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ABSTRACT 

Soret and Dufour effects on the unsteady flow of a viscous incompressible dusty fluid past an exponentially accelerated vertical plate with viscous 
dissipation have been considered in the presence of heat source and magnetic field. The viscosity and thermal conductivity of the fluid are assumed to 
be varying with respect to temperature. Saffman model of dusty fluid is considered for the investigation. The non-linear partial differential equations 
with prescribed boundary conditions governing the flow are discretized using Crank-Nicolson formula and the resulting finite difference equations 
are solved by an iterative scheme based on the Gauss-Seidel method by developing computer codes for MATLAB software. Numerical results are 
obtained for different values of the viscosity variation parameter, thermal conductivity variation parameter, Soret number, Dufour number and 
magnetic parameter. The overall investigation of variation of velocity, temperature, and species concentration profiles is presented graphically. 
Finally, numerical values of skin friction coefficient, Nusselt number, and Sherwood number are obtained and presented in tabular form for different 
values of physical parameters. It is found that skin friction coefficient increases with an increase in thermal conductivity variation 
parameter and magnetic parameter and decreases as the values of viscosity variation parameter, Soret number and Dufour number 
increase. Moreover, an increase in the Dufour number tends to decrease the Nusselt number and to increase the Sherwood number. 
But, an contrary tendency is observed with Soret number. 
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1. INTRODUCTION 

The study of momentum, heat and mass transfer of dusty fluids has 
great practical importance due to tremendous applications in sciences 
and engineering. In the past few decades, researchers have been 
focusing their research work on analyzing the heat and mass transfer 
characteristics of dusty fluids through different channels. In the present 
study, we are taking initiation to discuss the momentum, and heat and 
mass transfer characteristics of a dusty fluid flows over an 
exponentially stretching surface.  The convective flow of dusty viscous 
fluids has a variety of applications like wastewater treatment, 
combustion and petroleum transport, power plant piping etc. Heat 
transport in dusty fluids plays a major role in heat transfer enhancement 
in the renewable energy systems, material processing and industrial 
thermal management like aerodynamic extrusion of plastic sheets, 
manufacturing and rolling of plastic films, cooling of metal sheets etc. 

Sakiadis (1961) analyzed the pioneering work on the flow past a 
continuous moving surface with a constant velocity in boundary layer. 
He formulated the equations governing the two-dimensional flow 
problems. Magyari and Keller (1999) were the first authors who 
investigate the boundary layer flow due to an exponentially stretching 
continuous surface. They analyzed the problem both analytically and 
numerically. The effect of viscous dissipation on the mixed convection 
heat transfer from an exponentially stretching surface was studied by 
Partha et al. (2005). Khan (2006) also presented the visco-elastic 
boundary layer flow and heat transfer characteristics over an 
exponentially stretching sheet. Al-odat et al. (2006) investigated the 

effect of magnetic field on the flow and heat transfer over an 
exponentially stretching continuous surface. Ishak (2005) investigated 
the radiation effect on MHD boundary layer flow due to an 
exponentially stretching. Soret and Dufour effects on mixed convection 
flow and heat transfer from an exponentially stretching surface were 
studied by Srinivasacharya and RamReddy (2011). They obtained 
numerical solution for the problem using Kellar-box method.  

Important applications of dust particles in a boundary layer 
include a wide range of real world applications. Initially, 
Saffman (1962) worked on the laminar flow of a gas containing 
dust particles and stability, which describes the fluid-particle 
system. He derived the equations of motion for a flow of gas 
carrying the dust particles. The flow of dusty fluid in the 
boundary layer over a semi-infinite flat plate was studied by 
Datta and Mishra (1982). Vajravelu and Nayfeh (1992) 
discussed the hydromagnetic flow of a dusty fluid over a 
stretching sheet with the effects of particle loading, fluid-particle 
interaction and suction on the flow characteristics. Also, they 
compared their analytical solution with numerical ones. Flow of 
an unsteady viscous incompressible fluid with dust particles 
through a rectangular channel was studied by Gireesha et al. 
(2007). An analytical study of unsteady viscous dusty fluid flow 
with uniform distribution of dust particles between two infinite 
parallel plates was also carried out by Gireesha et al. (2007). 
Unsteady MHD boundary layer flow and heat transfer 
characteristics of dusty fluid over a stretching sheet with 
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variable wall temperature (VWT) and variable heat flux (VHF) 
were observed by Gireesha et al. (2011; 2013). In these papers, 
they analyzed the effect of magnetic field on the flow and heat 
transfer within the boundary layer of dusty fluid. Pavithra and 
Gireesha (2013) investigated boundary layer flow problem of 
dusty fluid for an exponentially stretching sheet by considering 
the internal heat generation/absorption and viscous dissipation. 
Ramana Reddy et al. (2014) studied the laminar convective flow 
of a dusty viscous fluid of non conducting walls in presence of 
aligned magnetic field with volume fraction, radiation, heat 
absorption along with chemical reaction. Ramana Reddy et al. 
(2014) also studied the soret, radiation and chemical reaction 
effects on laminar convective flow of a dusty viscous fluid of 
non conducting walls in presence of transverse magnetic field. 
Flow of a conducting dusty fluid due to linearly stretching cylinder 
immersed in a porous media with the effect of radiation was 
analyzed by Manjunatha et al. (2015). 

Recently, a study on a convective heat transfer characteristics of an 
incompressible viscous dusty fluid over an exponentially stretching 
surface has been carried out by Izani and Ali (2016) with an 
exponential temperature distribution. Ramana Reddy et al. (2016) 
analyzed the momentum, heat and mass transfer behavior of a 
chemically reacting MHD nanofluid flow embedded with conducting 
dust particles past a cone in the presence of non-uniform heat 
source/sink. Marangoni thermal convective boundary layer dusty 
nanoliquid flow across a flat surface in the presence of solar radiation 
was discussed by Mahanthesh et al. (2017). 

The effect of a magnetic field on a boundary layer flow of an 
electrically conducting dusty fluid over a stretching surface has been 
investigated by Jalil et al. (2017). Konch and Hazarika (2017) have 
investigated effects of variable viscosity and thermal conductivity on 
momentum, heat and mass transfer characteristics of a hydromagnetic 
Newtonian dusty fluid flow due to a rotating disk with radiation and 
viscous dissipation. 

In most of the studies mentioned above are carried out under a 
steady-state condition. But, in many cases, flow becomes time 
dependent due to a sudden stretching of the flat sheet or heat flux of the 
sheet or by a step change of the temperature, and consequently, it 
becomes an unsteady flow problem. Furthermore, in all the flow 
problems mentioned above, the viscosity and thermal conductivity of 
fluid were considered as constants. However, a more accurate 
prediction for the flow, heat and mass transfer can be obtained by 
taking into account the variation of such properties with temperature.  

A quick review of the literature shows that the effects of 
Soret and Dufour on flow, heat and mass transfer over an 
exponentially stretching sheet was not taken into consideration 
for an unsteady dusty fluid with variable viscosity and thermal 
conductivity. Therefore, the goal of this chapter is to study the 
effects of temperature dependent viscosity and thermal 
conductivity, and Soret and Dufour on an unsteady 
hydromagnetic boundary layer flow over an exponentially 
stretching sheet. 

2. MATHEMATICAL FORMULATION 

Consider an unsteady flow, heat and mass transfer flow of an 
incompressible viscous electrically conducting and radiating dusty fluid 
past an exponentially accelerated infinite isothermal vertical plate. It is 
assumed that a temperature dependent heat source present in the flow 
and dust particles are assumed to be electrically nonconductive, 
spherical in shape having the same radius and mass, and un-deformable. 
Also, the fluid is supposed to be gray, absorbing-emitting but non-
scattering. At the beginning, the fluid is considered to be at rest.  The 
x′ -axis is taken along the plate in the vertically upward direction and 

the y-axis is taken normal to the plate as shown in Fig. 1. A magnetic 

field of strength 0(0, )B B
�

is applied perpendicular to the plate. 

Reynolds number is supposed to be so small that the induced magnetic 
field can be neglected (Sutton (1965)).   
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Fig. 1 Geometry of the problem 

 
At the time 0t′ = , the temperature of the plate and species 

concentration of the fluid are T∞′ and C∞′ , respectively. At time 

0t′ > , the plate is exponentially accelerated in its own plane 

with a velocity 0
a t

u u e
′ ′= and the plate temperature and species 

concentration of the fluid upstanding to wT ′
 
and wC′ , and are 

maintained constantly thereafter.  
Under the above assumptions, using the usual Boussinesq's 

approximation and the Saffman (1962) model, the governing 
equations for the two-phase flow are: 
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The initial and boundary conditions are [Gireesha et al. (2012) and 
Manjunatha and Gireesha (2016)]: 
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0 : 0, ,t u T T C C∞ ∞′ ′ ′ ′ ′ ′= = = =  for 0y′ ≥   

00 : , ,a t
w wt u u e T T C C′ ′′ ′ ′ ′ ′ ′> = = =

 
at 0y′ =                   (7) 

          
0, , , , ,p pu u u T T T T C C∞ ∞ ∞′ ′ ′ ′ ′ ′ ′ ′ ′→ → → → →   

       pC C∞′ ′→  as y′ → ∞ . 

Where T ′ and C′ are the temperature and species concentration of 

fluid, respectively. pT ′ and pC′  are the temperature and species 

concentration of dust phase, respectively. u′ and pu′  are the velocities 

of fluid and dust phases, respectively.  
Using Rosseland approximation for radiation we can write radiative 

heat flux as (Necati (1973)): 
*

*

44

3
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,                                                            (8) 

where *σ and k* are the Stefan-Boltzmann constant and 
mean absorption coefficient, respectively.   

It is assumed that temperature difference within the flow 

such that the term 4T∞′ can be expressed as a linear function of 

temperature. This is accomplished by expanding 4T∞′  in a Taylor 

series about T∞′ and neglecting the second and higher order 

terms, we get: 
4 3 44 3T T T T∞ ∞′ ′ ′ ′≅ − .                                     

(9) 
Now we introduce the following non-dimensional quantities 

to make the governing equations dimensionless: 
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Viscosity of the fluid is assumed to be an inverse linear 
function of temperature, and it can be expressed as (following 
Lai and Kulacki (1990)):   
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Moreover, thermal conductivity of the fluid varies with 
temperature. Following Choudhury and Hazarika (2013), we 
assumed thermal conductivity of the fluid as:  
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and Tc′ are constants and their values 

depend on the reference state and thermal properties of the fluid 
i.e., υ (kinematic viscosity) and λ (thermal conductivity).  

Substituting equations (8) to (12) into equations (1) to (6), 
we get the following dimensionless equations: 
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For the dust phase: 
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Corresponding initial and boundary conditions (7) are reduced to:  
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where the dimensionless parameters are defined as follows: 
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respectively. It is also important to note that rθ and cθ are negative for 

liquids and positive for gases (Kuppalapalle et al. (2013)). 
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2.1 Skin friction coefficient, Nusselt Number and Sherwood 

Number 
Skin friction coefficient (Cf), Nusselt number (Nu) and Sherwood 
number (Sh) are the parameters of physical and engineering interest for 
the present problem, which physically indicate the wall shear stress, 
rate of heat and mass transfer, respectively.  

In this problem, dimensionless skin friction coefficient, 
Nusselt number and Sherwood number are given respectively 
by: 
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3. METHOD OF SOLUTION 

The system of equations (13) to (18) governing the flow represents a 
system of coupled nonlinear partial differential equations, which are 
solved numerically under the boundary conditions (19) by adopting 
Crank-Nicolson implicit finite difference scheme, which is always 
unconditionally stable. This method is discussed by many authors, 
namely, Soundalgekar and Ganesan (1981), Ganesan and Rani (1999), 
Muthucumaraswamy and Ganesan (1999, 2000), Ganesan and Palani 
(2004). The scheme of this method is unconditionally stable and is 
described by Bapuji et al. (2008). To obtain the difference equations, 
the region of the flow is divided into a grid or mesh lines parallel to y 

and t axes.  
The region of integration is considered as a rectangle with 

sides ymax(=5) and tmax(=1), where ymax  corresponds to y→∞, 
which lies very well outside the momentum, energy and species 
concentration boundary layers. The maximum of y has been 
chosen as 5 after some preliminary investigations so that the last 
two of the boundary conditions (19) are satisfied within the 
tolerance limit 10‒5. After experimenting with a few set of mesh 
sizes, the mesh sizes have been fixed at the level 0.17y∆ =  with 

time step 0.0031t∆ = . In this case, the computations are carried 
out first by reducing the spatial mesh sizes by 50 % in one 
direction, and later in both directions by 50 %. The results are 
compared. It is observed that, in all cases, the results differ only 
in the fifth decimal place. Hence, the choice of the mesh sizes 
seems to be appropriate. 

Solutions of difference equations are obtained at the 
intersection of these mesh lines called nodes. In this problem, 
the values of the dependent variables ,u θ  and φ  at the nodal 

points along the 0y =  are given by (0, ), (0, )t tu θ and (0, )tφ , 

hence are known from the boundary conditions. But, 
(0, ), (0, )p pt tu θ and (0, )p tφ  are unknown, which are estimated 

by applying trial and error, in such a way that, for those values, 
all the boundary conditions are satisfied at the other boundary 
with a good accuracy (error less than 10‒5). Δy and Δt are taken 
as the constant mesh sizes along y and t directions respectively. 
We need the scheme to find single values at next time level in 
terms of known values at an earlier time level. 

In order to obtain the finite difference equations for the 
equations (13) to (18), we have adopted forward difference 
approximation for the first order partial derivatives of 

, , , ,p pu uθ φ θ  and pφ  with respect to t and y and a central 

difference approximation for the second order partial derivatives 
of ,u θ  and φ  with respect to y.  

Knowing the values of , , , ,p pu uθ φ θ  and pφ  at time t we 

can calculate the values at time t t+ ∆ . Using initial and 
boundary conditions, the system can be solved based on an 

iterative scheme and developing suitable programming codes for 
the method in MATLAB software.  

The truncation error in the finite difference approximation is 
O(Δt2+ Δy2) and it tends to zero as Δt and Δy tend to zero. 
Hence the scheme is compatible. Thus, stability and 
compatibility ensure convergence. Time required to complete 
the computation and to draw a graph for a particular parameter is 
8 seconds (approximately) in MATLAB 2017a.  

4. RESULTS AND DISCUSSION 

In order to analyze the problem physically, numerical computations are 
carried out to explain the effects of different parameters governing the 
flow upon the nature of the flow, heat and mass transport phenomenon. 
The numerical values of the velocity, temperature, species 
concentration, skin-friction coefficient, Nusselt number and Sherwood 
number are obtained for different physical parameters like the viscosity 
variation parameter rθ , thermal conductivity variation parameter cθ , 

Soret number Sr, Dufour number Du, magnetic parameter M and time t. 
A representative set of numerical results is presented graphically in 
Figs. 2 to 17 and in Tables 1 to 3. Numerical values of the parameters 
used for simulation are: M=1, Pr=0.71, Ec=0.05, a1=1, Q=0.5, Gr=5, 
Gm=5, R=1, Sc=0.22, Sr=0.3, Du=0.5, 3rθ =  and 5cθ = , unless 

otherwise stated. 
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Fig. 2 Velocity profile for different rθ  

 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

θ,
 θ

p

 

 

θ

θp

θr
=2, 4, 6, 8 

 
Fig. 3 Temperature profile for different rθ  

The effect of the viscosity variation parameter rθ on the 

velocity, temperature, and species concentration profiles is 
shown in Figs. 2 to 4. It is observed from these figures that the 
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velocity and species concentration decreases with the increase of 
the viscosity variation parameter.  Physically, as the values of 
viscosity variation parameter rθ  increases, the resistance to the 

relative motion of the different layers of fluid increases due to 
the increase of viscous force, as a result, velocity of fluid phase 
decreases. Thus, the increase of rθ  decelerates the fluid motion 

and reduces the species concentration profile of the fluid and 
dust phases along the wall. Also, one can see that the 
temperature of both phases is almost not affected by the increase 
of the viscosity variation parameter rθ  (Fig. 3).  
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    Fig. 4 Species concentration profile for different rθ  
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Fig. 5 Velocity profile for different cθ  

 
The effect of thermal conductivity variation parameter cθ  on 

velocity, temperature, and species concentration profiles is 
shown in Figs. 5 to 7. Figure 5 has shown that viscosity 
increases for both the fluid and dust phases with increasing 
values of cθ . On the other hand, a reverse trend is noticed with 

the temperature profile (Fig. 6). It is due to the reason that 
thermal conductivity is an inverse linear function of temperature, 
hence the result. Thermal conductivity variation parameter has 
no significant effect on species concentration profile (Fig. 7).  

Figures 8 to 10 depict the effect of Soret number Sr on 
velocity, temperature, and species concentration regimes of the fluid 
and dust phases.  It is explicitly observed from Fig. 10 that species 
concentration profiles of both the fluid and dust phases grow up with 
the increment in Sr, while temperature behaves in opposite manner for 

increasing variation of Sr (Fig. 9). Physically, Soret number signifies 
the ratio of temperature gradients and mass diffusion effects. Hence for 
mounting values of Sr, thermal flux increases and subsequently causes a 
considerable downfall in the temperature distribution. In Fig. 8, it is 
seen that velocity increases with increasing values of Sr. The reason 
behind is that temperature falls for rising values of Sr and in case of 
gases, viscosity decreases with decreasing temperature, as a result 
velocity increases.   
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Fig. 6 Temperature profile for different cθ  
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Fig. 7 Species concentration profile for different cθ  
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Fig. 8 Velocity profile for different Sr  
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Figures 11 to 13 have depicted the effects of Dufour number 

(Du) on velocity, temperature, and species concentration fields. 
It is clearly seen that Dufour number leads to increase the 
velocity and temperature distributions (Figs. 11 and 12). But 
species concentration distribution decreases with the 
enhancement of the Dufour number (Fig. 13). Physically, 
Dufour number presents the relation among the contribution of 
concentration gradient to the temperature gradient.      
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

y

φ
, 

φ
p

 

 

φ

φp

Sr=0.2, 2.2, 4.2, 6.2

 
Fig. 10 Species concentration profile for different Sr 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

y

u
, 

u
p

 

 

u

u
p

Du=0.2, 1.2, 2.2, 3.2

 
Fig. 11 Velocity profile for different Du 

 
Figure 14 illustrates the effect of magnetic field on velocity 

profiles through the magnetic parameter (M). As the increasing 
values of magnetic parameter M, velocity decreases for both the 
fluid and dust phases. The presence of magnetic field sets a 
resistive force, called Lorentz force, which opposes the velocity 
field. Therefore, as the values of M increase so does the 
retarding force and hence the velocity decreases.  
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Fig. 12 Temperature profile for different Du   
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  Fig. 13 Species Concentration profile for different Du 
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Fig. 14 Velocity profile for different Du 
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The behaviors of velocity, temperature and species 
concentration profiles for different values of the time t are 
presented in Figs. 15 to 17, respectively. It is observed that 
velocity, temperature, and species concentration increases with 
increasing values of time t for both the fluid and dust phases. 

Table 1 shows the increment of velocity, temperature and 
species concentration with constant time intervals. From the 
table, it has been found that the percentage of increase in the 
velocity, temperature and species concentration of both phases 
has decreased with increasing time. This means that there is no 
change in the remarkable properties over time after the specified 
time interval. Thus, one can say that after a while an unsteady 
flow becomes steady. 

Table 2 presents values of Cf, Nu and Sh for both the 
constant and variable cases of viscosity and thermal 
conductivity. The values of Cf, Nu and Sh, when variable 
viscosity and thermal conductivity are taken into account, are 
smaller than the values when viscosity and thermal conductivity 
are taken as constant. Thus, it shows that it is better to have 
viscosity and thermal conductivity as function of temperature to 
achieve accurate results of flow, heat and mass transfer 
properties. 
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Fig. 16 Temperature profile for different t 

 

The variation of the skin friction coefficient, Nusselt number 
and Sherwood number for various flow governing parameters, 
viz. rθ , cθ , Sr, Du and M is shown in Table 3. From the table, it 

is noticed that magnitude of skin friction coefficient decreases 
when viscosity variation parameter ( rθ ) is increased. This is due 

to the reason that fluids having higher viscosity have relatively 
lower surface velocity gradient, for which skin friction 
coefficient decreases. On the contrary, the Nusselt number 
increases with the increasing values of the same parameter. This 
is due to the fact that, the friction of the fluid increases due to 
viscosity so the heat is generated from the friction on the 
surface, which leads to a rise in the magnitude of heat transfer 
rate, and hence Nusselt number increases. Also, Sherwood 
number decreases when viscosity variation parameter increases.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

φ
, 

φ
p

 

 

φ

φp

t=0.1219, 0.1531, 0.1844, 0.2156

 
Fig. 17 Species concentration profile for different t 

 
In the same table, we have seen that the magnitude of skin 

friction coefficient increases and the Nusselt number decreases 
for increasing thermal conductivity variation parameter cθ . The 

reason behind is that viscosity decreases with increasing thermal 
conductivity variation parameter, which enhances the magnitude 
of velocity gradient at the surface of the sheet and retards the 
magnitude of the heat transfer rate. Hence, Nusselt number 
decreases and skin friction coefficient increases with increasing 

cθ .  

 
Table 1 Variation of velocity, temperature and species concentration 

with time t  when y=1.5 
 

Time Interval 
(Δt) 

Increment (%) 

Velocity Temperature 
Species 

concentration 
u up ϴ ϴp ϕ ϕp 

0.1219‒0.1531 78.85 132.14 51.42 100.00 31.05 78.57 
0.1531‒0.1844 53.52 88.45 34.90 73.08 20.04 53.20 
0.1844‒0.2156 39.40 64.77 24.90 51.11 14.10 39.16 

 
Table 3 also demonstrates that rise in Dufour number (Du) 

results a reduction in the Nusselt number (i.e., the rate of heat 
transfer), while a reverse pattern is established for Soret number 
(Sr). The reducing behavior of Nusselt number for intensifying 
values of Dufour number (Du) is explained from the 
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mathematical relation 
*

Tmd w

wps

D K C C
Du

T TC cα
∞

∞

′ ′−
=

′ ′−
. It is evident from 

the expression that Dufour number inversely relates with the 
temperature gradient. Thus, with the increase of Dufour number, 
the temperature difference between ambient and local 
temperature depreciates and hence temperature flux minimizes. 
The increasing behavior of heat transfer with variation in Soret 
number (Sr) can be understood from the defined relation for 

Soret number i.e. Tmd w

m w

D K T T
Sr

T C Cυ
∞

∞ ∞

′ ′−
=

′ ′−
. Here, it is crystal clear 

from the relation that Soret number (Sr) gives support to the 
temperature gradient and mount it. 

 
Table 2 Comparison of skin friction coefficient (Cf), Nusselt number 

(Nu) and Sherwood number (Sh)  
 

Sr Du 

when viscosity ( µ ) and 

thermal conductivity ( λ ) 
are constants 

when viscosity ( µ ) and 

thermal conductivity ( λ ) 
are variables 

Cf Nu Sh Cf Nu Sh 

0 
1 
2 

0.2 
‒3.4634 
‒3.3725 
‒3.2786 

1.2210 
1.2469 
1.2745 

0.5504 
0.3614 
0.1612 

‒4.3479 
‒4.2606 
‒4.1715 

1.4066 
1.4216 
1.4372 

0.7737 
0.6007 
0.4222 

0.3 
0.0 
0.3 
0.6 

‒3.4548 
‒3.4272 
‒3.3992 

1.2516 
1.2170 
1.1816 

0.4935 
0.4955 
0.4975 

‒4.3395 
‒4.3131 
‒4.2864 

1.4292 
1.4017 
1.3733 

0.7208 
0.7231 
0.7255 

 
An enhancement of Sherwood number (i.e., the rate of mass 

transfer) is observed for increasing Dufour number (Du), but 
reducing behavior is seen for a rising Soret number (Sr). 

Magnetic parameter leads to enhance the magnitude of skin 
friction coefficient and Sherwood number, because of the 
Lorentz force. 

 
Table 3 Numerical values of skin friction coefficient(Cf), Nusselt 

number(Nu) and Sherwood number (Sh) for different values of rθ , cθ , 

Sr, Du and M  
 

rθ  cθ  Sr Du M Cf Nu Sh 

3 
6 
9 

12 

5 0.3 0.2 1 

-4.32189 
-3.82188 
-3.68569 
-3.62203 

1.411027 
1.413097 
1.41366 
1.41392 

0.722343 
0.671041 
0.656459 
0.649553 

3 

3 
6 
9 

12 

0.3 0.2 1 

-4.27776 
-4.33205 
-4.34832 
-4.35617 

1.527918 
1.385589 
1.345937 
1.327278 

0.728956 
0.720805 
0.71833 

0.717131 

3 5 

0 
1 
2 
3 

0.2 1 

-4.34789 
-4.26061 
-4.1715 

-4.08044 

1.406566 
1.421621 
1.43722 
1.4534 

0.773702 
0.600661 
0.422182 
0.23794 

3 5 0.3 

0.0 
0.3 
0.6 
0.9 

1 

-4.33951 
-4.31305 
-4.28641 
-4.25959 

1.429267 
1.401749 
1.373261 
1.343766 

0.720804 
0.723121 
0.72549 

0.727914 

3 5 0.3 0.2 

0.0 
0.5 
1.0 
1.5 

-3.8433 
-4.08658 
-4.32189 
-4.54963 

1.413115 
1.412071 
1.411027 
1.409985 

0.722264 
0.722303 
0.722343 
0.722382 

 

5. CONCLUSIONS 

The Soret and Dufour effects on the flow, heat and mass transfer 
characteristics of an unsteady hydromagnetic flow due to an 
exponentially stretching sheet with viscous dissipation, Joule heating, 
variable viscosity and variable thermal conductivity have been made 
theoretically. The solution of this problem is obtained numerically 
using an implicit finite difference scheme based on Crank-Nicolson 
scheme, with Gauss-Seidel iteration method, by developing computer 
codes for MATLAB software.  Graphical and tabular mode of 
presentation of the computed results illustrates the details of flow, heat 
and mass transfer characteristics and their dependence on the physical 
parameters involved in the problem. The important findings of this 
analysis are listed below: 

• From the study, we have noticed that the effect of temperature 
on viscosity and thermal conductivity of the fluid is very 
significant.  

• It is found that both fluid and dust phase velocity decreases 
with the enhancement of viscosity variation parameter and 
magnetic parameter.  

• Thermal conductivity variation parameter and Soret number 
have increasing effects on the velocity profile, while an 
opposite trend is observed for temperature profile. 

• An increase in the value of viscosity variation parameter leads 
to decrease the concentration profile of both the fluid and dust 
phases. 

• The concentration profile is decreased with increases in 
Dufour number (or decrease in Soret number) while the 
temperature profile is enhanced consistently. 

• Velocity, temperature and species concentration raise with 
higher values of time t for both the phases. 

• Soret and Dufour numbers have opposite effects on the 
concentration as well as temperature profiles. 

• The magnitude of skin friction coefficient increases with 
increases in the value of thermal conductivity variation 
parameter and magnetic parameter; whereas it decreases for 
increasing viscosity variation parameter, Soret number and 
Dufour number. 

• It is noticed that rate of mass transfer decreases with 
increasing viscosity variation parameter and thermal 
conductivity variation parameter. 

• An enhancement of the viscosity variation parameter leads to 
increase rate of heat transfer slightly. 

• An increase in the Dufour number tends to decrease the 
Nusselt number and to increase the Sherwood number 
slightly. An opposite trend is observed in Soret number.    
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NOMENCLATURE 

cm specific heat of dust particles at constant  pressure,  
 M2T2K−1 
cp specific heat of fluid at constant pressure, M2T2K−1 
Cs concentration susceptibility 
Dm mass diffusivity, M2T−1 
Dmd coefficient of mean diffusivity 
K Stokes’ resistance (drag co-efficient), MT−1 
KT thermal diffusion ratio, ML−3  
l mass concentration 
m mass of the dust particle, M 
N  number density of the particle phase 
Tm mean fluid temperature, K 
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Greek symbols 

λ thermal conductivity, MLT−3I2 

λ∞ thermal conductivity of the ambient fluid, MLT−3I2 
µ  dynamic viscosity, ML−1T−1  
µ∞ dynamic viscosity of the ambient fluid,  ML−1T−1 
ρ density of the fluid, ML−3  
ρp density of the dust phase, ML−3   
σ electrical conductivity, M−1L−3T3I 
τv relaxation time of the dust particles i.e., the time required  
 by a dust particle to adjust its velocity to the fluid 
τT thermal equilibrium time and is the time required by the  
 dust cloud to adjust its temperature relative to the fluid  
τc solutal equilibrium time i.e., the time required by the dust  
 particle to adjust its concentration relative to the fluid 
υ∞ kinematic viscosity of the fluid in the free stream, L2T−1 
ω  constant density ratio 
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