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ABSTRACT 

This paper focuses on the numerical solution for magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a 

horizontal circular cylinder. The nonlinear partial differential equations of the boundary layer are first transformed into a non-dimensional form and 

then solved numerically using an implicit finite difference scheme known as Keller-box method. The The effects of the emerging parameters, namely 

Casson fluid parameter,
 
magnetic parameter, radiation parameter  and micropolar parameter 

 
on the local Nusselt number and the local skin friction 

coefficient, as well as the temperature, velocity and angular velocity profiles are shown graphically and discussed. The present results of local 

Nusselt number and the local skin friction for viscous fluid are found to be in good agreement with the literature.   
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1. INTRODUCTION 

Casson fluids in the presence of heat transfer is widely used in the 

processing of chocolate, foams,  syrups, nail, toffee and many other 

foodstuffs (Ramachandra et al. (2013). Casson (1959), in his pioneering 

work introduced this model to simulate industrial inks. Later on, a 

substantial study has been done on the Casson fluid flow because of its 

important engineering applications. Mustafa et al. (2011) have studied 

the heat transfer flow of a Casson fluid over an impulsive motion of the 

plate using the homotopy method. The exact solution of forced 

convection boundary layer Casson fluid flow toward a linearly 

stretching surface with transpiration effects are reported by 

Mukhopadhyay et al. (2013). In the same year, Subba et al. (2015) 

considered the velocity and thermal slip conditions on the laminar  

boundary layer heat transfer flow of a Casson fluid past a vertical plate. 

Mahdy and Ahmed (2017) studied the effect of magnetohydrodynamic 

on a mixed convection boundary flow of an incompressible Casson 

fluid in the stagnation point of an impulsively rotating sphere. The 

convective boundary layer flow of Casson nanofluid from an isothermal 

sphere surface is presented by Nagendra et al. (2017). Mehmood et al. 

(2017) investigated the micropolar Casson fluid on mixed convection 

flow induced by a stretching sheet. Shehzad et al. (2013) discussed the 

viscous chemical reaction effects on the MHD flow of a Casson fluid 

over a porous stretching sheet. Recently, Khalid et al. (2015) developed 

exact solutions for unsteady MHD free convection flow of a Casson 

fluid past an oscillating plate. Amongst the various investigations on 

Casson fluid, the reader is referred  to some new attempts made in 

Qasim and Noreen (2014; Hussanan et al. (2014) and Haq et al. (2014), 

and the references therein.  

Among the class of several other non-Newtonian fluid models 

namely micropolar fluids, this fluid  flow lies in the extension of the 

constituent equation for Newtonian fluid, so that more complex fluids 

such as  liquid crystal, particle suspensions, animal blood, lubrication 

and turbulent shear flows can be described by this theory Lukaszewicz 

(1999). The theory of micrpolar fluids was first introduced by Eringen 

(1966). Ariman et al. (1973) investigated the application of micropolar 

fluid mechanics as review paper. The recent book by Eringen (2001) 

presented a useful account of the theory and extensive surveys of 

literature of micropolar fluid theory. 

The study of boundary layer flow on a horizontal circular cylinder 

was first  studied by Blasius (1908), who successfully solved the 

momentum equation of forced convection boundary layer flow. Merkin 

(1976) considered the free convection boundary layer on an isothermal 

horizontal cylinder with constant wall temperature and became the first 

who obtained the exact solution for this problem. Ingham (1978) 

developed the numerical method to solved free convective boundary 

layer flow on an isothermal horizontal cylinder. Merkin and Pop (1988) 

presented the numerical solution of the free convection boundary layer 

flow on a horizontal circular cylinder with constant heat flux using the 

Keller-box method. Next, the extended by the work of Merkin (1976) 

and Merkin and Pop (1988) for free convection boundary layer flow on 

a horizontal circular cylinder in viscous fluid to a micropolar fluid was 

investigated by Nazar et al. (2002). Moreover Salleh and Nazar (2010) 

and Alkasasbeh et al (2015;2014) work with Newtonian heating. Gaffar 

et al. (2015) investigated the laminar boundary layer flow and heat 

transfer of a Tangent Hyperbolic non-Newtonian fluid from horizontal 

circular cylinder with slip condition. Recently, Gaffar et al. (2017) 

studied the magnetohydrodynamic (MHD) free convection flow and 

heat transfer of non-Newtonian tangent hyperbolic fluid from horizontal 

circular cylinder with convective boundary conditions.  

Based on the above contribution, the aim of present study is to 

investigate the effect of MHD on free convective boundary layer flow 

about a horizontal circular cylinder in a micropolar Casson fluid with 

thermal radiation and this problem has to the author knowledge not 

appeared thus far in the scientific literature.
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2. MATHEMATICAL MODELING 

Consider the steady, laminar, two-dimensional, viscous, 

incompressible, buoyancy-driven convection heat transfer flow from a 

horizontal permeable circular cylinder embedded in a micropolar 

Casson fluid. For many actual fluids and flow conditions, a simple and 

convenient way to express the density difference ( )ρ ρ∞−
 

in the 

buoyancy term of the momentum equations is given by the Boussinesq 

approximation [1 ( )],B T Tρ ρ∞ ∞= − −  where ρ∞  is the constant local 

density, T is the local temperature, T∞  is the temperature of the ambient 

medium.  ρ  is the fluid density and B  is the thermal expansion 

coefficient,. Figure 1 shows the flow model and physical coordinate 

system. The x − coordinate is measured along the circumference of the 

horizontal cylinder from the lowest point and the y − coordinate is 

measured normal to the surface, with a  denoting the radius of the 

horizontal cylinder. /x a  is the angle of the y − axis with respect to 

the vertical 0 /x a π≤ ≤ . The gravitational acceleration, g acts 

downwards. Both the horizontal cylinder and the fluid are maintained 

initially at the same temperature. Instantaneously they are raised to a 

temperature 
wT T∞>

 
the ambient temperature of the fluid which 

remains unchanged. 

The constitutive relationship for an incompressible Casson fluid 

flow, reported by Mukhopadhyay et al. (2013).  

( )
( )

2 2 ,

2 2 ,

B y ij c

ij
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p e

µ π π π
τ

µ π π π

 + >
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+ <
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where  ij ij
e eπ = , ij

e
 
is the ( , )i j − th component of the deformation 

rate, 
Bµ  is the plastic dynamic viscosity of the non-Newtonian fluid, 

cπ
 
is a critical value of this product based on the non-Newtonian model 

and y
p

 
is the yield stress of the fluid. 

 
Fig. 1 Physical model and coordinate system 

 

Introducing the boundary layer approximations, the continuity, 

momentum, microrotation and energy equations, respectively can be 

written as follows:  

0,
u v

x y

∂ ∂
+ =

∂ ∂
   (1) 

2

2

2

( ) 1
1

( )sin ,

u u u
u v

x y y

x H B
gB T T u

a y

µ κ

ρ β

κ σ

ρ ρ
∞

 ∂ ∂ + ∂
+ = + + 

∂ ∂ ∂ 

∂ 
− + − 

∂ 
  

(2) 

2

2
2 ,

H H H u
u v H

x y j y j y

φ κ

ρ ρ

 ∂ ∂ ∂ ∂
+ = − + 

∂ ∂ ∂ ∂ 
 (3) 

2

2

1
,rT T T q

u v
x y y c yρ

α
ρ

∂ ∂ ∂ ∂
+ = −

∂ ∂ ∂ ∂
   (4) 

these equations are subjected to the boundary conditions Nazar et al. 

(2002), 

0,u v= =  
w

T T= , 
1

2

u
H

y

∂
= −

∂
 as 0,y =  

0,u → ,T T∞→
 

0,H →
 
as y → ∞ ,          (5) 

where u  and v  are the velocity components along the x and y  

directions, respectively, H  is the angular velocity of micropolar fluid, 

κ  is the vortex viscosity, g is the gravity acceleration, k  is the thermal 

conductivity, σ  is the electric conductivity,α  is the thermal diffusivity, 

ν
 
is the kinematic viscosity, µ  is the dynamic viscosity,

 ρc
 
is the 

specific heat, 
 

2
/j a Gr= is the microinertia density, 

2 /B c ypβ µ π=
 
is the parameter of the Casson fluid and the spin 

gradient viscosity ( / 2) jφ µ κ= + . We introduce now the following 

non-dimensional variables Nazar et al. (2002), 

,
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∞
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where 

 

3 2( ) /
w

Gr gB T T a ν∞= −  is the Grashof number. Using the 

Rosseland approximation for radiation, the radiative heat flux is 

simplified as (Bataller (2008)) 
* 4

*

4
,

3
r

T
q

k y

σ ∂
= −

∂
   (7) 

where 
*σ  and 

*k  are the Stefan-Boltzmann constant and the mean 

absorption coefficient, respectively. We assume that the temperature 

differences within the flow through the micropolar fluid such as that the 

term  
4

T  may be expressed as a linear function of temperature. Hence, 

expanding 
4

T  in a Taylor series about T∞  
and neglecting higher-order 

terms, we get 
4 3 44 3 ,T T T T∞ ∞≅ −

    (8)
 

substituting variables (6)–(8) into equations (1)–(4), we obtain the 

following non-dimensional equations of the problem under 

consideration:  
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where /K κ µ=

 

is the material or micropolar parameter, Pr /ν α=  is 

the Prandtl number, 
2 2 /M B a Grσ ν ρ=  is the magnetic parameter 

and 
* * 3

/ 4R k c Tρα ρ σ ∞=  is the radiation parameter.. The boundary 

conditions (5) become 

0,u v= =  1,θ =  
1

2

u
H

y

∂
= −

∂
  

at 0,y =  

0,u →  0,θ →  0H →  as ,y → ∞   (13) 

To solve equations (9) to (12), subjected to the boundary conditions 

(13), we assume the following variables:  
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( , ), ( , ), ( , ) ,xf x y x y H xh x yψ θ θ= = =
 (14) 

where ψ
 
is the stream function defined as  

u
y
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=

∂
 

and v
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∂
,             (15) 
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continuity equation (9). Thus, (10) to (12) become 
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subject to the boundary conditions 
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f
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2

2

1

2

f
h

y

∂
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∂
 

at y = 0, 

0,
f

y

∂
→

∂
 

0,θ →

 

0h →
 
as ,y → ∞

  
(19) 

It can be seen that at the lower stagnation point of the cylinder, 0,x ≈  

equations (16) to (18) reduce to the following nonlinear system of 

ordinary differential equations: 

21
(1 ) 0,K f ff f Mf Khθ

β
′′′ ′′ ′ ′ ′+ + + − + − + =  (20) 
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2

K
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the boundary conditions (19) become 

(0) (0) 0,f f ′= =  (0) 1,θ =
 

1
(0) (0),

2
h f ′′= −  

0,f ′ →  0,θ →
 

0h →
 
as ,y → ∞   (23) 

where primes denote differentiation with respect to y.  

The physical quantities of interest in this problem are the 

local skin friction coefficient 
fC

 
and the local Nusselt number ,

u
N

 
and they can be written as  
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using the non-dimensional variables (6)-(8) and the boundary 

conditions (13) the local skin friction coefficient 
fC and the local 

Nusselt number u
N are  
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3 SOLUTION PROCEDURES 

Equations (16) to (18) subject to boundary conditions (19) are solved 

numerically using the Keller-box method as described in the book by 

Cebeci and Bradshaw Cebeci and Bradshaw (1984). The solution is 

obtained by the following four steps: 

 reduce (16) to (18) to a first-order system, 

 write the difference equations using central differences, 

 linearize the resulting algebraic equations by Newton’s 

method, and write them in the matrix-vector form, 

 solve the linear system by the block tridiagonal elimination 

technique. 

The details of this method can be found in Nazar et al. (2002) 

 

4. RESULTS AND DISCUSSION 

The numerical solutions of the nonlinear system of partial differential 

equations (16) to (18) with boundary conditions (19) are solved by the 

Keller-box method (KBM) with four parameters considered, namely the 

Prandtl number Pr, the magnetic parameter M, the micropolar parameter 

K and Casson parameter β . This method is an implicit finite-

difference method in conjunction with Newton’s method for 

linearization. This is a suitable method to solve parabolic partial 

differential equations. The boundary layer thickness 16y∞ =
 
and step 

size 0.01,y∆ =

 

0.005x∆ =  are used in obtaining the numerical results. 

The numerical solutions start at the lower stagnation point of the 

cylinder 0x ≈ , with initial profiles as given by equations (20) to (22) 

and proceed round the cylinder up to x π= .  

In order to verify the accuracy of the present applied numerical 

scheme, a comparison with previously published results has been made. 

It is noticed  from Table 1 that when Pr = 7, K = 0, 2, M = 0 and 

,β → ∞  the results under consideration for local Nusselt number 
uN  

reduce to the results reported by Merkin (1976) and Nazar et al. (2002) 

for the case of viscous and micropolar fluids respectively. It is found 

that the results are a good agreement. Furthermore I believe that Keller-

box method is proven to be very efficient to solve this problems.  

 

Table 1: Comparison of numerical values for the local Nusselt number 

uN  at Pr = 1, K = 0, 3, M = 0, R = 0 and ,β → ∞  for viscous value x 

with previously published results of viscous and micropolar fluid 

K  0   3  
x  Merkin 

(1976) 

Nazar 

et al. 

(2002) 

Present Merkin 

(1976) 

Nazar 

et al. 

(2002) 

Present 

0o 0.4214 0.4214 0.421402 - 0.3447 0.344651 

/ 6π  0.4161 0.4161 0.416098 - 0.3404 0.340350 

/ 3π  0.4007 0.4005 0.400607 - 0.3277 0.327720 

/ 2π  0.3745 0.3741 0.374245 - 0.3060 0.305891 

2 / 3π  0.3364 0.3355 0.335891 - 0.2744 0.274221 

5 / 6π  0.2825 0.2811 0.281925 - 0.2290 0.228825 

π  0.1945 0.1916 0.192101 - 0.1507 0.150645 

Table 2 document results for the influence of the microplar 

parameter K and Casson parameter β
 
on heat transfer coefficient and 

the skin friction coefficient at the lower stagnation point of the cylinder 

when Pr = 7, M = 1 and R = 1. It is observed that, increasing microplar 

parameter K, decreases both skin friction and heat transfer rate. 

Furthermore, an increase in Casson parameter β
 
increases both skin 

friction and heat transfer rate. 

Figures 2-3 illustrates the influence of the Casson parameter β  on 

the local Nusselt number and the local skin friction, respectively. It is 

seen from these figures that an increasing of the Casson parameter leads 
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to increases on the local Nusselt number and decreases on the local skin 

friction. Moreover, as the values of x  increase, the rate values of the 

local Nusselt number decreases and the local skin friction increases.  

The behavior of magnetic parameter M on local Nusselt number 

uN   and local skin friction fC  are seen in Figures 4-5. It is observed 

that the local Nusselt number and the local skin friction are increased 

with the decrease in M. Intense amount of magnetic field inside the 

boundary layer literally increase the Lorentz force which significantly 

opposes the flow in the reverse direction. Thus, local skin friction 

coefficient and local Nusselt number rate diminishes 

Figures 6-7 show the influence of radiation parameter R local 

Nusselt number 
uN  and local skin friction fC . An increase in R from 

0 (non-Radiation case) to 3, strongly accelerates the flow i.e., 

increasing in a local skin friction coefficient and local Nusselt number 

values.  

Table 2: The heat transfer coefficient ( )( ,0)y xθ− ∂ ∂  and the skin 

friction coefficient 
2 2( )( ,0)f y x∂ ∂  at the lower stagnation point  

of the cylinder, 0x ≈ , for various values of Casson parameter β   

when Pr = 7, K = 1, 3, M = 1 and R = 1. 

K       1      3  

β  ( / )yθ− ∂ ∂  2 2( / )f y∂ ∂  ( / )yθ− ∂ ∂

 

2 2( / )f y∂ ∂   

0.1 0.777033 0.106734 0.762074 0.098994  

0.2 0.869585 0.155168 0.839868 0.134837  

0.3 0.918901 0.187037 0.878050 0.155381  

0.4 0.950555 0.210040 0.901190 0.168848  

0.5 0.972859 0.227552 0.916815 0.178388   

0.6 0.989516 0.241376 0.928104 0.185511   

0.7 1.002469 0.252587 0.936655 0.191037   

0.8 1.012848 0.261873 0.943362 0.195451   

0.9 1.021362 0.269696 0.948765 0.199059   

1.0 1.028477 0.276380 0.953213 0.202063   
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Fig. 2 Effect of Casson parameter β  on local Nusselt number 
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Fig. 3 Effect of Casson parameter β  on local skin friction coefficient. 
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Fig. 4 Effect of magnetic parameter M  on local Nusselt number 
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Fig. 5 Effect of magnetic parameter M  on local skin friction 

coefficient. 
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Fig. 6 Effect of radiation parameter R  on local Nusselt number 
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Fig. 7 Effect of radiation parameter R  on local skin friction 

coefficient. 

In all profiles a peak arises near the surface of the cylinder and this 

peak is displaced progressively closer to the wall with an elevation in R 

values The effect of Casson parameter β
 
on temperature, velocity and 

angular velocity profiles are exhibited in Figures 8-10. From figure 8 
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that the temperature profiles (0, )yθ  increases as decreases the values 

of β . 
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Fig. 8 Effect of Casson parameter β  on the temperature profiles at the 

lower stagnation point 

. 

Figure. 9 indicates that an increase in β
 
tends to decrease in the 

velocity profiles ( )(0, )f y y∂ ∂ . It is true because is appeared in the 

shear term of the momentum equation (15) and an increase in implies a 

decrease in yield stress of the Casson fluid. Figure 10 shows that as 

Casson parameter β
 
increases, the angular velocity profiles (0, )h y

 
also increases. Physically, an increase in Casson parameter means a 

decrease in yield stress and increases the plastic dynamic viscosity of 

the fluid, which makes the momentum boundary layer thicker. This 

effectively slows down the fluid motion. Figures 11-13 illustrate the 

effects of several of magnetic parameter M on temperature, velocity and 

angular velocity profiles. The numerical results obtained show that an 

increase in the magnetic parameter M the values of temperature profiles 

(0, )yθ  increases but values of the velocity ( )(0, )f y y∂ ∂
 
and the 

angular velocity profiles (0, )h y
 
decreases. This is in accordance to the 

physics of the problem, since the application of a transverse magnetic 

field results in a resistive type force (Lorentz force) similar to drag 

force which tends to resist the fluid flow and thus reducing its velocity 

and angular velocity. 

 Figures 14-16 present the effect of radiation parameter R on 

temperature, velocity and angular velocity profiles. The observation 

shows that the temperature, velocity and angular velocity profiles 

increases with an increase in R because increase the value of radiation 

parameter provides more heat to fluid that causes an enhancement in the 

temperature, velocity, angular velocity profiles and the thickness of 

thermal boundary layer. 
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Fig. 9 Effect of Casson parameter β  on the velocity profiles at the 

lower stagnation point 
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Fig. 10 Effect of Casson parameter β  on the angular velocity profiles 

at the lower stagnation point 
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Fig. 11 Effect of magnetic parameter M  on the temperature profiles at 

the lower stagnation point 
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Fig. 12 Effect of magnetic parameter M  on the velocity profiles at the 

lower stagnation point 

0 2 4 6 8 10 12 14 16

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

y

h
 (

0
,y

)

M = 0, 1, 2, 3

β = 0.5, K=3, R=1, Pr=7

 
Fig. 13 Effect of magnetic parameter M  on the angular velocity 

profiles at the lower stagnation point 
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Fig. 14 Effect of radiation parameter R  on the temperature profiles at 

the lower stagnation point 

5. CONCLUSIONS 

In this paper we have theoretically and numerically studied the 

problem of the effect of MHD free convective boundary layer flow 

about a cylinder in a micropolar Casson fluid with thermal radiation. 

We can conclude that, to get a physically acceptable solution:  

• With the increase in Casson parameter β , the local Nusselt 

number 
uN , the heat transfer coefficient ( )( ,0)y xθ− ∂ ∂ , the 

skin friction coefficient 
2 2( )( ,0)f y x∂ ∂  and velocity 

profiles (0, )h y  increase, while  the local skin friction 

coefficient fC , temperature (0, )yθ  and velocity profiles 

( )(0, )f y y∂ ∂  decrease. 

• With the increase in magnetic parameter M , the local Nusselt 

number 
uN , local skin friction coefficient fC , velocity 

( )(0, )f y y∂ ∂
 
and angular velocity (0, )h y profiles decrease, 

while the temperature profiles (0, )yθ
 
increase.  

• With the increase in microplar parameter K, the skin friction 
2 2( )( ,0)f y x∂ ∂

 
and heat transfer ( )( ,0)y xθ− ∂ ∂

 
decrease. 

• With the increase in radiation parameter R, the local Nusselt 

number 
uN , local skin friction coefficient fC , the 

temperature (0, )yθ , velocity ( )(0, )f y y∂ ∂
 

and angular 

velocity (0, )h y  profiles increase. 
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Fig. 15 Effect of radiation parameter R  on the velocity profiles at the 

lower stagnation point 
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Fig. 16 Effect of radiation parameter R  on the angular velocity 

profiles at the lower stagnation point 
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NOMENCLATURE 

a  Radius of the cylinder 

B  Thermal expansion coefficient 

fC  Local skin friction coefficient 

ρc
 
 Specific heat 

f  Reduced stream function 

j
 

Microinertia density 

H  Angular velocity of micropolar fluid 

g  Acceleration due to gravity 

Gr  Grashof number 

K

 

 Material or micropolar parameter 

k  Thermal conductivity 
*

k  Mean absorption coefficient 

M   Magnetic parameter 

u
N

 
Local Nusselt number 

R   Radiation parameter 

Pr  Prandtl number 

y
p

 
 Yield stress of the fluid 

wq         Constant wall heat flux  

T  Fluid temperature 

T∞  Temperature of the ambient fluids 

,u v  Non-dimensional velocity components along x  and y  

 directions 

,x y  Coordinates measured from the lower stagnation point along 

the surface of cylinder and Normal to it, respectively 

Greek Symbols 

α
 

Thermal diffusivity 

β
 
 Parameter of the Casson fluid 

φ  Spin gradient viscosity 

θ  Non-dimensional temperature 

µ  Dynamic viscosity
 

Bµ   Plastic dynamic viscosity of the non-Newtonian fluid 

cπ
  

Critical value of this product based on the non-Newtonian  

model 

κ  Vortex viscosity 

σ   Electric conductivity 
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*σ   Stefan-Boltzmann constant 

α   Thermal diffusivity 

ρ   Fluid density 

ν  Kinematic viscosity 

ψ  Non-dimensional stream function 
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