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ABSTRACT 

In the current paper, a finite element computational solution is conducted for MHD double diffusive flow characterizing dissipative micropolar mixed 

convective heat and mass transfer adjacent to a vertical porous plate embedded in a saturated porous medium. The micropolar fluid is also chemically 

reacting, both Soret and Dufour effects and also heat absorption included. The governing partial differential equations for momentum, heat, angular 

momentum and species conservation are transformed into dimensionless form under the assumption of low Reynolds number with appropriate 

dimensionless quantities. The emerging boundary value problem is then solved numerically with an efficient computational finite element method 

employing the weighted residual approach. The influence of various emerging physical parameters like thermal Grashof number, solutal Grashof 

number, Magnetic body force parameter, permeability parameter, radiation parameter, heat absorption parameter, Eckert number, Schmidt number, 

Soret and Dufour effects and first order chemical reaction parameter are examined, we observed that the microrotation velocity profiles do not show 

uniform variations with Eringen vortex viscosity parameter and graphical results visualize the velocity of a Newtonian fluid is lower as compared with 

a micropolar fluid one. Furthermore, finite element code is benchmarked with the results reported in the literature to check the validity and accuracy 

under some limiting cases and excellent agreement is seen with published solutions. Finally, results of skin friction coefficient, couple stress coefficient, 

Nusselt number and Sherwood number for invoked parameter are tabulated which shows that Sherwood number is enhances with increasing Soret 

number and homogeneous chemical reaction. Nusselt number is increased with an increase of Eckert number and Dufour number. 

Keywords: Soret- Dufour effects, chemical reaction, micropolar fluid, mixed convection, finite element method.  

 

1. INTRODUCTION 

 

Modern fluid dynamics is an area of research provides a multi-

disciplinary plat form for theoretical computational based investigations. 

Different materials exist which exhibit a considerable range of shear-

stress strain relational ship which does not obey classical Newtonian 

fluids i.e. Navier-Stokes equation, which are called as polar fluids. 

Development in this area was pioneered by Eringen (1996), also Eringen 

(1972) provided summary of thermodynamics and hydro-dynamics of 

micropolar fluid Eringen (2001). Interesting aspects of theory and 

applications of micropolar fluids can be found in book by Lukaswiascz 

(1999), review articles by Ariman et al. (1973, 1974). These 

investigations have addressed numerous multi-physical phenomena 

including thermal dispersion, thermal radiation, electrophoresis, wavy 

surfaces, body rotations, oscillatory flow, squeezing hydrodynamics, 

fluid dynamic stability and magnetohydrodynamics. Micro-inertia itself 

is not important, some properties of microstructure do play vital role in 

determining the structure of boundary layer Peddieson (1968), Na and 

Pop (1997). Gupta et al. (2014) presented finite element analysis for 

microstructural boundary layer flow over stretching sheet. Recently, 

Bilal et al. (2017) demonstrated the boundary layer flow of magneto-

micropolar nanofluid. 
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A Wide range of research has been implemented to study 

magnetohydrodynamics (MHD) effects in different fluids at different 

situations, which deals the interaction of conducting fluids with 

electromagnetic phenomena. Heat transfer flow of an electrically 

conducting micropolar fluid under influence of magnetic field on 

boundary layer in porous and non-porous media is exploited in numerous 

modern industrial processes including energy generators, ionized 

propulsion system, vortex control Chen et al. (2012) etc. Magento-

micropolar flow are therefore greatly relevant to such systems. Pal and 

Talukdar (2012) used a perturbation technique to investigate unsteady 

MHD mixed convection periodic flow, heat and mass transfer in 

micropolar fluid with chemical reaction in the presence of thermal 

radiation. Reddy (2012) investigated magnetohydrodynamic and 

unsteady convection flow of micropolar fluid past a vertical porous plate 

with variable wall heat flux and also studied an unsteady 

magnetohydrodynamic radiative-convective flow of a micropolar fluid 

past a vertical porous plate with variable heat and mass fluxes Reddy 

(2013). Gupta et al. (2014) who used a variational finite element method 

to investigate strong radiative flux in both free and forced convection of 

micropolar liquids. However, it is worthwhile to mention the contribution 

made by several authors in this regard with numerical or analytical 

approach are Hayat and Qasim (2014) used Homotopy analysis to study 

thermal radiation effects on magnetohydrodynamic flow of micropolar 

fluid. Gupta et al. (2014) used variational finite element method to study 
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mixed convection flow of micropolar fluid over stretching sheet. Hayat 

et al. (2016) investigated magnetohydrodynamic peristaltic flow of 

micropolar fluid in curved channel, further Hayat et al. (2017) analyzed 

the magnetohydrodynamic flow of micropolar fluid over curved 

stretching surface. Recently, Bakr and Chamkha, (2016) employed small 

perturbation technique to investigate effects of variable heat flux and 

thermal radiation in rotating micropolar fluid. Ahmad et al. (2017) used 

Laplace transform technique to examine magnetohydrodynamic flow of 

micropolar fluid over oscillating vertical plate. Srinivasa Raju et al. 

(2016) studied both numerical and analytical solutions for exponentially 

moving vertical plate. Srinivasa Raju et al. (2017), Srinivasa Raju et al. 

(2017) used finite element method to examine Casson fluid flow over an 

inclined plate. Viscous dissipation term is conventionally neglected in 

most of investigations because of Eckert number is small based on an 

order of magnitude analysis, hence study of viscous dissipation is 

important in various physical aspects who consider are Han and Lee 

(2007) examined viscous dissipation effects in micro-channel 

theoretically in a fully developed laminar flow region. Das (2014) 

conducted a numerical investigation in magnetohydrodynamic mixed 

convection flow under chemical reaction and viscous dissipation effects. 

Siva reddy and Shamshuddin (2015) presented viscous dissipation 

effects in rotating micropolar fluid. Singh and Kumar (2016) numerically 

investigated the thermal radiation, viscous dissipation and heat 

generation or absorption effects over stretching surface of a micropolar 

fluid. 

In the above investigations, the effect of Soret and Dufour in 

hydromagnetics has been excluded. However, in many physico-chemical 

heat and mass transfer studies, related to both Newtonian and non-

Newtonian fluids, thermo-diffusion (Soret) and diffuso-thermo (Dufour) 

effects play a prominent role. These effects are often of smaller order of 

magnitude in comparison with the diffusive effects associated with 

thermal conduction (Fourier’s law) and mass diffusion (Fick’s laws) and 

are frequently neglected. However, these so-called cross diffusion effects 

become important if not dominant, in materials processing operations 

e.g. dendritic growth (Tsai and Huang, 2009), MHD power generators, 

magnetic separation of colloids, and aerospace combustion and flame 

dynamics where they arise in binary gas and supercritical fuel injection 

systems. Generally, when heat and mass transfer effects occur 

simultaneously in a moving fluid, the relationship between the fluxes and 

the driven potentials become significant. An energy flux can be generated 

not only by temperature gradient but also by composition gradient as 

well. The energy caused by a composition gradient is called the Dufour 

effect or diffusion- thermo effect.  The energy caused by a temperature 

gradient is called the Soret effect or thermo-diffusion effect. The thermal 

Soret effect can for example also generate a very strong coupling force 

between the species (solute) and heat transport. Due to the significance 

importance of Soret and Dufour diffusion phenomena for fluids with 

medium molecular weight as well as very light molecular weights, in 

recent years’ substantial interest has emerged in simulation of these 

effects in many multi-physical transport problems. Postelnicu (2004) 

considered magnetic free convection in porous media with Soret and 

Dufour effects. Alam and Rahman (2005) investigated combined Dufour 

and Soret effects on hydromagnetic natural convection flow in a porous 

medium. Further studies of Newtonian flows with Soret/Dufour effects 

include Partha et al. (2006) for non-Darcian thermal convection, Alam 

and Ahammed (2011) for variable heat and mass flux effects, and 

(Aurangzaib et al. 2013) for mixed convection stagnation point flow, 

Srinivas Raju et al. (2016), Jithender Reddy et al. (2017) for vertical and 

inclined plates. Non-Newtonian heat and mass transfer with Soret and/or 

Dufour effects has also attracted some attention. Odelu and Naresh 

kumar (2016) used a quasi-linearization technique for mixed convection 

flow of micropolar fluid between porous parallel plates with soret and 

dufour effects. Other representative studies include Kundu et al. (2015) 

Shamshuddin (2016), Shamshuddin and Thirupathi (2017) for 

micropolar fluids. 

In the present investigation, we generalize and extend existing 

studies Reddy (2012, 2013) to consider the combined effects of Soret and 

Dufour cross diffusion, heat absorption, first order chemical reaction and 

viscous dissipation on radiative magnetohydrodynamic micropolar flow, 

heat and mass transfer from a vertical plate adjacent to a porous medium 

with variable heat and mass fluxes. The non-dimensional conservation 

equations are solved with a finite element method. The effect of various 

physical parameters on the velocity, micro-rotation velocity, temperature 

and concentration profiles as well as on local skin friction coefficient, 

wall couple stress, Sherwood number and Nusselt number are tabulated. 

Validation of the analysis has been performed by comparing the present 

results with those of Reddy (2013). The current study is relevant to high 

temperature electromagnetic rheological flows in energy generators and 

magneto-rheological materials fabrication systems (where thermal 

radiation heat transfer is also significant) and has not appeared in 

technical literature thus far. 

2. MATHEMATICAL MODELLING 

Consider the two-dimensional, unsteady free convection flow of an 

incompressible and electrically-conducting micropolar fluid, heat and 

mass transfer from an infinite vertical moving porous plate suspended in 

a homogenous, isotropic, porous medium. The physical configuration is 

illustrated in Fig. 1. The vertical plate is assumed to be subjected to a 

constant heat flux, wq  and a constant concentration gradient, wm . A 

magnetic field of uniform strength 0B is applied in a direction parallel 

to the y′ axis which is perpendicular to the flow direction. It is assumed 

that the induced magnetic field is negligible in comparison to the applied 

magnetic field, Cowling (1957). Magnetic Reynolds number is very 

small. The MHD term is derived from an order of magnitude analysis of 

the full Navier-Stokes equation.  

Before we derive the governing equations, the following 

assumptions are made, incompressible flow, time dependent flow, mixed 

convection flow, unidirectional flow, non-Newtonian flow, Darcy’s law 

is assumed and low Reynolds number flow, applied or polarized voltage 

is neglected so that no energy is added or extracted from the fluid by 

electrical means, fluid is gray-absorbing-emitting but non-scattering 

medium, Rosseland approximation is used to describe radiative heat flux 

in x′direction is considered negligible in comparison with that of y′

direction, heat generation and viscous dissipation is present as are Soret 

and Dufour effects, Ohmic dissipation is ignored, magnetic micropolar 

fluid contains a species which is reactive and obeys first order chemical. 

To simplify the formulation of the boundary conditions, we 

assumed the size of holes in the porous plate is significantly larger than 

the characteristic microscopic length scale of the micropolar fluid. It is 

assumed that the plate is infinite in extent and hence all physical 

quantities depend only on y′and t′. 

 
 

Fig. 1: Physical model and coordinate system 
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The governing equations by using Boussinesq approximation for 

this investigation are based on the balances of mass, linear momentum, 

energy, and concentration species. Taking into consideration the 

assumptions made above, these equations can be written in Cartesian 

frame of reference, as follows: 
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It is assumed that the porous plate moves with a constant velocity in 

the longitudinal direction, the free stream velocity follows an 

exponentially increasing (or) decreasing deviate slightly and the plate 

temperature and suction velocity differ exponentially with time, under 

these assumptions following spatial and temporal boundary conditions 

are:  
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where B and E  are real positive constants.εis a small quantity, 

such that ,B 1<<ε 1<<Eε  and n′is constant. Integrating the mass 

conservation (continuity) equation (1) for variable suction velocity 

normal to the plate we consider a convenient solution to be: 


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where A is real constant such that 1<<Aε and 0V is the normal 

velocity at the plate, negative sign indicates the suction velocity is 

directed towards the plate.  Following Rosseland’s approximation 

(Brewster, 1992), the radiative heat flux term is given by  
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The assumed Rosseland model is quite accurate for optically-thick 

media for the present analysis where thermal radiation propagates a 

limited distance prior to encountering scattering or absorption. The 

refractive index of the fluid-particle suspension is assumed to be 

constant, intensity within the fluid is nearly isotropic and uniform and 

wavelength regions exist where the optical thickness is usually in excess 

of five also eqn. (8) results in a highly nonlinear energy equation in T and 

it is difficult to obtain a solution. However, researchers have resolved 

this problem by assuming small temperature differences with in the fluid 

flow Adunson and Gebhert (1972), Raptis and Perdikis (1998). In this 

situation, Rosseland’s model can be linearized about ambient 

temperature ∞′T assuming that the difference in the temperature with in 

the flow such that 
4

T ′ can be expressed as linear combination of the 

temperature. Using Taylor’s series expansion about T ′  the expansion of  

4
T ′  can be written as follows, neglecting higher order terms:   
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Now simply replacing 
3

T in Eq. (8) with 3
∞T , Eq. (4) can be expressed 

as follows: 
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Outside the boundary layer Eq. (2) gives  
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Introducing the following non-dimensional variables:    

( )
( )

( )
( )

( ) ( )

( )
















































′
===

∞
′−′

=
′

=
∞

==

∞
′−′

=
∞
′−′

===

′
==

Λ
=+′=′

Λ
+=

′

=

∞′−′

∞′−′
=

∞
′−′

∞
′−′

=
′

=

′
=

∞
′

=
∞

′
=

′
=

′
=

′
=

,

o
V

v
r

K

,

wm
m

T

wqTKmD
Sr,

cpcswq

wmTK
m

D

uD

,
T

w
TpC

oU
Ec,

o
VCp

vQ
H,

kk

T
F,

mD
Sc

,

o
V

o
U

C
w

Ccg

Gm,

o
V

o
U

T
w

Tfg

Gr,
CpCp

Pr

,

K
o

V

K,

V

o
B

M,,jj

,

jV

j,

wmC
w

C

mDVCC
,

wqT
w

T

VkTT

,
Vn

n

,

V
o

U

,

U

U

U,
Vt

t,
yV

y,
V

v
v,

V

u
u

2

2

23

3
16

22

2

2

2

0

2

2
1

2
0

2

2

000
2

0

00

2
00

00

γ
κνν

ρ

σν

νβνβ

κ

µ

κ

ρν

νρ

σ

µ
β

β
µµγ

ν

φθ
ν

ων
ω

νν

(14) 

In view of Eqs (6) - (14) the governing equations (2) - (5) and 

dropping primes yields the following dimensionless equations: 
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 is the dimensionless gyro-viscosity 

micropolar material parameter ( )( ).K/MN 1+= The boundary 

conditions can be written in non-dimensional form as follows: 
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The mathematical statement of the problem is now complete and 

embodies the solution of Eqs. (15) -(18) focus to boundary conditions 

(19). Once the key variables are computed, a number of wall gradient 

functions may be automatically evaluated. For materials processing 

operations the physical quantities of principal interest are the wall skin-

friction components (plate shear stress), wall couple stress components 

(micro-rotation gradient), Nusselt number (wall heat transfer rate) and 

Sherwood number (wall mass transfer rate): 
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In addition to that rate of heat transfer and rate of mass transfer at the 

surface of wall are  
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The following skin friction, wall couple stress, Sherwood number and 

Nusselt number in non-dimensional for are  

Skin-friction components are obtained as 
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The couple stress coefficient at the plate, which in the non-dimensional 

form is given by 
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Nusselt number is computed as, which in the non-dimensional form is 

given by 
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Sherwood number is evaluated as, which in the non-dimensional form 

is given by 
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where ν/xoVxRe =  is the Reynolds number. 

3. GALERKIN FINITE ELEMENT NUMERICAL 

SOLUTION 

The finite element method (FEM) is employed to solve the transformed, 

coupled boundary value problem defined by eqns. (15)- (18) under (19). 

FEM is the most versatile technique available for engineering analysis 

and equally adept at handling ordinary or partial differential equations as 

well as integral equations. The general details of the variational finite 

element method are documented succinctly in (Reddy, 1985; Bathe, 

1996). FEM has been applied to study many complex boundary value 

problems in micropolar fluid mechanics Norrie and De Vries (1978). 

Micropolar heat and mass transfer applications also include Beg et al. 

(2008), Bhargava et al. (2016). The fundamental steps involved in the 

finite-element analysis of a problem are as follows:  

• Discretization of the infinite fluid domain into finite elements  

• Derivation of element equations 

• Assembly of Element Equations 

• Imposition of boundary conditions 

• Solution of assembled equations 

The final matrix equation obtained can be solved by any efficient 

iterative scheme. 

 

3.1 Variational Formulation 

The variational formulation associated with Eqns. (15) - (18) over a 

typical two-node linear element ( )1+ee y,y  is given by: 
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where 






 += ntAeA ε11 , dt/dUA ∞=2 ( )β+= 13A , ( )β24 =A

( )FA += 15 and ,w1 ,w2 ,w3 4w are arbitrary test functions and may be 

viewed as the variations in ,u ω ,θand φ  respectively. After dropping the 

order of integration and non-linearity, we arrive at the following system 

of equations 
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3.2 Finite Element Solution 

The finite element model may be obtained from Eqs. (28) - (31) by 

substituting finite element approximations of the form: 
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with ),p,.....,i(wwww
e
j 214321 ===== ψ  where ,u

e
j and,

e
j

e
j θω  

e
jφ  

are the velocity in the direction of x-axis, y-axis and temperature 

respectively at the th
j  node of typical the  element ( )1+ee y,y . 

In our computations, the shape functions for a typical element ( )1+ee y,y , 

the global coordinates are represented as below 
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The finite element model of the equations for the the  element thus 

formed is given by.  
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In general, to verify that the converged solutions are indeed correct, 

i.e. to guarantee grid (mesh) independency, a grid refinement test is 

carried out by dividing the whole domain into successively sized grids 

81x81, 101x101 and 121x121 in the z-axis direction. Furthermore, the 

finite element code is run for different grid sizes and for a grid size of 

101x101 the solutions are observed to achieve mesh independence. 

Therefore, for all subsequent computations, a grid size of 101 intervals is 

elected, with equal step size 0.01. At each node 4 functions are to be 

evaluated and after assembly of element equations, a set of 404 non-

linear equations are obtained. These are solved with an iterative scheme 

by introducing the boundary conditions. Finally, the solution is assumed 

to be convergent whenever the relative difference between two 

successive iterations attains a prescribed value i.e. the iterative process is 

terminated when the following condition is fulfilled: 

61 10−+ ≤−
j,i

nn ξξ                                                           (40) 

where φθωωξ ,,,,v,u 21= and n denotes the iterative step. This criterion 

maintains high accuracy for coupled multi-physical boundary layer 

equations.  

 

 

4. VALIDATION OF FINITE ELEMENT NUMERICAL 

RESULTS 

To verify the accuracy and validity of the numerical results employed by 

the weighted residual approach and the Galerkin finite element method, 

the results have been compared to the analytical solutions for local skin 

friction coefficient and wall couple stress coefficient reported by Reddy 

(2013) for different values of ,Gr ,Gm ,M Pr, F and Sc  through Table 

1. These solutions negate thermal radiation, viscous dissipation and 

homogeneous chemical reaction effects, since these terms were ignored 

in the model of Reddy (2013). Generally, very good correlation is 

achieved. 

 

 

 

 

Table 1: Comparison of Skin friction fC and wall couple stress mC when 00000 ===== γ,Sr,Du,Ec,H  

 Reddy (2013) FEM results 

Gr

 

Gm

 

M

 

Pr  F  Sc

 
fC  mC  fC  mC  

2.0 2.0 2.0 0.71 2.0 0.6 10.2353 4.3700 10.235312 4.370003 

4.0 2.0 2.0 0.71 2.0 0.6 14.3004 6.1820 14.300407 6.182011 

2.0 4.0 2.0 0.71 2.0 0.6 13.0303 5.5462 13.030315 5.546202 

2.0 2.0 3.0 0.71 2.0 0.6 9.5439 4.0442 9.543901 4.044215 

2.0 2.0 2.0 1.0 2.0 0.6 8.8569 3.7888 8.856904 3.788807 

2.0 2.0 2.0 0.71 5.0 0.6 9.0886 3.8868 9.088619 3.886802 

2.0 2.0 2.0 0.71 2.0 1.0 9.0147 3.8569 9.014702 3.856908 

 

 

Table 2: Effect of various parameters on ,C f ,Cm ,Re/Nu x and xRe/Sh for values of ,β ,Ec ,H Du  with

11602710222 ======== γ,Sr,.Sc,F,.Pr,Gm,Gr,M
 

β  Ec  H  Du  fC  mC  xRe/Nu  xRe/Sh  

0.1 0.01 0.5 0.2 0.64221 0.64224 0.41234 0.60090 

0.5 0.01 0.5 0.2 0.61023 0.61025 0.42310 0.60090 

0.5 1.0 0.5 0.2 0.52113 0.52115 0.62013 0.60090 

0.5 0.01 1.0 0.2 0.72901 0.73001 0.42612 0.60090 

0.5 0.01 0.5 0.4 0.83515 0.83520 0.43015 0.60090 

 

 

Table 3: Effect of various parameters on ,C f ,Cm ,Re/Nu x  and xRe/Sh  for values of ,Sc  ,Sr  γ  with 

5050200102710222 .,.H,.Du,.Ec,F,.Pr,Gm,Gr,M ========= β
 

Sc  Sr  γ  
fC  mC  xRe/Nu  xRe/Sh  

0.6 1.0 1.0 2.75227 2.77011 0.56600 1.20142 

0.78 1.0 1.0 2.58409 2.75141 0.56600 1.40125 

0.6 1.5 1.0 2.73133 2.73133 0.56600 1.46551 

0.6 1.0 1.5 2.72114 2.72114 0.56600 1.47919 
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5. RESULTS AND DISCUSSIONS 

 

The nonlinear boundary value problem solved in the previous section is 

dictated by an extensive number of thermal and hydrodynamic 

parameters. In order to gain a clear insight into the physical problem, 

numerical calculations for distribution of the velocity, microrotation 

(angular) velocity, temperature and concentration for different values of 

these parameters is conducted with graphical illustrations (Figs. 2-28). 

For the purpose of our computation, we adopted the following default 

parameters: ,.0010=ε ,.n 10= ,t 1= ,.A 50= ,.B 10= ,.E 10= ,.20=β

,Gr 2= ,Gm 2= ,M 2= ,K 2= ,.Pr 710= ,.Sc 60= ,.F 50= ,.H 10=

,.Ec 010= ,.Du 50= ,.Sr 01= 01.=γ and all the graphs therefore 

correspond to these values,  unless specifically indicated  on the 

appropriate graph. The permeability in all the figures plotted is set at 0.5 

which corresponds to a highly porous regime, characteristic of many 

materials operations and working MHD generators. The value of Pr is 

taken to be 0.71 which corresponds to air at 20°C and 1 atmospheric 

pressure and the value of Sc is 0.6 (water-vapour). Numerical values of 

the coefficient proportional to the skin friction fC , couple stress 

coefficient Cm , Nusselt number Nu  and Sherwood number Sh  are 

given in Table 2 and Table 3 for the general model with all parameters 

invoked. 

Analysis of the tabular data has been presented in Table 2 and Table 

3. Table 2 depicts the effect of Du,H,Ec,β on xRe/Nu,mC,fC and 

x
Re/Sh respectively. It is evident that both skin friction and wall couple 

stress decreases as Ec,β increases while it increases as Du,H increases. 

Further, it is observed that the Nusselt number decreases as H increases 

but it decreases as Ec,β and Du  increases. Sherwood number has no 

effect on Du,H,Ec,β .Table 3, depicts the effect of γ,Sr,Sc  on 

xRe/Sh,xRe/Nu,mC,fC  respectively. The skin friction coefficient 

decreases as γ,Sr,Sc  increases. In case of wall couple stress same trend 

is observed. Further, Sherwood number increases as γ,Sr,Sc increases. 

But Nusselt number shows no variations on .,Sr,Sc γ  

CPU took 6.52 seconds to compute the velocity and angular velocity 

profiles, 5.37 seconds to compute the temperature profiles, 4.96 seconds 

to compute the concentration profiles for 1001 nodal points with the Intel 

CORE i3 processor under windows platform, which are computed by 

using the Matlab command tic; {statements … …} toc; 

Figs 2 and 3 illustrate the influence of the Eringen vortex viscosity 

ratio parameter ( )β on velocity and microrotation velocity profiles across 

the boundary layer. It is observed that the viscosity ratio less than 0.7 and 

fixed flow, the magnitude of the stream wise velocity increases and the 

inflection point for the velocity profiles moves farther away from the 

surface. The numerical results visualize the velocity of a Newtonian fluid 

( )0=β is lower as compared with a micropolar fluid one. When β takes 

the values larger than 0.7, the flow near the porous plate decreases. The 

microrotation velocity profiles do not show consistent variations with β . 

Figs 4 and 5 show the variations in velocity and microrotation 

velocity profiles for various values of thermal Grashof number, Gr . This 

parameter describes the relative magnitude of the buoyancy force and 

viscous force acting on the micropolar fluid. Grashof number 0>Gr

for cooling, 0<Gr for heating and 0=Gr implies absence of free 

convection currents. The velocity magnitudes are evidently enhanced for 

a vertical plate with an increase in thermal Grashof number. Momentum 

boundary layer thickness is therefore reduced. This is due to the 

dominance of buoyancy forces over the viscous forces, which in turn 

induce more flow and hence accelerates the fluid velocities. Furthermore, 

it is also noticed from the figure that the velocity starts with the velocity 

of the plate increases with a distance from the surface, reaches to 

maximum value in the vicinity of the plate, and decrease monotonically 

to zero at the free stream. Conversely an increase in thermal Grashof 

number strongly damps the micro-rotation field i.e. decreases angular 

velocity of the micro-elements. Again values are consistently negative 

indicating a reverse spin in the micro-elements. As with linear velocity, 

in the free stream micro-rotation vanishes and is generally minimized at 

the plate. 

 

 
Fig. 2 Effect of Eringen vortex viscosity parameter ( )β on  

velocity. 

 
Fig. 3 Effect of Eringen vortex viscosity parameter ( )β  on  

micro-rotation. 

 
Fig. 4 Effect of thermal Grashof number (Gr) on velocity. 
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Fig. 5 Effect of thermal Grashof number (Gr) on angular 

velocity 
 

Figs 6 and 7 present the response in linear velocity and micro-

rotation to a variation in species (solutal) Grashof number i.e. Gm . This 

parameter embodies the relative contribution of species buoyancy force 

to viscous hydrodynamic force. With increasing Gm, the mass diffusion 

effect leads to an acceleration in the flow i.e. increase in velocity values 

and an associated decrease in hydrodynamic boundary layer thickness. 

We note that for the case Gm = 0, species buoyancy effect vanishes and 

the momentum eqn. (16) is de-coupled from the species diffusion 

(concentration) eqn. (19). Micro-rotation values are significantly reduced 

with increasing Gm values i.e. increasing species buoyancy (associated 

with greater concentration gradient) exerts a similar influence to 

increasing thermal buoyancy and strongly damps the angular velocity. 

The spin of the micro-elements is therefore markedly inhibited with 

greater buoyancy effects. 

 

 
Fig. 6 Effect of species (solutal) Grashof number (Gm)  

on velocity 
 

Figs 8 and 9 show the pattern of the velocity and angular velocity 

for different values of magnetic field parameter M  . It is observed that 

the amplitude of the velocity as well as the boundary layer thickness 

decreases when M  is increased. Physically, it may also be expected due 

to the fact that the magnetic field exerts a retarding effect on the free 

convective flow and upon increasing the values of M , this type of 

resisting force slows down the fluid, hence it is obvious that the effect of 

increasing values of the parameter M  results in a decreasing velocity 

distribution across the boundary layer. Similarly, in fig. 9 an increase in 

magnetic parameter is observed to significantly decelerate the angular 

velocity i.e. reduce the magnitude of micro-rotation, although the effect 

is more localized at the plate surface and progressively decays further 

from the plate. In both figs. 8 and 9 asymptotically smooth solutions are 

obtained indicating that a sufficiently large infinity boundary condition 

is prescribed in the free stream.  

 

 
Fig. 7 Effect of species (solutal) Grashof number (Gm) on 

angular velocity. 

 

 
Fig. 8 Effect of magnetic body force parameter (M) on  

velocity. 

 

 
Fig. 9 Effect of magnetic body force parameter (M) on 

angular velocity. 

 
Figs 10 and 11 visualize the effect of the porous medium 

permeability parameter (K) on both velocity and microrotation fields. 

This parameter characterizes the hydrauic transmissivity of the porous 
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medium. It arises in the Darcian drag force term in the composite linear 

momentum Eq. (16), viz ( )uK/1− .  With increasing permeability, the 

regime solid fibers progressively decrease. The Darcian bulk impedance 

to flow is therefore also decreased. This results in acceleration in the 

velocity u , as observed in fig. 10. This behavior is sustained across the 

boundary layer i.e. for all values of transverse co-ordinate, y . It is also 

apparent that micro-rotation i.e. angular velocity is enhanced with greater 

permeability parameter although the effect is prominent near the plate 

surface and is weakened with further distance into the boundary layer. 

Since the permeability parameter does not arise in the angular momentum 

conservation (boundary layer) eqn. (17) the accelerating effect on micro-

rotation is sustained via the boost in linear momentum experienced 

through the coupling terms which link both linear and angular momentum 

fields. The increase in permeability implies greater void space in the 

porous medium. This allows an enhancement in gyratory motions as the 

micro-elements are afforded greater space in which to spin. 

 

 

 
 

Fig. 10 Effect of permeability parameter (K) on velocity. 

 

 

 
 

Fig 11 Effect of permeability parameter (K) on  

angular velocity 

 

 
Figs 12 and 13 illustrate the influence of Prandtl number (Pr) on the 

linear velocity and temperature profiles. With greater Prandtl number, it 

is observed in fig. 12, that the velocity is significantly decreased 

throughout the boundary layer. Prandtl number represents the relative 

rate of momentum diffusion to energy diffusion. With Pr > 1 the 

momentum diffusion rate also exceeds the thermal diffusion rate in the 

fluid. Also fluids with higher Prandtl number possess greater viscosities 

and as Pr increases from 0.71 through 1, 2, to 5, the viscous resistance 

leads to depletion in velocity. This will also manifest in an increase in 

momentum (hydrodynamic) boundary layer thickness. Similarly, there is 

a strong depression in temperature with greater Prandtl number (Pr), 

greater Prandtl number corresponds to a lower thermal conductivity. This 

leads to a reduction in thermal energy convected through the fluid from 

the plate (Gr >0 i.e. plate cooling) and also depresses the thermal 

boundary layer thickness.  

 

 
Fig. 12 Effect of Prandtl number (Pr) on velocity 

 

 
Fig. 13 Effect of Prandtl number (Pr) on temperature 

 

 
Fig. 14 Effect of radiation parameter (F) on velocity. 
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Fig. 15 Effect of radiation parameter (F) on temperature  

 
Figs. 14 and 15 present the effect of thermal radiation-conduction 

parameter ( )F on respectively linear velocity and temperature profiles. 

This parameter is defined as kkTF / 3316 ∞= σ  and features in the 

augmented thermal diffusion term in eqn. (18) i.e. ( )
2

2
1

1

y
F

Pr ∂

∂
+

θ . This 

parameter defines the relative contribution of thermal radiation heat 

transfer to thermal conduction heat transfer. When 1>F  thermal 

radiation dominates over thermal conduction, for 1<F  thermal 

conduction dominates. When 1=F  both thermal conduction and 

thermal radiation contributions are equal. For the present simulations, we 

confine attention to the case of 1<F . Fig. 14 clearly reveals that there 

is a strong deceleration in the linear velocity with increasing F  values. 

The energizing of the flow enhances thermal diffusion but counteracts 

momentum diffusion. This leads to an increase in momentum boundary 

layer thickness. A similar observation has been reported by Pal and 

Talukdar (2012). Increasing radiation-conduction parameter is also 

found to decrease temperatures in the boundary layer (fig. 15). Thermal 

boundary layer thickness is therefore also reduced with greater values of

F . 

 

  
Fig. 16 Effect of heat absorption parameter ( )H on velocity 

 
Figs. 16 and 17 depict the influence of heat generation parameter,

H , on velocity and temperature distribution, respectively in the flow. 

The heat absorption parameter H appearing in (18) quantifies the amount 

of heat absorbed per unit volume which is given by ( )∞′−′′ TTQ w , Q′ being 

a constant coefficient, which may take as either positive or negative or 

zero (no heat source/sink). The source term represents heat absorption 

for 0>H and heat generation when 0<H . Physically speaking, the 

presence of heat absorption (thermal sink) effects has the tendency to 

reduce the fluid temperature. This de-energizes the flow and also causes 

a strong deceleration i.e. net reduction in the fluid velocity, as observed 

in Fig. 16. Greater heat absorption ( H ) clearly reduces the temperatures 

in the domain as observed in Fig. 17, and the effect is most prominent at 

the wall. Heat sources and sinks may therefore be utilized to great effect 

in materials processing systems and indeed can be introduced relatively 

easily in porous media. 

 

 

  
Fig. 17 Effect of heat absorption parameter ( )H  on 

temperature 
 

Figs. 18 and 19 illustrate the influence of the Eckert number i.e. 

viscous dissipation parameter (Ec) on velocity and dimensionless 

temperature profiles. Ec expresses the relationship between the kinetic 

energy in the flow and the boundary layer enthalpy difference. It 

embodies the conversion of kinetic energy into internal energy by work 

done against the viscous fluid stresses. It is an important parameter for 

describing real working fluids in MHD energy generators and materials 

processing where dissipation effects are not trivial. Positive Eckert 

number corresponds to cooling of the wall (plate) and therefore a transfer 

of heat from the plate to the micropolar fluid. Convection is enhanced 

and we observe in consistency with that the fluid is accelerated i.e. linear 

velocity is increased in the micropolar fluid. Temperatures are also 

enhanced markedly with greater Eckert number, as shown in Figure 19 

since internal energy is increased due to kinetic energy dissipation.  

 

 

 
Fig. 18 Effect of Eckert number (Ec) on velocity 
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Fig 19 Effect of Eckert number (Ec) on temperature 

 
Fig 20 Effect of Dufour number ( )Du  on velocity. 

 

 
 

Fig 21 Effect of Dufour number ( )Du on temperature 

 
Figs. 20 and 21 depict the evolution in velocity and temperature 

function, respectively, with different values of diffuso-thermal parameter 

i.e. the Dufour number, cpcswq/wmTKmDuD ν= . The 

Dufour effect refers to heat flux produced by a concentration (solutal) 

gradient. The fluid velocity increases with increase in Dufour number as 

seen in fig. 20. The augmented heat flux via the concentration field, 

therefore results in a thinning in the momentum boundary layer 

(acceleration). Increasing diffusion-thermo parameter ( Du ) also 

accentuates the temperature profiles as shown in Figure 21. The 

temperature profiles in the presence of the Dufour effect are higher in 

comparison to in the absence of Dufour effect. The Dufour cross-

diffusion term, 








∂∂+

22
y/Du φ  in the energy (heat) conservation eqn. 

(18) encourages diffusion of heat in the boundary layer via the solutal 

(concentration) gradient. The boundary layer flow is therefore energized 

with increasing Dufour number and thermal boundary layer thickness 

increases considerably in the presence of strong Dufour effects. 

 

 

 
Fig 22 Effect of Schmidt number (Sc) on velocity. 

 

 

 
 

Fig 23 Effect of Schmidt number (Sc) on concentration 

 
Figs. 22 and 23 illustrate the response of velocity and concentration 

profiles to different values of Schmidt number ( )Sc . The Schmidt number 

is a fundamental parameter in species diffusion (mass transfer) which 

describes the ratio of the momentum to the molecular (species) 

diffusivity i.e. D/vSc = . The Schmidt number therefore quantifies the 

relative effectiveness of momentum and mass transport by diffusion in 

the hydrodynamic (velocity) and concentration (species) boundary 

layers. For Sc > 1 momentum diffusion rate exceeds the species diffusion 

rate. The opposite applies for Sc < 1. For Sc =1 both momentum and 

concentration (species) boundary layers will have the same thickness and 

diffusivity rates will be equal. It is observed that as the Schmidt number 

increases both velocity and concentration decreases. The momentum 

boundary layer thickness is also reduced with greater Schmidt number. 

The associated decrease in species diffusivity results in less vigorous 

mass transfer which reduces concentration levels and also depletes the 

concentration boundary layer thickness. Mass transfer therefore exerts 

interplay with the velocity field and the distribution of species in 

materials can be manipulated via the Schmidt number. 
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Fig 24 Effect of Soret number (Sr) on velocity 

 

 
Fig 25 Effect of Soret number (Sr) on concentration 

 
Figs. 24 and 25 present the effect of thermo-diffusive parameter i.e. 

Soret number which is defined as wm/wqTKmDSr κ= ,on the 

translational velocity and concentration distributions, respectively. The 

Soret effect arises where small light molecules and large heavy 

molecules separate under a temperature gradient. Usually this effect is 

important where more than one chemical species is present under a very 

large temperature gradient such as CVD (chemical vapor deposition) in 

polymer materials processing, chemical reactors and energy generators. 

Figure 24 shows that a substantial elevation in  velocity is induced with 

increasing of Sr  and therefore thermo-diffusion assists momentum 

development in the boundary layer, leading to a decrease in momentum 

boundary layer thickness. A marked enhancment in concentration 

profiles increases significantly with an increase of Soret number Sr . The 

Soret cross-diffusion term in the species conservation eqn. (19) i.e. 









∂∂+

22
y/Sr θ , encourages diffusion of solute in the boundary layer via 

the thermal gradient. This results in a significant increase in 

concentration boundary layer thickness.  

Figs. 26 and 27 illustrate the evolution in velocity and concentration 

with a change in chemical reaction parameter ( γ ). The reaction 

parameter is based on a first-order irreversible chemical reaction which 

takes place both in the bulk of the fluid (homogeneous) as well as at plate 

which is assumed to be catalytic to chemical reaction. Although chemical 

reactions generally fall into one of two categories i.e. homogenous or 

heterogenous, the former is of interest in the present study. Homogenous 

chemical reactions take place uniformly throughout a given phase and 

are similar in nature to an internal source of heat generation. We consider 

the destructive type of homogenous chemical reaction. Increasing γ  

values are found, in fig. 26, to instigate a considerable reduction in the 

velocity i.e. flow deceleration. The momentum boundary layer thickness 

is therefore also decreased substantially with greater chemical reaction 

effect. Fig. 27 shows that concentration is also depleted in the boundary 

layer with greater chemical reaction, since more species is destroyed via 

the chemical reaction. This results in a reduction in the thickness of the 

concentration boundary layer. 

 

 
Fig 26 Effect of chemical reaction number (γ) on velocity 

 

 
Fig 27 Effect of chemical reaction number (γ) on concentration 

 

  
Fig 28 Comparison of fluid velocity with (Reddy, 2013). 
 

Finally, Fig. 28 illustrate the comparison between the analytical 

results produced by Reddy (2013) with the present results by an efficient 

numerical method finite element technique, which shows that present 
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results are quite identical with the results obtained by Reddy (2013) in 

the absence of heat absorption, Eckert number, Soret number, Dufour 

number and first order chemical reaction parameter. Hence, finite 

element code is benchmarked with the results reported. 

 

6. CONCLUDING REMARKS 

In this work, motivated by applications in non-Newtonian electro-

conductive materials processing and MHD energy generator systems, a 

multi-physico-chemical model has been developed for unsteady 

hydromagnetic mixed convection flow of an incompressible, micropolar 

fluid from a vertical plate in porous media. Viscous heating, homogenous 

chemical reaction, heat absorption, Soret and Dufour cross-diffusion 

effects have been incorporated into the model. The transformed 

conservation equations for momentum, angular momentum, energy and 

species have been normalized with appropriate variables. The resulting 

nonlinear, unsteady partial differential coupled boundary value problem 

has been solved numerically, under initial and boundary conditions, via 

a variational finite element method with a weighted residual scheme. 

Validation for solutions for selected cases has been conducted with 

earlier studies i.e. Reddy (2013) and excellent correlation achieved, 

testifying to the accuracy of the present numerical code. The finite 

element solutions for the thermofluid variables have been presented 

graphically and a parametric study performed to elucidate the influence 

of all key hydrodynamic, magnetic, thermal and non-Newtonian 

parameters emerging in the formulation. The main findings of the present 

investigation may be summarized as follows 

 

• The flow is decelerated and momentum boundary layer thickness 

increased  with  increasing values of magnetic body force parameter

( )M ,radiation parameter ( )F ,heat absorption para-meter

( )H ,schimdth number ( )Sc  and chemical reaction parameter ( )γ .   

• The flow is accelerated and momentum boundary layer thickness 

decreased  with increasing values of Eringen micropolar vortex 

viscosity parameter ( )β , thermal Grashof number ( )Gr and species 

Grashof number ( )Gm , permeability parameter ( )K , Eckert number

( )Ec , Dufour number ( )Du  and Soret number ( )Sr .  

• The temperature of the micropolar fluid and thermal boundary layer 

thickness are both decreased with increasing radiation parameter, 

Prandtl number and heat absorption parameter. 

• The temperature of the micropolar fluid and thermal boundary layer 

thickness are both increased with increasing  Eckert number and 

Dufour number.  

• Increasing Schimdth number and homogeneous chemical reaction 

of solute in the micropolar fluid decreases concentration and 

reduces concentration boundary layer thickness.  

• Increasing Soret number elevates concentration and enhances 

thickness of concentration boundary layer. 

• With greater thermal Grashof number ( )Gr and species Grashof 

number ( )Gm  an enhancement in both wall skin friction (flow 

acceleration) and wall couple stress coefficient (micro-rotation 

gradient at the plate surface) is sustained. 

• With an increase in ,M  Pr,  ,F Sc  there is initially a significant 

reduction in both wall skin friction, wall couple stress coefficient. 

• The graphical results visualize the velocity of a Newtonian fluid 

( )0=β is lower as compared with a micropolar fluid one. When β

takes the values larger than 0.7, the flow near the porous plate 

decreases. 

• The microrotation velocity profiles do not show uniform variations 

with β . 

• Sherwood number (wall mass transfer rate) is enhances with 

increasing Soret (thermo-diffusive) number, Schmidt number and 

homogeneous chemical reaction.  

• Nusselt number (wall heat transfer rate) is decreased with an 

increase in heat absorption parameter and increased with an 

increase of Eringen micropolar vortex viscosity parameter, Eckert 

number and Dufour number. 

• With an increase in Du,H   there is initially a significant elevation 

in wall skin friction (flow acceleration); however, with further 

increase in γβ ,Sr,Sc,Ec,  there is a subsequent deceleration in the 

flow. 

• Similar trends are observed in wall couple stress as in the case of 

skin friction 

 

The present study has shown that the finite element method is very 

versatile in simulating unsteady micropolar rheo-materials processing 

transport phenomena. However, a relatively simple reaction effects 

restricted to first order. Future studies will consider higher order 

chemical reaction with Nanofluids and will be communicated soon. 
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