7598
×10−4 ×10−5 ×10−5 ×10−6

Table 3 Validation of values of f ′′(θ) for different values of M and s at
Pr = 1,Ω = 0, and β = 0

s M Present Bhatti et al. Kechil and Yih
Result (2016) Hashim(2009) (1998)

−1

0 0.756575 0.7565 0.7559794662 0.756575
1 1.116421 1.1164 1.1164292350 1.116421
2 1.877621 1.8776 1.8776221492 1.877620
5 4.667525 - 4.6675255187 4.66752

10 9.585914 - 9.5859131993 9.585913

0

0 1.232586 1.2325 1.230652493 1.232588
1 1.585331 1.5853 1.5852039585 1.585331
2 2.346663 2.466 2.3466635110 2.346663
5 5.14793 - 5.1479646025 5.147964

10 10.074742 - 10.074741096 10.074741

1

0 1.889312 1.8893 1.8846843733 1.889314
1 2.202933 2.2029 2.2014335458 2.202940
2 2.920110 2.92029 2.9201142028 2.920111
5 5.676830 - 5.6768303421 5.676830

10 10.588367 - 10.5883674767 10.588367

The system of nonlinear ODEs Eq. 12 and 13 with the bound-
ary conditions 14 has been solved analytically by employing the HAM
approach. For the service of the purpose, the Mathematica BVPh 2.0
package has been used successfully. Without any loss of generality, we
have considered the following values of the governing parameters: Pr =
7,Ω = M = 2, R = λ = s = 1, β = 0.3 and γ = 0.2; in order to
obtain the corresponding optimal convergence-control parameters using
the command “GetOptiVar”of the package BVPh 2.0. These values for
upto the 6th approximations are listed in Table 1. Here, the total error
Etm could be decreased to 8.12084 × 10−4 with the help of the corre-
sponding optimal convergence-control parameters hf = −0.198367 and
hθ = −0.73158.

As is clear from Table 1, the residual error of each governing equa-
tion decreases after using these optimal convergence-control parameters
gained at the 6th-order of approximation. Thus, we succeed in getting
the convergent analytic solution for the considered problem in the case as
mentioned above.

On similar lines, the convergent analytic approximations correspond-
ing to different physical parameters have also been obtained by means of
BVPh 2.0. The Tables 3 and 4 depict the validity of the package for
the considered two-dimensional MHD stagnation-point flow. In Table 3,
the values of the local skin friction coefficient (f ′′(0)), obtained in re-
spect of different values of the magnetic parameter and suction/blowing
parameters, are in excellent agreement with the corresponding values ob-
tained by Bhatti et al. (2016), Kechil and Hashim (2009) and Yih (1998).
Likewise, the values of the local Nusselt number for different values of
the wall temperature exponent in case of suction/blowing are in precise
agreement with the corresponding values of Kechil and Hashim (2009)
and Yih (1998). This is obvious from Table 4.
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Table 4 Validation of values of−θ′(0) for different values of M and s at
Pr = 1, Ω = 0, and β = 0

λ s M Present Result Kechil and Yih (1998)
Hashim(2009)

0

-1
0 0.11675 0.11677 0.116752
1 0.1400 0.14000 0.140002
2 0.17312 0.17312 0.173124

0
0 0.57046 0.57035 0.570465
1 0.59535 0.59539 0.595346
2 0.63413 0.63418 0.634132

1
0 1.32368 1.32368 1.323691
1 1.33804 1.33804 1.338060
2 1.36446 1.36446 1.364466

The Figs. 2-8 elaborate the characteristics of the flow and heat trans-
fer for different values of Prandtl number (Pr), permeability parameter
(Ω), magnetic parameter (M ), suction/blowing parameter (s), velocity
slip parameter (β), radiation parameter (R) , exponent of wall tempera-
ture (λ) and thermal slip parameter (γ).

The Fig. 2 illustrates the effects of Pr and s on the velocity and tem-
perature profiles in the presence of slip parameters. The figure shows that
the velocity profile decreases and temperature profile increases for in-
creasing values of Pr in both the cases of suction and blowing. When the
thermal diffusivity dominates (i.e. when Pr < 1), the velocity profiles
come closer to the wall and there exists free stream velocity throughout
the boundary-layer.

Furthermore, the Prandtl number (Pr) plays a significant role in
controlling the thicknesses of thermal and momemtum boundary-layers.
The thermal boundary-layer thickness decreases in case of increasing
Prandtl number and suction/blowing parameter. This happens simply due
to the fact that the higher values of the Prandtl number correspond to the
weaker thermal diffusivity. This results in a thinner thermal boundary
layer. From Fig. 2, it is again evident that the temperature gradient at
the surface at large values of Prandtl number is less as compared to that
corresponding to the small values of the Prandtl number. This, in other
words, means that there is less heat transfer at the surface if the blowing
is strong enough. As a matter of this fact, we conclude that rate of heat
transfer at the surface can be controlled by way of applying sufficiently
strong blowing. The Fig. 3 describes graphically the effects of porosity of
medium, and suction/blowing (s) on velocity and temperature profiles by
considering the presence of velocity and thermal slips. It has been found
that both the velocity and the thermal boundary-layer thicknesses show a
decreasing trend with the increasing values of the permeability parameter
(Ω). Further, as is obvious from Fig. 3, the sensitivity of the velocity
profile towards permeability parameter is more as compared to tempera-
ture profile. In case of suction, the effect of permeability parameter on
temperature profile is almost negligible.

The Fig. 4 illustrates the effects of magnetic parameter (M) and suc-
tion/blowing (s) on the velocity and temperature profiles in the presence
of velocity and thermal slips. The velocity profile shows an increasing
trend in presence of slips corresponding to the increasing values of mag-
netic parameter. This occurs because of the fact that the magnetic force
increases the fluid motion in the boundary-layer due to the presence of
the term ( ue−u) in the momentum equation. This term remains positive
in the boundary-layer region. Here, a drag-like force called the Lorentz
force is produced by the electrically conducting fluid. The Lorentz force
is always associated with the magnetic field that makes the boundary-
layer thinner. On the contrary, the temperature profiles show a decreasing
trend. Moreover, the effect of magnetic parameter on the temperature pro-
files is more intense in case of blowing than suction. From the Fig. 5, it
is obvious that the velocity profiles exhibit an increasing trend while tem-
perature profiles a decreasing trend with respect to the increasing values

of suction/blowing parameter (s). This proves the profundity of the effect
of suction/blowing parameter on the boundary-layer thickness. The suc-
tion reduces the thermal boundary-layer thickness while blowing thickens
it. As a result, the process of suction can be used effectively for fast cool-
ing. As the thermal boundary thickness increases with strong blowing,
the heated fluid moves farther from the wall and forms an insulating layer
of nearly the same temperature as that of the wall. This results into a
decrease in the heat transfer rate from the wall, and hence leads to slower
cooling.

The Fig. 6 makes the graphical representation of the effects of veloc-
ity slip and suction/blowing on momentum and thermal boundary-layer
thicknesses. On the expected lines, the velocity is lower in case of no-slip
as compared to that in case of slip. Further, the temperature of the fluid
decreases from no-slip condition to slip condition. Thus, an increase in
slip parameter, results into a decrease both in the momentum and ther-
mal boundary-layer thicknesses. Also, the effect of slip on temperature
profile in case of suction is less pronounced in comparison to that in case
of blowing. The fluid velocity remains unaffected of the variations in the
values of radiation parameter (R), wall temperature exponent (λ) and
thermal slip (γ). This is simply because of the flow problem being un-
coupled from the thermal problem.

From the Fig. 7, it is concluded that the thermal boundary layer
thickness and the temperature distribution increase with the increasing
values of the thermal radiation parameter. This is due to the fact that the
divergence of the radiative heat flux (i.e. ∂qr

∂y
) increases along with the

decreasing values of the Rosseland radiative absorptivity (k1). This, in
turn, shows an increase in the rate of radiative heat transfer to the fluid.
This causes the fluid temperature to increase. In view of this fact, the
effect of radiation becomes more significant asR→∞, and the radiation
effect is negligible as R→ 0.

In the Fig. 8, the effect of wall temperature exponent on thermal
boundary layer has been investigated, and it has been found that the tem-
perature shows a decreasing trend as the wall temperature exponent in-
creases. In this case, the thermal boundary layer becomes thin. Further,
from the Fig. 8, the increase of thermal slip (γ) results into a decrease in
thermal boundary layer thickness.

Fig. 2 Effect of Pr on velocity and temperature profiles.

5. CONCLUSION

The present study is carried out to analyze the two dimensional steady
MHD laminar forced Hiemenz flow and heat transfer over a flat plate in
a porous medium with varying wall temperature by considering the radi-
ation effect and partial slip conditions. The analysis has been done with
the help of BVPh 2.0 package based on the homotopy analysis method
(HAM). The effects of the governing parameters Pr,Ω,M, s, β,R, λ
and γ on the velocity and temperature profiles are examined in details.
The following significant conclusions are drawn from the analysis:
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Fig. 3 Effect of Ω on velocity and temperature profiles.

Fig. 4 Effect of M on velocity and temperature profiles.

1. An increase in Prandtl number (Pr) decreases the fluid velocity
and hence enhances momemtum boundary layer thickness.

2. The velocity profile is an increasing function of the parameters
Ω,M, s and β.

3. The fluid flow is decelerated by increase in Pr.

4. The thermal boundary layer thickness exhibit increasing trend along
with Pr and R.

5. An increase in parameters Ω,M, s, λ and γ reduces the tempera-
ture profile.
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NOMENCLATURE

a,A constants
am,k, bm,k coefficients used in Eqs. (18) and (19))
B0 applied magnetic field
c1, c2, c3, the arbitrary constants used in Eqs. (21)
c4, c5
cf0 , c

θ
0 convergence-control parameters

cp specific heat at constant pressure (J/kg.K)
D temperature slip factor
f dimensionless stream function
f0(η) initial approximation of f
fm(η) mthorder approximation of f

Fig. 5 Effect of s on velocity and temperature profiles.

Fig. 6 Effect of β on velocity and temperature profiles.

Hf (η), auxiliary functions
Hθ(η)
k coefficient of thermal conductivity (W/mK)
k1 absorption coefficient
L1(f), auxiliary linear operators defined in Eqs. (19), (20)
L2(θ)
M magnetic parameter
N Navier’s constant slip length
N1,N2 nonlinear differential operators defined in Eq. (27)
P pressure
Pr Prandtl number
qr radiative heat flux (kW/m2)
R radiation parameter
s mass transfer parameter
T temperature of the fluid (K)
T∞ ambient temperature (K)
u, v velocity components in x- and y-directions (m/s)
uslip velocity slip
ue free stream velocity(m/s)
vw uniform surface mass flux
x-axis axis parallel to the plate
y-axis axis perpendicular to the plate

Greek Symbols
α thermal diffusivity
β dimensionless velocity slip parameter
η similarity variable
Efm(cf0 , c

θ
0) average residual error at the mth-order of approximation

Eθm(cf0 , c
θ
0)

γ dimensionless thermal slip parameter
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Fig. 7 Effect of R on temperature profile.

Fig. 8 Effect of λ on temperature profile.

λ exponent of the wall temperature
µ coefficient of fluid viscosity
ν kinematic viscosity
Ω permeability parameter
ψ stream function
ρ density (kg/m3)
σ electrical conductivity
σ1 Stefan-Boltzmann constant (W/m2 · K4)
θ dimensionless temperature
θm(η) mthorder approximation of θ
θ0(η) initial approximation of θ

Subscripts
w condition at wall
∞ ambient enviroment
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