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ABSTRACT 

The magnetohydrodynamic (MHD) mixed convection heat transfer in a non-Newtonian Powell-Erying fluid flow due to an exponentially shrinking 

porous sheet is investigated. Both assisting and opposing flows are considered. After use of the suitable transformations, the governing equations 

become non-similar ODEs. Numerical computations of resulting equations are obtained by very efficient shooting method for several values of 

involved parameters. The results exhibit that dual non-similar solutions can be found only when some amount of fluid mass is sucked from the flow 

field through the porous sheet. Many important results on the effect of external magnetic field on mixed convective flow of Powell-Erying fluid have 

been explored. Where, it is found that dual non-similar solutions exist for the opposing flow, while for the assisting flow, solution is unique and for 

steady Powell-Erying fluid flow stronger mass suction is required compared to the Newtonian fluid flow. 
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1. INTRODUCTION 

The magnetohydrodynamic (MHD) flow of fluid and heat transfer due 

to a stretching/shrinking sheet is occurred in many problems in 

geophysics and astrophysics and has several engineering applications 

such as in MHD generators, geothermal energy extractions, plasma 

studies, control of boundary layer in aerodynamics and many more. In 

particular, to control the behavior of the boundary layer, several 

methods are already developed and out of that, the application of MHD 

principle is very important method which can alter the structure of 

boundary layer to the desired direction. The MHD parameter is quite 

important in controlling the cooling rate and to achieve the best quality 

product (Hayat et al., 2012a). A comprehensive survey of MHD studies 

and their applications can be found in the book by Moreau (1990). The 

study of the MHD boundary layer flow of electrically conducting fluid 

in presence of a uniform magnetic field was considered by Ariel (1994). 

Later, Mahapatra and Gupta (2001) studied the MHD stagnation-point 

flow over a stretching sheet. The radiation effect on MHD flow and 

heat transfer towards a porous stretching surface was examined by 

Mukhopadhyay et al. (2010). Ali et al. (2011) investigated the steady 

MHD mixed convection stagnation-point flow of a electrically 

conducting fluid over a vertical flat plate. Mukhopadhyay (2013) 

investigated MHD boundary layer flow with heat transfer effects over a 

permeable exponential stretching sheet. Tamim et al. (2014) studied the 

MHD mixed convective stagnation point flow of a nanofluid over a 

vertical permeable plate.  

In the above discussions, Newtonian fluid flows are discussed. But 

in modern engineering, many fluids show non-Newtonian behavior, 

therefore many researchers are more interested in those industrial non-

Newtonian fluids and their dynamics. A single constitutive equation is 

not sufficient to describe all physical properties of non-Newtonian 

fluids and thus several non-Newtonian fluid models (Wilkinson, 1970; 

Rajagopal, 1980; Rajagopal et al., 1984; Dorier and Tichy, 1992) have 

been introduced to explain all such behaviors. The one of such non-

Newtonian fluid is Powell–Eyring fluid. The Powell–Eyring fluid 

model has a clear advantage over all the other non-Newtonian fluids 

because it is derived from kinetic theory of gases rather than from the 

empirical relations. Moreover, its behavior is like a viscous fluid when 

shear rates are high (Roşca and Pop, 2014a). The boundary layer flow 

of a Powell–Eyring fluid past a moving surface with convective 

boundary condition was discussed by Hayat et al. (2012b). Jalil et al. 

(2013) studied the flow of Powell–Eyring fluid and heat transfer over a 

continuously moving permeable surface in the presence of a parallel 

free stream. Panigrahi et al. (2014) investigated the mixed convective 

flow of Powell–Eyring fluid past a nonlinear permeable stretching 

surface with magnetic field. Recently, Akbar et al. (2015) investigated 

MHD boundary layer flow of a Powell–Eyring fluid past a stretching 

surface.  

Recently, the boundary layer flow developed over a shrinking 

sheet has attracted the considerable attention of many researchers 

similar to that of stretching sheet for its increasing technological 

applications. The flow due to the shrinking sheet is more physically 

interesting than that of the stretching sheet flow. The existence and 

uniqueness of the similarity solution for the flow past a shrinking 

surface were investigated by Miklavčič and Wang (2006). The flow 

patterns of various Newtonian and non-Newtonian fluids on a shrinking 

sheet are discussed by many researchers (Hayat et al., 2008; Fang and 

Zhang, 2009; Lok et al., 2011; Bhattacharyya et al., 2012). On the other 
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hand, very limited attention has been given to study the flow over an 

exponentially stretching/shrinking sheet though it is very significant in 

numerous engineering problems. First, Magyari and Keller (1999) 

investigated the boundary layer flow and heat transfer due to 

exponentially stretching sheet. The flow and heat transfer over an 

exponentially stretching sheet with wall mass suction was examined by 

Elbashbeshy (2001). Al-Odat et al. (2006) investigated the MHD effect 

on the thermal boundary layer over an exponentially stretching surface 

with temperature distribution being in exponential form. Later, Sajid 

and Hayat (2008) examined the effect of thermal radiation on the 

boundary layer flow over exponentially stretching sheet and reported 

series solutions by homotopy analysis method (HAM) for velocity and 

temperature. Ishak (2011) investigated numerically the radiation effect 

on flow and heat transfer past exponentially stretching surface. On the 

other hand, the flow due to exponential shrinking sheet with heat 

transfer was analysed by Bhattacharyya (2011) and the effect of 

external magnetic field on this flow was illustrated by Bhattacharyya 

and Pop (2011). Boundary layer flow over an exponentially shrinking 

sheet near a stagnation-point was discussed by Bhattacharyya and 

Vajravelu (2012) and same problem with nanoparticle effect was 

studied by Bachok et al. (2012). Ara et al. (2014) investigated the heat 

transfer in boundary layer flow of an Eyring–Powell fluid in presence 

of thermal radiation. Ghosh and Mukhopadhyay (2017) demonstrated 

the steady nanofluid flow past an exponentially permeable shrinking 

sheet in presence of slip. 

In this paper, the properties of MHD mixed convective boundary 

layer flow and heat transfer of non-Newtonian Powell-Eyring fluid due 

to a permeable exponentially shrinking sheet are discussed. The effects 

of external magnetic field, mixed convection parameter, suction and 

fluid parameters on the skin friction coefficient and the local Nusselt 

number along with the velocity and temperature profiles are analyzed 

and discussed. In best of our knowledge, the investigation of this mixed 

convection flow is not reported so far. 

2. MATHEMATICAL FORMULATION 

Let us consider an incompressible steady 2D flow of non-Newtonian 

Powell–Eyring fluid past a permeable exponentially shrinking sheet. 

The shrinking velocity and surface temperature are in exponential 

mode. The velocity of the shrinking sheet is /x L

wu ae  with a being 

shrinking constant, the variable surface temperature is 2 /x L

wT T be   

and constant temperature away from the sheet is T , where wT T  

corresponds to heated surface (assisting flow) and wT T  corresponds 

to cooled surface (opposing flow), respectively. A variable magnetic 

field /2
0( ) x LB x B e  (B0 being constant) is taken and is applied normal 

to the sheet. The magnetic Reynolds number for the flow is considered 

to be very small, so that the induced magnetic field can be neglected. 

The constitutive equations for Eyring–Powell fluid model is given 

below (Hayat et al., 2012b): 

 
Fig. 1 Physical sketch of the problem. 

1

1

1 1
sinhS V V

c




  
    

 
   (1) 

and 
3

1 1 1 1 1 1
sinh ,  1

6
V V V V

c c c c

    
         

   
, (2) 

where   is the viscosity, 1  and c are the material fluid parameters. 

Under these conditions boundary layer equations for steady flow of 

Eyring–Powell fluid and heat transfer over a permeable exponentially 

shrinking surface may be written in usual notation as: 
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The corresponding boundary conditions are 

( ),  ,  ( ) at 0w w wu u x v v T T x y        (6) 

0,  ,  as u T T y   ,    (7) 

where u and v are the velocity components in x and y directions 

respectively, a is a positive constant,  is the kinematic fluid viscosity, 

 is the density, /2

0

x L

wv v e  is the variable suction velocity with v0 

being constant, T is the temperature, 
T  is the thermal expansion 

coefficient, g is the gravitational acceleration, L is the reference length, 

 is the thermal diffusivity and 
pc  is the specific heat. The physical 

sketch of the problem is given in Fig. 1. 

Let us introduce the following transformation: 
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Using (8), the continuity equation (3) is automatically satisfied and the 

nonlinear partial differential equations (4) and (5) are converted into the 

following non-similar ordinary differential equations: 

  2 21 2 2 2 0f ff f f f Mf              , (9) 

1
4 0

Pr
f f           (10) 

and the boundary conditions (6) and (7) become 

(0) ,  (0) 1,  (0) 1,

( ) 0,  ( ) 0,

f S f

f





    


     
    (11) 

where prime denotes differentiation with respect to , 11 ( )c   

and 3 3 / 2(4 )x La e Lc   are the local fluid parameters, Pr pc   is 

the Prandtl number, 2

Tg bL a   is the mixed convection parameter, 

2

0 ( )M B L a   is the magnetic parameter and 
0 2 ( ) 0S v L a   

is the mass suction parameter. 

The physical quantities of significance interest are local skin friction 

coefficient and local Nusselt number which are defined as: 
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where 
w  is shear stress along the exponentially shrinking sheet and 

wq  

is heat flux from the sheet and those are defined as 
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Therefore, the wall skin friction coefficient 
fC  and local Nusselt 

number 
xNu  are found as follows: 
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where Rex wxu   is local Reynolds number. 

3. RESULTS AND DISCUSSION 

The transformed equations (9) & (10) with boundary conditions (11) 
are solved numerically using shooting method and the detail description 
of the scheme can be found in the article by Bhattacharyya (2013). The 
study of the obtained numerical results explores the condition for which 
steady flow of the non-Newtonian Powell–Eyring fluid is possible. 
According to study of Miklavčič and Wang (2006) and Fang and Zhang 
(2009), for Newtonian fluids, the steady two-dimensional flow due to a 
shrinking surface with wall mass transfer through the porous sheet is 
possible when the wall mass suction parameter is larger than or equal to 
2. However, it is quite different for non-Newtonian Powell–Eyring 
fluid. With increasing values of , for the steady flow larger amount of 
mass suction is required in comparison with the Newtonian fluid flow. 
For 0.1ε  , the flow has dual non-similar solution for 2.4470S   and 
consequently for 2.4470S   no non-similar solution is possible. For 

0.2ε  , the dual non-similar solutions exist for ranges of S is 
2.5289S   and therefore no non-similar solution is found for 

2.5289S  . Further, it is interesting to note that more increment in 
fluid parameter  causes more reduction in the range of suction 
parameter for which solution exists. For 0.3ε  , the ranges of S where 
dual non-similar solutions exist, is 2.60735S   and no solution exists 
for 2.60735S  . The variation of skin friction coefficient and local 
Nusselt number for selected values of the fluid parameter  are depicted 
in Figs. 2 and 3, respectively. In these figures, the solid lines denote 
first solution (the upper branch solution), while the dash lines denote 
second solution (the lower branch solution). From Figs. 2 and 3, it is 
noticed that for the first solution the values of skin friction coefficient 
and local Nusselt number decrease with increasing values of  and the 
values increase for second solution. 

 
Fig. 2 The Skin friction coefficient vs. S for different values of  with 

0.1δ  , 0.1λ   , 0.1M  , Pr 1 . 

The skin friction coefficient and local Nusselt number for different 
values of S are presented in Figs. 4 and 5, respectively. It can be 
observed that dual solutions exist for opposing flow  0  , while for 
the assisting flow  0  , the solution is unique. For the first solution, 
the values of skin friction coefficient and local Nusselt number increase 
as  increases. This is due to the fact that the assisting buoyancy forces 
produce a favorable pressure gradient which increases the fluid motion. 
On the other hand, for first solution, skin friction coefficient and the 

local Nusselt number decrease as S increases, while for the second 
solution, those values increase.  It is evident from these figs that mass 
suction delays the boundary layer separation. It is also worth 
mentioning that the computations have been performed until we get the 
solution with desired accuracy level in asymptotic nature with the 
boundary conditions and the computations were terminated at this 
point. For different values of S, there are critical values c(<0) of  
from which the solution exists. Based on the computations, the critical 
values are 0.37450,  0.25199   and 0.15480  for 

2.6,  2.7 and 2.8S  , respectively. 

 
Fig. 3 The local Nusselt number vs. S for different values of  with 

0.1δ  , 0.1λ   , 0.1M  , Pr 1 . 

 
Fig. 4 The Skin friction coefficient vs.  for different values of S with 

0.2ε  , 0.1δ  , 0.1M  , Pr 1 . 

 
Fig. 5 The local Nusselt number vs.  for different values of S with 

0.2ε  , 0.1δ  , 0.1M  , Pr 1 . 

Figs. 6 and 7 show the variation of skin friction coefficient and 
local Nusselt number for several values of M. From Figs. 6 and 7, it is 
observed that the values of skin friction and local Nusselt number 
increase with M for first solution, while the values decrease for second 
solution. It is also seen from Fig. 6 that the wall shear stress is positive 
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which implies that the fluid exert a drag force on the sheet. It is worth 
mentioning that the first solution is stable and physically relevant, while 
the second solution is not, since the first solution is the only solution for 
the case of assisting flow, and the second solution exists only for certain 
range of few parameters. However, they are still of interest as the 
differential equations are concerned, though such solutions are deprived 
of physical significant. Similar results may arise in other physical 
situations where the corresponding solutions could have more real 
meaning (Ridha, 1996). For the similar problems, using a stability 
analysis, Weidman et al. (2006), Postelnicu and Pop (2011) and very 
recently by Roşca and Pop (2014b) have shown that first solutions are 
stable, while second solutions are not. 

 
Fig. 6 The Skin friction coefficient vs. S for different values of M. with 

0.2ε  , 0.1δ  , 0.1λ   , Pr 1 . 

 
Fig. 7 The local Nusselt number vs. S for different values of M with 

0.2ε  , 0.1δ  , 0.1λ   , Pr 1 . 

 
Fig. 8 The velocity profiles for different values of  with 0.1δ  , 

0.1M  , 2.7S  , 0.1λ   , Pr 1 . 
The velocity and temperature profiles for different values of fluid 

parameters  and  are depicted in Figs. 8-11. Fig. 8 shows that velocity 
profiles decreases with increasing  and consequently it increases the 

velocity boundary layer thickness for first solution, while the opposite 
trend is observed for second solution. On the other hand, the opposite 
way is noted for the fluid parameter  as shown in Fig. 10. It is also 
clear from these figures that the second solution displays a thicker 
boundary layer thickness compared to first solution. Fig. 9 shows that 
both the temperature and thermal boundary layer thickness increase 
with  for first solution and decrease for second solution. Fig. 11 shows 
temperature profiles decreases with increasing  for first solution and 
increases for second solution. It is worth mentioning that first and 
second solutions satisfied the far field boundary conditions 
asymptotically, which is supporting the accuracy of obtained numerical 
results. 

 
Fig. 9 The temperature profiles for different values of  with 0.1δ  , 

0.1M  , 2.7S  , 0.1λ   , Pr 1 . 

 
Fig. 10 The velocity profiles for different values of  with 0.1ε  , 

0.1M  , 2.7S  , 0.1λ   , Pr 1 . 

 

 
Fig. 11 The temperature profiles for different values of  with 0.1ε  , 

0.1M  , 2.7S  , 0.1λ   , Pr 1 . 
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The suction plays an important role to maintain the steady flow 
near the surface by delaying the flow separation. So, the effects of 
suction parameter S on the velocity and temperature profiles are vital in 
theoretical and practical points of view. Figs. 12 and 13 illustrated the 
velocity and temperature profiles for various values of suction S.  Fig. 
12 shows that, for first solution, velocity profiles increases with 
increasing S and it decreases for second solution. From Fig. 13, it is 
clear that thermal boundary layer thickness decreases with increasing S 
for first solution and increases for second solution. Due to suction the 
fluid mass is brought closer to the sheet and by this it prevents the 
diffusion of vorticity generated due to shrinking. 

 
Fig. 12 The velocity profiles for different values of S with 0.1ε  , 

0.1δ  , 0.1M  , 0.1λ   , Pr 1 . 

 

 
Fig. 13 The temperature profiles for different values of S with 0.1ε  , 

0.1δ  , 0.1M  , 0.1λ   , Pr 1 . 

 

 
Fig. 14 The velocity profiles for different values of M with 0.1ε  , 

0.1δ  , 2.7S  , 0.1λ   , Pr 1 . 

Figs. 14 and 15 show the effect of magnetic parameter on velocity 
and temperature profiles. From Fig. 14, it is clear that the velocity of 
fluid increases and consequently there is reduction in the velocity 
boundary layer thickness for first solution, whereas the opposite effects 
are observed in case of second solution. With a rise in strength of 
magnetic field (i.e., increase of magnetic parameter), the Lorentz force 
associated with applied magnetic field makes the boundary layer 
thinner due to its resistance property. The fluid which is decelerated by 
the viscous action, receives a push due to the magnetic field which 
works against the viscous effects (Mukhopadhyay and Mandal, 2015). 
For first solution, the thermal boundary layer thickness reduces with 
increasing M and increases for second solution as found in Fig. 15. It is 
also noted that temperature profiles overshoot in the boundary layer 
region for second solution. 

 
Fig. 15 The temperature profiles for different values of M with 0.1ε  , 

0.1δ  , 2.7S  , 0.1λ   , Pr 1 . 

 
Fig. 16 The velocity profiles for different values of (<0) with 0.2ε  , 

0.1δ  , 0.1M  , 2.7S  , Pr 1 . 

 
Fig. 17 The velocity profiles for different values of (>0) with 0.2ε  , 

0.1δ  , 0.1M  , 2.7S  , Pr 1 . 
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The effects of mixed convection parameter  on the dimensionless 
velocity and temperature profiles are depicted in Fig. 16 – Fig. 19. For 
opposing flow (<0), the velocity inside the boundary layer decreases 
with magnitude of  for first solution and reverse for second solution. 
Whereas, for assisting flow (>0), the velocity increases with . As the 
magnitude of  (with <0) increases the influence of opposing 
buoyancy force become more prominent and it causes reduction of 
velocity. On the other hand, for >0, the opposing buoyancy force 
originates increment in the velocity. The effects of buoyancy forces on 
the temperature are just opposite to those of on the velocity. For <0 
the temperature enhances with increasing magnitude of  for first 
solution and it reduces for second solution. For assisting flow, 
temperature decreases with . 

 
Fig. 18 The temperature profiles for different values of (<0) with 

0.2ε  , 0.1δ  , 0.1M  , 2.7S  , Pr 1 . 

 
Fig. 19 The temperature profiles for different values of (>0) with 

0.2ε  , 0.1δ  , 0.1M  , 2.7S  , Pr 1 . 

A comparison of dual velocity profiles of the present study for 
0.1M  , 2.5S  , 0ε  , 0δ  , 0λ   with the published results by 

Bhattacharyya and Pop (2011) for 0.2M  , 2.5S   ( 2M M  is the 
relation between the two magnetic parameters of the two papers) is 
presented in Fig. 20. Those two are found in excellent agreement and it 
consequently confirms the accuracy of the obtained results.  

4. CONCLUSIONS 

A numerical study has been presented on MHD mixed convective flow 

and heat transfer of Powell–Eyring fluid past a permeable exponentially 

shrinking sheet. Non-similar dual solutions of the transformed 

equations are found using the shooting method for various values of 

governing parameters. Assisting as well as opposing flows are 

considered. The study can be summarized as follows: 

(1) Dual solutions are obtained for a certain range of suction 

parameter and mixed convection parameter (only for opposing 

flow). 

(2) For the increment of fluid parameter  and suction, skin friction 

coefficient enhances for first solution and reduces for second 

solution, whereas the skin friction increases due to magnetic 

parameter for first solution and decrease for second solution. 

(3) The local Nusselt number decreases due to the suction and fluid 

parameter for fist solution and increases in case of second solution, 

while the Nusselt number increases with magnetic parameter. 

(4) Both the boundary layer thicknesses decrease due to the fluid 

parameter  in case of first solution, while those increase for 

second solution. 

 
Fig. 20 A comparison of velocity profiles: (a) dual velocity profiles for 

0.2M  , 2.5S   by Bhattacharyya and Pop (2011) (b) dual velocity 

profiles for 0ε  , 0δ  , 0λ  , 0.1M  , 2.5S   of present study. 
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