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ABSTRACT

A model for two dimensional solidification problems including convection was developed by coupling the Stefan problem with the Stokes problem.
The extended finite element method (XFEM) was used to capture the strong discontinuity in velocity and pressure as well as the jump in heat flux
at the phase change interface. The melting temperature and no-slip condition were imposed on the interface using a Lagrange multiplier and the
penalization method, respectively. The resulting formulations were then coupled using a fixed point iteration algorithm. The model was able to
reproduce the benchmark simulations while maintaining a sharp phase change interface.
Keywords: Phase change, XFEM, Convection

1. INTRODUCTION

The finite element method Reddy (2006) has been extensively studied
and successfully used in a wide variety of scenarios involving continuous
media but particular situations are still problematic. The finite element
method uses a polynomial interpolation within individual elements to ap-
proximate the solution. Consequently, it can only be applied to prob-
lems with discontinuities by splitting the domain into submeshes. This
makes the finite element method ill suited to solve problems involving
discontinuities that are part of the solution or move in time. The Stefan
problem Nedjar (2002); Beckermann et al. (1999); Helenbrook (2013);
Özişik (1993) for the isothermal solidification or melting of a material is
one such situation because of the discontinuous heat flux at the moving
phase change interface. The introduction of convection in the liquid phase
adds to the discontinuous nature of the problem by requiring a zero value
velocity in the solid phase and a non-zero velocity in the liquid phase.

The extended finite element method Belytschko et al. (2001); Dol-
bow et al. (2000); Belytschko et al. (2009) is based on the partition of
unity method Babuska and Melenk (1997); Dolbow et al. (2000); Me-
lenk and Babuska (1996). Using carefully selected functions ψ(x, t), the
technique adds additional degrees of freedom that will “enrich" the inter-
polation and allows the solution to adopt a non-linear behavior. The par-
ticular type of behavior is determined by the enrichment function ψ(x, t),
known a priori. Only nodes having support cut by the interface and have
a modified behavior must be enriched (see figure 1). Consequently, the
additional computational costs are local to the interface. The interface
geometry is stored and transported in a computationally efficient manner,
most commonly using the level set method Osher and Sethian (1988);
Osher and Fedkiw (2001).

Numerous extended finite element models for the solutions of the
classical (diffusive) Stefan problem are found in the literature Chessa
et al. (2002); Bernauer and Herzog (2011); Merle and Dolbow (2002);
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Fig. 1 Enriched node mesh to capture discontinuity Γ

Ji et al. (2002). However, most real-life scenarios involve heat and mass
transfer by convection in the liquid phase Zabaras et al. (2006); Vynny-
cky and Kimura (2007); Brent et al. (1988). The impact of this additional
contribution on the behavior of the phase change interface has been ex-
plored for dendritic solidification in Zabaras et al. (2006), using an ex-
tended finite element formulation for the Stefan problem and a phase-
field formulation for the Navier-Stokes equations. To our knowledge, no
coupled extended finite element formulation for both Stefan and Stokes
(or Navier-Stokes) equations exists in the literature. Such an approach
reduces the algorithm’s complexity, as a single numerical method is used
to model the discontinuities in both problems. Furthermore, the extended
finite element method allows for accurate results with larger mesh sizes
compared to diffused techniques.

For more complex problems, the use of different densities in the
solid and liquid phases for the phase-change problem leads to a mass flux
boundary in the Stokes equations. The explicit interface used in this work
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provides a solid framework for developing such models.
In the work presented here, a coupled formulation using the ex-

tended finite element method for both the Stefan problem and Stokes
equations is developed. The convective term in the energy equation is
obtained from the solution of the Stokes equations and the Boussinesq
approximation is used to generate the natural convection within the liq-
uid, where present. A fixed point iteration scheme is then used to obtain
a converged solution for a given time step.

The paper is divided as follows. The governing equations for the
Stefan and Stokes problems are described in section 2. The finite ele-
ment formulation, level set problem and details concerning the interface
movement and extended finite element method are described in section
3. Benchmark examples are then solved in section 4 to validate the al-
gorithm. To this end, the commercial finite element simulation software
Comsol was used with a moving mesh algorithm to capture the interface
movement. Finally, the paper ends with some concluding remarks.

2. GOVERNING EQUATIONS

2.1. Stefan Formulation

Consider a domain Ω with an initial temperature T (x, t0) and interface Γ
separating solid (Ωs) and liquid (Ωl) phases with different thermal prop-
erties. We suppose that the density is identical in both phases and that
the material has an isothermal phase change at some melting temperature
Tm. Applying the conservation of energy in Ω results in equations

(ρcp)s
∂T

∂t
−∇ · (ks∇T ) = 0 x ∈ Ωs (1a)

(ρcp)l

(
∂T

∂t
+ v · ∇T

)
−∇ · (kl∇T ) = 0 x ∈ Ωl (1b)

T − Tm = 0 x ∈ Γ (1c)

T = T̂ x ∈ ΓD (1d)

−k∇T · n = q̂ x ∈ ΓN (1e)

where cp is the specific heat, k the thermal conductivity, ρ the density
and v the liquid phase velocity. The melting temperature must be applied
on the solid-liquid interface (1c). Dirichlet and Neumann type boundaries
away from the interface are applied on ∂Ω = ΓN ∪ ΓD as usual (1d,1e).

Conservation of energy at the interface requires that the jump in heat
flux normal to the interface (caused by the imposition of the melting tem-
perature) be related to the rate of solidification or melting of the material
as described by

[[−k∇T ]] · nΓ = (kl∇Tl − ks∇Ts) · nΓ = ρLvΓ x ∈ Γ (2)

where L is the latent heat and vΓ the normal interface velocity Özişik
(1993). The normal vector nΓ points from the liquid to solid phase,
meaning that the interface velocity is positive for melting and negative
for solidification.

Tracking the moving interface is done using the level set method Os-
her and Fedkiw (2001); Osher and Sethian (1988). The principle behind
this method is to introduce a new variable φ(x, t) defined as the signed
distance function to the interface:

φ(x, t) = min
xΓ∈Γ

|x− xΓ(t)| sign (nΓ · (x− xΓ(t))) x ∈ Ω (3)

The interface is then easily identified as the set of points where φ(x, t) =
0. In this work, the level set field is constructed so that the liquid phase is
on the positive side of the interface (i.e. x ∈ Ωl if φ(x, t) > 0).

2.2. Stokes formulation

In the present study, the liquid phase velocity v is governed by the Stokes
problem for viscous incompressible fluids:

ρ
∂v

∂t
−∇ · σ − fb = 0 x ∈ Ωl (4a)

∇ · v = 0 x ∈ Ωl (4b)

v = 0 x ∈ Γ (4c)

v = v̂ x ∈ ΓD (4d)

σ · n = σ̂ x ∈ ΓN (4e)

fb = ρβ(T − Tm)g (4f)

σ = −pI + 2µD(v) (4g)

D(v) =
1

2

(
∇v +∇vT

)
(4h)

where p is the pressure, µ the viscosity, fb the buoyancy source term,
β the thermal expansion coefficient and D(v) the rate of deformation
tensor.

The buoyancy force fb term will create natural convection currents
caused by variations in temperature. The density is assumed constant
and identical for both phases (Boussinesq approximation) so no mass
flux is present at the interface and a no-slip condition is applied (4c).
The other physical properties are assumed constant. The initial velocity
field v(x, t0) is assumed divergence-free with a given initial pressure field
p(x, t0). Dirichlet and Neumann type boundaries away from the interface
are applied on ∂Ω = ΓN ∪ ΓD as usual (4d, 4e).

The convection term in the complete Navier-Stokes equations was
removed, leading to two linear systems of equations for the heat transfer
and fluid flow problems. The only non-linearity is in the coupling terms
between the two problems; the convective heat transfer and buoyancy
force.

2.3. Enriched Interpolation Scheme

To account for the jump in heat flux at the interface, the temperature gra-
dient must be discontinuous. Furthermore, the application of the interface
boundary condition (1c), implies that the temperature is continuous at the
interface. This behavior is captured by using the approximation Chessa
et al. (2002)

T (x, t) =
∑
i∈I

NT
i (x) Ti(t) +

∑
j∈J

NT
j (x)ψT

j (x, t) T ∗j (t) (5a)

ψT
j (x, t) = |φ(x, t)| − |φ(xj , t)| (5b)

where NT are the standard interpolation functions, Ti and T ∗j the stan-
dard and enriched degrees of freedom, respectively, and ψT

j (x, t) the en-
richment function, based on the absolute value of the level set field. A
more compact way to write (5) is by use the more standard matrix form

T (x, t) = 〈NT 〉{T} (6a)

〈NT 〉 = 〈NT
1 , N

T
2 , ..., N

T
1 ψ

T
1 , N

T
2 ψ

T
2 , ...〉 (6b)

{T} = 〈T1, T2, ..., T
∗
1 , T

∗
2 , ...〉T (6c)

When using (5) special attention must be given to elements containing
enriched nodes that are not cut by the interface, called blending elements.
A modified interpolation scheme must be used in these elements to main-
tain an optimal convergence rate, as described in Fries (2008); Shibanuma
and Utsunomiya (2009).

In order to capture the jump in the heat flux at the interface, a La-
grange multiplier q will be used Gerstenberger (2010). The interpolation

2



Frontiers in Heat and Mass Transfer (FHMT), 10, 18 (2018)
DOI: 10.5098/hmt.10.18

Global Digital Central
ISSN: 2151-8629

scheme for the Lagrange multiplier is given by

q(x, t) =
∑
i∈I

Nq
i (x) qi(t) +

∑
j∈J

Nq
j (x)ψq

j (x, t) q∗j (t) (7a)

ψq
j (x, t) = H(φ(x, t))−H(φ(xj , t)) (7b)

H(x, t) =

{
1 if φ(x, t) < 0

0 if φ(x, t) > 0
(7c)

where H is a modified Heaviside function.
Following (6), the Lagrange multiplier may be rewritten as

q(x, t) = [Nq]{q} (8a)

[Nq] =

[
Nq

1 ... Nq
dψ

q
d 0 ... 0

0 ... 0 Nq
1 ... Nq

dψ
q
d

]
(8b)

{q} = 〈qx1 , ... , qx∗d , qy1 , ... , q
y∗
d 〉

T (8c)

where [Nq] is the matrix of interpolation functions.
The Stokes equations are valid (and solved) in the liquid phase only.

For this purpose, the fluid-structure interaction approach, proposed in
Gerstenberger and Wall (2008), is used. The velocity and pressure fields
are interpolated using the following scheme:

v(x, t) =
∑
i∈I

Nv
i (x)ψv(x, t) vi(t) (9a)

p(x, t) =
∑
i∈I

Np
i (x)ψv(x, t) pi(t) (9b)

ψv(x, t) =

{
1 if φ(x, t) > 0

0 if φ(x, t) < 0
(9c)

Following (6) and (8), the velocity and pressure fields may be rewritten
as:

v(x, t) = [Nv]{v} (10a)

p(x, t) = 〈Np〉{ p} (10b)

[Nv] =

[
Nv

1 ... Nv
dψ

v
d 0 ... 0

0 ... 0 Nv
1 ... Nv

dψ
v
d

]
(10c)

{v} = 〈vx1 , ... , vx∗d , vy1 , ... , v
y∗
d 〉

T (10d)

〈Np〉 = 〈Np
1 , N

p
2 , ..., N

p
1ψ

v
1 , N

p
2ψ

v
2 , ...〉 (10e)

{p} = 〈p1, p2, ..., p
∗
1, p

∗
2, ...〉T (10f)

When using this interpolation scheme, the solid part of the domain is
ignored. Also, enriched degrees of freedom are not required because no
new information (behavior) is introduced. All velocity and pressure de-
grees of freedom whose support is completely inside the solid domain are
removed from the system of equations.

3. NUMERICAL IMPLEMENTATION

3.1. Stefan Problem

The weak form of the energy conservation equations (1a,1b) is∫
Ω

δTρcp
∂T

∂t
dΩ +

∫
Ωl

δTρcpv · ∇T dΩ +

∫
Ω

∇δT k∇T dΩ = 0

(11)
where δT is the temperature test function. The Neumann boundary con-
dition has been omitted for the sake of clarity. To apply the melting tem-
perature Tm (1c), a stable Lagrange multiplier formulation is used, orig-
inally developed in Gerstenberger and Wall (2010); Baiges et al. (2012)
and applied to the Stefan problem in Martin et al. (2016). The weak form

of the resulting equations is∫
Ω

δTρcp
∂T

∂t
dΩ +

∫
Ωl

δTρcpv · ∇T dΩ +

∫
Ω

∇δT k∇T dΩ

(12a)

−
∫

Γ

δTq · nΓ dΓ = 0∫
Ω

δq ·
(

1

k
q +∇T

)
dΩ−

∫
Γ

δq · nΓ (T − Tm) dΓ = 0 (12b)

where δq is the test functions for the Lagrange multiplier. The Lagrange
multiplier q is defined as a vectorial flux and interpolated on the same
mesh as the temperature field. The projection of this secondary variable
on the interface is then used as a scalar Lagrange multiplier to impose the
melting temperature. This formulation has the advantage of being stable
without the use of additional stabilization terms Gerstenberger and Wall
(2010) and allows an efficient and precise evaluation of the interface flux
jump Martin et al. (2016), required to evaluate the interface velocity (2).

Using a backward Euler scheme for the time derivative of T Fries
and Zilian (2009) in (12) gives:∫

Ω

δTn+1ρ
(cpT )n+1 − (cpT )n

∆t
dΩ +

∫
Ωl

δTn+1ρ (cpv · ∇T )n+1 dΩ

(13a)

+

∫
Ω

∇δTn+1 (k∇T )n+1 dΩ−
∫

Γ

δTn+1qn+1 · nΓ dΓ = 0

∫
Ω

δqn+1 ·
(

1

k
q +∇T

)n+1

dΩ

−
∫

Γ

δqn+1 · nΓ

(
Tn+1 − Tm

)
dΓ = 0 (13b)

where n indicates the previous time step. Note that because the enriched
interpolation functions vary in time, the test functions δT and δq will
vary in time as well and must be evaluated at the current time step in
(13).

After replacing T and q with their approximations we obtain the
system of equations[

[M ] + [C] + [K] −[L]
[Q]− [L]T [Mq]

]{
{T}n+1

{q}n+1

}
−
[
[M ]∗ 0

0 0

]{
{T}n
{q}n

}
(14a)

+

{
0
{fl}

}
= 0

[M ] =
1

∆t

∑
e

∫
Ωe

{NT }n+1ρcn+1
p 〈NT 〉n+1 dΩ (14b)

[M ]∗ =
1

∆t

∑
e

∫
Ωe

{NT }n+1ρcnp 〈NT 〉n dΩ (14c)

[C] =
∑
e

∫
Ωe

l

{NT }n+1ρcn+1
p vn+1[BT ]n+1 dΩ (14d)

[K] =
∑
e

∫
Ωe

([BT ]T )n+1kn+1[BT ]n+1 dΩ (14e)

[Mq] =
∑
e

∫
Ωe

([Nq]T )n+1 1

kn+1
[Nq]n+1 dΩ (14f)

[Q] =
∑
e

∫
Ωe

([Nq]T )n+1[BT ]n+1 dΩ (14g)

[L] =
∑
e

∫
Γe

{NT }n+1[Nq]n+1nΓ dΓ (14h)

{fl} =
∑
e

∫
Γe

([Nq]T )n+1nΓ Tm dΓ (14i)
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where Bij =
∂Nj

∂xi
is the gradient matrix. In elements which are not

cut by the interface, the Lagrange multiplier is weakly coupled with the
temperature gradient but no constraint is present and the system reduces
to:[

[M ] + [C] + [K] 0
[Q] [Mq]

]{
{T}n+1

{q}n+1

}
−
[
[M ]∗ 0

0 0

]{
{T}n
{q}n

}
= 0

(15)

3.2. Stokes Problem

The weak form of the Stokes problem (4) is given as follows∫
Ωl

δv · ρ∂v
∂t

dΩ +

∫
Ωl

2µ D(δv) : D(v) dΩ−
∫

Ωl

(∇ · δv)p dΩ

+

∫
Ωl

δv · fb dΩ = 0 (16a)∫
Ωl

δp∇ · v dΩ = 0 (16b)

where δv and δp are the test functions for the velocity and pressure, re-
spectively. The Neumann boundary condition has been omitted for the
sake of clarity. Using a backward Euler scheme for the time derivative of
v Fries and Zilian (2009) in (16) gives the system of equations:∫

Ωl

δvn+1 · ρ 1

∆t

(
vn+1 − vn) dΩ +

∫
Ωl

2µD(δvn+1) : D(vn+1) dΩ

−
∫

Ωl

∇ · δvn+1pn+1 dΩ +

∫
Ωl

δvn+1 · fn+1
b dΩ = 0 (17a)∫

Ωl

δpn+1 ∇ · vn+1 dΩ = 0 (17b)

Substituting the approximation for the velocity and pressure fields into
(17) leads to the finite element system of equations[

[K] −[D]
[D]T 0

]{
{v}n+1

{p}n+1

}
−
[
[M ]∗ 0

0 0

]{
{v}n
{p}n

}
+

{
{fb}

0

}
= 0

(18a)

[K] = [M ] +

[
[A11] [A12]

[A12]T [A22]

]
(18b)

[M ] =
1

∆t

∑
e

∫
Ωe

([Nv]T )n+1ρ[Nv]n+1 dΩ (18c)

[M ]∗ =
1

∆t

∑
e

∫
Ωe

([Nv]T )n+1ρ[Nv]n dΩ (18d)

[A11] =
∑
e

∫
Ωe

2µ

(
{Bx}n+1〈Bx〉n+1 +

1

2
{By}n+1〈By〉n+1

)
dΩ

(18e)

[A22] =
∑
e

∫
Ωe

2µ

(
1

2
{Bx}n+1〈Bx〉n+1 + {By}n+1〈By〉n+1

)
dΩ

(18f)

[A12] =
∑
e

∫
Ωe

2µ

(
1

2
{By}n+1〈Bx〉n+1

)
dΩ (18g)

[D] =
∑
e

∫
Ωe

〈〈Bx〉n+1〈By〉n+1〉T 〈Np〉n+1 dΩ (18h)

{fb} =
∑
e

∫
Ωe

l

[Nv]n+1ρβ(Tn+1 − Tm)g dΩ (18i)

The no-slip interface boundary condition is imposed using the penalty
method Chessa et al. (2002); Bernauer and Herzog (2011). This tech-
nique multiplies the residual form of equation (4c) by a very large penal-
ization parameter λ and introduces it in the finite element formulation of

the momentum equation. This method is simple to implement and has
proven to be robust for a variety of problems. The formulation for ele-
ments intersected by the interface becomes:[

[K′] −[D]
[D]T 0

]{
{v}n+1

{p}n+1

}
−
[
[M ]∗ 0

0 0

]{
{v}n
{p}n

}
+

{
{fb}

0

}
= 0

(19a)

[K′] = [K] + [P ] (19b)

[P ] =
∑
e

∫
Γe

([Nv]T )n+1λ[Nv]n+1 dΓ (19c)

To solve (18) and (19) the interpolation functions for the velocity
and pressure fields must satisfy the (inf-sup) condition. In this work, a
pair of stable Q2-Q1 quadrilateral elements was used for the velocity and
pressure fields, respectively.

The interpolation scheme (9) is known to cause problems when the
physical domain (liquid phase) covers a very small area of the node’s
support Lang et al. (2014). The small contribution of the concerned de-
gree of freedom causes a significant increase in the condition number of
the global system Lang et al. (2014), leading to divergent solutions. An
efficient solution was developed in Lang et al. (2014). When a degree
of freedom’s contribution to the system is too small, it is removed from
the system. The criteria for removing a degree of freedom is Lang et al.
(2014) (

max
e∈Ei

∫
Ωe

l
Ni(x) dΩ∫

Ωe Ni(x) dΩ

)− 1
2

> Ttol (20)

whereEi is the set of elements connected to node i, Ωe
l the liquid domain

area in the element, Ωe the element area,Ni(x) the interpolation function
and Ttol a user defined tolerance value. The greater the value for Ttol,
the smaller the contribution of the degree of freedom can be before it is
removed.

The stopping criteria (20) is used on a stabilized Q1-Q1 in Lang et al.
(2014), meaning that the velocity and pressure interpolation functions are
identical, bi-linear and positive-semidefinite. The quadratic interpolation
used for velocity in this work however, is not positive-semidefinite. This
means that certain interface positions would lead to near zero integrals
in (20) even when the liquid area is large, because the negative-valued
areas of the interpolation would cancel out the positive-valued areas. To
maintain the original objective of evaluating the relative contribution of
the degree of freedom to the complete element, a modified criteria was
used, given by equation(

max
e∈Ei

∫
Ωe

l
|Ni(x)| dΩ∫

Ωe |Ni(x)| dΩ

)− 1
2

> Ttol (21)

where the absolute value of the interpolation function is used.
Another impact of the use of a Q2-Q1 interpolation scheme is the

difference in integral values for the velocity and pressure fields because of
the different interpolation orders. Consequently, an identical liquid phase
area will lead to different values in (20) or (21) and certain nodes may
have only one variable (velocity or pressure) removed. To alleviate this
problem, different values of Ttol were used for the velocity and pressure
variables and were chosen to increase the probability that if one variable
is removed, so is the other.

Furthermore, in Lang et al. (2014) a preconditioner is applied to the
global system before solving, allowing the use of a higher value of Ttol

while maintaining an optimal condition number and accurate solution.
Considering the relatively heuristic modifications made to the removal
of degrees of freedom caused by the use of a Q2-Q1 formulation and to
simplify the implementation of our model, the preconditioner was not
applied in this work.
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The systems of equations (14) and (18) are coupled through the con-
vection and buoyancy terms, respectively. To obtain a converged solution
for both systems, a fixed point iteration scheme is used. The basic ap-
proach is to alternate between the two problems, using the updated solu-
tion of each problem when solving the other. Once the residuals of both
problems, using the most recent solution, are below a certain stopping
criteria, the global problem is considered converged and the algorithm
proceeds to the next time step.

3.3. Level Set Formulation

Once an initial value φ(x, t0) is defined, the interface movement is gov-
erned by its transport equation

∂φ

∂t
+ v · ∇φ =

∂φ

∂t
+ F‖∇φ‖ = 0 (22a)

F =
∇φ
‖∇φ‖ · v (22b)

where v is the convection velocity and F is the interface speed in the
normal direction. The calculation of F is explained below.

Equation (22) is solved explicitly (forward Euler scheme) with the
finite element method using a linear interpolation. The weak formulation
and time discretization of (22) is given as follows:∫

Ω

δφ
φn+1 − φn

∆t
dΩ +

∫
Ω

δφFn‖∇φn‖ dΩ = 0 (23)

In most applications, the normal component F is only known on Γ.
In order to solve (23) on Ω, a valid value for F must first be constructed
on the entire domain using Chessa et al. (2002):

sign(φ)∇F · ∇φ = 0 x ∈ Ω (24a)

F (x, t) =
∇φ
‖∇φ‖ · vΓ x ∈ Γ (24b)

This approach guarantees that the φ field velocity is everywhere nor-
mal to the interface and is coherent with the interface’s physically deter-
mined velocity. For more details concerning the construction of F see
Osher and Fedkiw (2003); Chessa et al. (2002). In this paper, the inter-
face velocity is based on the jump in heat flux across the phase change
boundary and is described in the following section.

Equation (23) is first order hyperbolic and must be stabilized to min-
imize the presence of oscillations in the solution Chessa et al. (2002);
Bernauer and Herzog (2011). The GLS method is used here Hughes et al.
(1989). The level set method offers several advantages. It is easily ex-
tensible to three dimensions and stores the interface location as a scalar
variable. Furthermore, the level set field can be defined in a small region
surrounding the interface and the level set formulation solved locally, re-
ducing the impact on the total simulation computation time. It is also
robust enough to handle interface merging and breaking naturally Osher
and Fedkiw (2001).

The main disadvantage of the the level set method is its tendency
to deviate from a signed distance function over time Osher and Fedkiw
(2001). This error accumulates with additional time steps and degrades
the quality of the solution, particularly the level set gradient near the in-
terface. This distortion can be a source of error in the numerical solution
of the level set formulation and the physical problem on which it is based.
Therefore, it is necessary to reinitialize φ(x, t) regularly to maintain an
acceptable solution (‖∇φ‖ ≈ 1). Another limitation to the algorithm
presented here is the use of an explicit time scheme for the level set for-
mulation, which limits the size of the time step. The explicit time step
is required in order to determine the nodes to enrich. In other words, the
interface position must be determined before systems (14) and (18) are
solved.

x x

xx

x

x

x
x x

x

x

x

x

x

xx

Γ

Fig. 2 Geometry subdivision for cut element integration

3.4. Interface velocity calculation

The proper evaluation of the interface velocity is crucial in obtaining a
precise and robust model. For this particular problem, the interface ve-
locity is determined by the jump in heat flux at the interface, described in
(2). The use of a Lagrange multiplier to impose the melting temperature
allows the evaluation of the jump in heat flux directly from the Lagrange
field q, given by

vΓ =
[[q]] · nΓ

ρL
=

(ql − qs) · nΓ

ρL
(25)

where qs and ql are the heat fluxes at the interface approaching from the
solid and liquid phases, respectively.

The final algorithm can be described as follows. Assuming a given
time tn, temperature solution Tn, velocity solution vn, pressure solution
pn and level set solution φn, the strategy to solve for Tn+1, vn+1 and
pn+1 consists in the following steps:

1. Compute the interface velocity vn
Γ using (25)

2. Construct F on the level set domain by solving (24)

3. Solve for φn+1 using (23)

4. Solve the coupled Stefan-Stokes problem:

4.1. Solve for Tn+1
i+1 using (14) and vn+1

i

4.2. Solve for vn+1
i+1 and pn+1

i+1 using (18) and Tn+1
i+1

5. Evaluate (14) and (18). If both residuals are below the tolerance
criteria, go to step 6. If not, i = i+ 1 and go to step 4

6. Set tn+1 = tn and go to step 1.

3.5. Numerical Integration

The introduction of discontinuous functions inside elements greatly re-
duces the precision of standard Gaussian quadrature and may lead to a
rank deficient matrix Chessa et al. (2002). An accurate but geometrically
complex solution is to subdivide elements involving discontinuities into
continuous subelements Moes et al. (1999); Chessa et al. (2002); Ger-
stenberger and Wall (2010). Each element is subdivided into a number
of subelements (lines, triangles or tetrahedrons), as shown in figure 2, to
properly fit the contour of the interface (point, line or surface) and ele-
ment boundaries. The integral over the entire element Ie is then the sum
of the integration of each subelement Is using standard Hammer quadra-
ture. It is important to note that subelements carry no degrees of freedom
or interpolation functions. They are only required as a geometrical tool
to construct the element integrals.

In transient problems the location of the quadrature points must
change as the interface moves in time, requiring that every cut element
be subdivided at each time step. However, the subdivision is applied only
to a small number of elements, reducing the overall increase in computa-
tional effort required.
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In transient problems, the interpolation functions at time steps n
and n + 1 are based on different positions of the interface and are dis-
continuous at different places in the element. The integration scheme
for the mass matrix (equations (14c) and (18d)) must take both intersec-
tions into account when generating the integration subelements to ob-
tain optimal convergence Fries and Zilian (2009). This can be difficult
and can significantly increases the number of subelements required to fit
the geometry. However, previous authors have successfully used inte-
gration schemes considering the current interface position only Chessa
et al. (2002); Chessa and Belytschko (2003) and this strategy is used in
this work. As suggested in Fries and Zilian (2009), the test functions are
evaluated using the current time step’s level set values.

4. RESULTS and DISCUSSIONS

The Lagrange multiplier formulation used in this work to solve the Stefan
problem (1) has been previously validated. For details on the specific
simulations used and its performance compared to other algorithms, the
interested reader is referred to Martin et al. (2016).

To validate the coupled model two benchmark problems were simu-
lated. The first is the melting of a cylinder inside a channel. The second
benchmark problem is the melting of pure tin based on the experimen-
tal and numerical data found in Wolff and Viskanta (1988) and the phase
change example model found in Comsol Comsol.

In both cases, the same simulation was then run in Comsol, using a
moving mesh algorithm to account for the displacement of the interface
and was compared with the solution obtained using the purely XFEM
approach. The Comsol version was done without any remeshing during
the simulation. An appropriate element size was used to maintain a low
enough Peclet number to avoid oscillations in the Stefan problem.

These problems were selected for their relatively simple interface
geometry and no reinitialization procedure was applied to the level set
field during the simulation. For smooth interface shapes and relatively
uniform displacements, the absence of a reinitialization step had little im-
pact on the model’s accuracy Martin et al. (2016). More complex shapes
and interface movements would require a reinitialization step as well as a
remeshing step in the Comsol algorithm.

4.1. Melting cylinder in a channel

The problem setup is as follows. A channel, l = 0.167 m in length
and h = 0.025 m in height, contains a solid cylinder of radius 0.005 m.
Both phases are initially at the melting temperature Tm = 273 K. The
cylinder’s centre is initially at ( l

4
, h

2
). At t = 0, a pressure difference

∆p = 4 Pa is applied between the channel’s inlet and outlet. The inlet
temperature is 274 K. Both top and bottom edges are thermally insulated
with a no-slip boundary condition. The pressure difference drives the
fluid flow and the buoyancy force was removed from (4a). The material
properties used are given in table 1 and a schematic representation of the
problem in figure 3. The mesh includes 2904 quadrilateral elements.

The presence of fluid flow around the cylinder increases the heat
flux on the top and bottom, where the flow is more rapid. The uphill and
downhill sides of the cylinder have a slower fluid flow, leading to a lower
heat flux. This results in a more oval shaped interface with time.

The time step used is ∆t = 1 s and the tolerance criteria Ttol,v =
108 and Ttol,p = 108 for the velocity and pressure fields, respectively.
The penalty parameter for the Stokes problem is β = 108. A linear inter-
polation for both temperature and Lagrange multiplier fields was used.

Figure 4 shows the position of the phase change interface for two
different times. Figure 5 shows the evolution of the temperature with
time at two points in the domain (see figure 3); one uphill of the cylinder
(x1) and the other downhill (x2). Figure 6 shows the temperature solu-
tion in the entire domain at two different times. In all these figures, the
Comsol and XFEM models are in excellent agreement. We can observe
the change in overall shape of the interface in figure 4, as the fluid flow
influences the distribution of heat flux around the cylinder. Furthermore,

T=274 K

p=4 Pa

q·n=0, v=0

q·n=0, v=0

q·n=0

p=0

(l,h)

(0,0)

T=273 Ki
x1 x2

Fig. 3 Problem definition for melting cylinder

Table 1 Material properties for melting cylinder

Property Value

ρ [kg/m3] 1000
Tm [K] 273
L [J/kg] 1× 108

cp [J/kg] 1000
k [W/m·K] 10
µ [kg/s·m2] 0.01

the temperature downhill of the cylinder increases as the cylinder’s area
decreases and the flow becomes more uniform, as can be seen in figure 6.

Figure 7 shows the evolution of the velocity with time at points x1

and x2 in the domain (see figure 3). Figure 8 shows the velocity solu-
tion in the entire domain at two different times. The figures shows that
the XFEM solution is in good agreement with the solution obtained with
Comsol. We can observe the increase in velocity with time uphill and
downhill of the cylinder in figure 8, as the influence of the cylinder on the
fluid flow decreases.

4.2. Melting of pure tin

The problem setup for the melting of tin is as follows. A square cavity,
0.10 m wide and 0.10 m high, is filled with liquid tin on the left and
solid tin on the right. Both phases are initially at the melting temperature
Tm = 505 K. The initial interface is vertical at x = 0.02 m. At t = 0,
the temperature of the left wall is increased to 508 K and the right wall
decreased to 503 K, causing the metal to melt. Both top and bottom
edges are insulated. The four boundaries are considered walls and a no-
slip boundary is applied for the Stokes equations. The material properties
used are given in table 2 and a schematic representation of the problem in
figure 9. The mesh includes 2142 quadrilateral elements (42 x 52 grid).

The presence of natural convection changes the heat flux within the
melt by increasing the influx of heat near the top of the enclosure and
reducing it near the bottom, resulting in an angled interface.

The time step used is ∆t = 3s and the tolerance criteria Ttol,v =
101 and Ttol,p = 102 for the velocity and pressure fields, respectively.
The penalty parameter for the Stokes problem is β = 108. A linear
interpolation was used for the temperature and a constant per element
(C−1 continuous) interpolation was used for the Lagrange multiplier.

Figure 10 shows the position of the phase change interface for three
different times. Figure 11 shows the evolution of the temperature with
time at two points in the domain (see figure 9); one in the liquid phase
(x1) and the other in the solid phase (x2). Figure 12 shows the temperature

Table 2 Material properties melting of pure tin Comsol

Property Value
ρ [kg/m3] 7500
Tm [K] 505
L [J/kg] 6× 104

cp [J/kg] 200
k [W/m·K] 60
β [1/K] 2.67× 10−4

µ [kg/s·m2] 6× 10−3

6



Frontiers in Heat and Mass Transfer (FHMT), 10, 18 (2018)
DOI: 10.5098/hmt.10.18

Global Digital Central
ISSN: 2151-8629

0.038 0.04 0.042 0.044 0.046
0.008

0.01

0.012

0.014

0.016

0.018

x [m]

y
 [

m
]

 

 

Comsol

XFEM

(a) t = 20 s

0.038 0.04 0.042 0.044 0.046
0.008

0.01

0.012

0.014

0.016

0.018

x [m]

y
 [

m
]

 

 

Comsol

XFEM

(b) t = 50 s

Fig. 4 Interface position at two times for melting cylinder: (a) t = 20 s,
(b) t = 50 s.
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Fig. 5 T as function of t at x1 and x2 for melting cylinder (see figure 3)

solution in the entire domain at three different times. In all these figures,
the Comsol and XFEM models are in excellent agreement.

There is however in figure 12(a) a small "kink" in the interface po-
sition for the XFEM solution. This error is caused by an incorrect eval-
uation of the interface velocity, due to the use of a constant per element
Lagrange multiplier interpolation scheme. As discussed in Martin et al.

(a) t = 20 s

(b) t = 50 s

Fig. 6 Temperature profiles for melting cylinder: (a) t = 20 s, (b) t = 50
s.
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Fig. 7 v as function of t at x1 and x2 for melting cylinder (see figure 3)

(2016), the use of a constant per element interpolation scheme for the
Lagrange multiplier is computationally efficient, but not as precise as a
linear interpolation. To verify this, the model was run again using a lin-
ear interpolation for the multiplier and the kink was no longer present, as
shown in figure 13. Furthermore, it is clear from the other figures that
the error produced by the use of a constant per element interpolation was
quickly corrected over the next few time steps.

Figure 14 shows the evolution of the velocity with time at x1 in the
domain (see figure 9). A small difference can be seen between the XFEM
and Comsol models at the beginning of the simulation. However, this
difference quickly disappears as the simulation advances in time. This
initial difference may be caused by the presence of a consistent initializa-
tion step by Comsol, which modifies the initial conditions of the problem.
Removing this step in the Comsol algorithm lead to a divergent solution.
This step is absent in the XFEM model.

Figure 15 shows the velocity solution in the entire domain at three
different times. The figure shows that the XFEM solution is in good
agreement with the solution obtained with Comsol. The areas with a
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(a) t = 20 s

(b) t = 50 s

Fig. 8 Velocity profiles for melting cylinder: (a) t = 20 s, (b) t = 50 s.
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Fig. 9 Problem definition for melting of tin

more horizontal flow have the greatest impact on the temperature distri-
bution (interface position) and are nearly identical. The XFEM formu-
lation however, produces an irregular boundary layer on the solid-liquid
interface. This error is caused by the removal of inappropriate degrees of
freedom with (21), mainly due to the low tolerance values used. Higher
values of Ttol were tried but would lead to a divergent system for certain
time steps with critical interface positions. As mentioned previously, the
application of a preconditionner Lang et al. (2014) is required to improve
the precision of the solution to the Stokes problem.

5. CONCLUSION

A coupled Stefan and Stokes formulation using the extended finite el-
ement method was developed for the resolution of phase change prob-
lems involving convection. The Lagrange multiplier technique developed
for the diffusive case was successfully applied to the convective-diffusive
case. The temperature and velocity fields obtained using XFEM were
compared to the moving mesh algorithm found in Comsol with good re-
sults. The XFEM formulation required less degrees of freedom and didn’t

Fig. 10 Interface position for melting tin
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Fig. 11 T as function of t at x1 and x2 for melting tin (see figure 9)

cause problems with distorted elements. The tolerance criteria for the re-
moval of degrees of freedom using a void enrichment defined in Lang
et al. (2014) was modified for the proposed Q2-Q1 Stokes formulation.
This modified tolerance criteria was shown to produce the same errors
in the solution for problematic interface configurations as was observed
in Lang et al. (2014). Future work will be done to include the complete
Navier-Stokes equations and the application of non-zero velocity bound-
ary conditions on the interface to include density changes between solid
and liquid phases.
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(a) t = 4 min

(b) t = 8 min

(c) t = 11 min

Fig. 12 Temperature profiles for melting tin: (a) t = 4 min, (b) t = 8 min,
(c) t = 11 min.

Fig. 13 Temperature profile at t = 4 min, using linear q
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Fig. 15 Velocity profiles for melting tin: (a) t = 4 min, (b) t = 8 min, (c)
t = 11 min.
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