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ABSTRACT 

Numerical study of double-diffusive natural convection flow and entropy generation in 3D trapezoidal solar distiller was performed using 
computational fluid dynamics (CFD). In this research the flow, provoked by the interaction of chemical species diffusions and the thermal energy, is 
assumed to be laminar. Using potential vector-vorticity formulation in its three-dimensional form, the governing equations are formulated and solved 
by the numerical methodology based on the finite volume method. The main objective is to analyze the effects of buoyancy ratio for opposed 
temperature and concentration gradients and to focus the attention on three-dimensional aspects and generated entropy. The occurring heat and mass 
transfer are depicted by the dynamic and temperature fields of the flow inside the trapezoidal cavity. It has been found that the flow structure and the 
heat and mass transfer are sensitive to the value of buoyancy ratio. 

Keywords: Three-dimensional flow, Entropy generation, Solar energy, 3-D CFD, Double diffusive natural convection, Entropy generation, 
Trapezoidal Solar distiller. 
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1. INTRODUCTION 

The accessibility to drinking water is one of the main problems for 
human being in arid remote areas all over the world. In addition, there 
as well are many coastal locations where sea water is abundant but 
potable water is not available. Solar stills, where brackish or sea water 
is evaporated and is then condensed as pure water, can solve part of this 
problem. In such processes conditions are especially favorable for 
double-diffusive natural convection flow to occur. This convection is 
generated by buoyancy due to simultaneous temperature and 
concentration gradients. A sizable amount of research interests has been 
addressed on this subject (Mirabedin, 2016; Alam et al. 2016; 
Bouabdallah et al. 2016; Bennacer et al. 2001; Béghein et al. 1992; Han 
et al. 1992; Bennacer et al. 1996; Wee et al. 1989; Chen et al. 2011; 
Gobin et al. 1996; Ghachem et al. 2012; Tofaneli et al. 2009; Costa, 
2004). The outcome shows the occurrence of an oscillatory flow, 
provoked by the equilibrium between thermal and compositional forces, 
for a buoyancy number near the unity.  

Nishumira et al. (1998) performed a careful analysis of the 
mechanism of such oscillatory flow. The majority of numerical 
investigations is restricted to the two-dimensional geometry and only 
very limited work has been done on 3D double diffusive natural 
convection. Opposing gradients thermosolutal natural convection in a 
cubic cavity was carried out by Sezai et al. (2000). They mentioned that 

the 3D character is dominant for a certain range of parameters. Abidi et 
al. (2008) studied the same configuration with heat and mass diffusive 
horizontal walls. The results show that there is a great difference 
between the cases of the compositionally dominated flow and thermally 
dominated one. They also mentioned that for solutally dominated flow, 
an ‘‘inverse transition’’ from a multicellular to a unicellular pattern 
occurs. Meftah et al. (2009) conducted a study of the combined 
radiation double diffusive natural convection. An oblique stratification 
on the temperature and concentration fields due to the influence of 
radiation was observed. In a second study, Abidi et al. (2011) 
exanimated the thermal radiation effect on three-dimensional double 
diffusive natural convection. They pointed out that the flow structure is 
extremely sensitive to the variations of the conduction–radiation 
parameter and optical thickness. The double diffusive convection with 
Soret effect inside a square porous enclosure heated and salted from 
below was examined by Khadiri et al. (2010). It was observed that both, 
transition to oscillatory regime and heat transfer are significantly 
affected by the Soret parameter.  

Ben Niche et al. (2016) have numerically investigated the transient 
double diffusive natural convection in a square cavity. The results 
showed that both heat and mass transfer increased in the presence of 
Dufour coefficient, and the Soret coefficient had great effect on the 
flow structure. The double diffusive convection flow at high Rayleigh 
number was studied by Li et al. (2008).  They concluded that three-
dimensional modeling should be carried out so as to have better 
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agreement with experimental data. Besides, the stratified system is 
found to be sensitive to the buoyancy ratio. Sampathkumar et al. (2010) 
presented a detailed literature survey on the subject of modeling of 
active solar distillation procedures. The most used technology for the 
solar desalination of brackish water was the capillary film distiller 
(Bouchekima et al. (1999, 2000, 2003)).  

Moreover, only limited attention has been paid to the study of 
three-dimensional transverse flow which is primordial when dealing 
with the enhancement of heat and mass transfers. The main objective of 
this research is to numerically investigate the double diffusive natural 
convection in a three-dimensional trapezoidal solar distiller, for a 
buoyancy ratio ranging from -10 to 10. 

2.  PHYSICAL PROBLEM AND GOVERNING 
EQUATIONS 

The considered configuration (Fig. 1) represents a three dimensional 
trapezoidal solar distiller cavity of equal side’s length W. The bottom 
and the sloping top wall are maintained to different and uniform 
temperatures and concentrations while all other walls are assumed to be 
insulated. Due to solar radiation, the hot wall warms up which leads to 
the evaporation of the water film; subsequently, this vapor after being 
mixed with the air condenses in contact of the cold wall. The enclosure 
is assumed to be filled by an incompressible fluid and the flow follows 
the Boussinesq approximation.  

Governing equations which are respectively equations of 
continuity, momentum, energy and species diffusion are written as: 
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Fig. 1 Geometric configuration 

As numerical method we had recourse to the potential vector- 
vorticity formalism )( 


  which allows eliminating the pressure 

gradient. To remove of this term, the rotational is applied to the 
equation of momentum. The potential vector and the vorticity are 
respectively described by the two following relations: 
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In the equations (1, 2, 3 and 4), time 't , velocity 'V

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
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
, are put respectively in their 

dimensionless forms by 2W , W ,   and 2W  :  and the 

dimensionless temperature and concentration are respectively defined 
by: )''/()''( chc TTTTT   and )''/()''( lhl CCCCC  . 

After applying the )( 


  formalism and using the 

dimensionless form, the system of equations governing the 
phenomenon becomes as: 
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The boundary conditions are given as: 
 

 Temperature 

1T   at  0y ,  0T  at  inclined wall; 0



n
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(adiabatic). 
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The local Nusselt and Sherwood numbers at the hot wall have the 
expressions as:   
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The average values of the numbers of Nusselt and Sherwood, on 
the isothermal walls are expressed by:  
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In a 3D flow with single diffusing specie of concentration (C), the 
local entropy generation rate can be written as (Ghachem et al. (2012)).  
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Where C0 and T0 are respectively the reference concentration and 
temperature,  

In its dimensionless form the local generated entropy is written as: 
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The first term of NS represents the thermal irreversibility (NS-th), 
the second term represents the viscous irreversibility (NS-fr) and the 
third term represents the diffusive irreversibility (NS-dif). NS gives a good 
idea on the distribution and the profile of the local dimensionless 
entropy generation.  The total dimensionless generated entropy is 
written as follows:   
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Bejan number (Be) is the ratio of heat and mass transfer 
irreversibility to the total generated entropy as: 
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Dimensionless irreversibilities distribution ratios ( 1 , 2  and 

3 ), are given by: 
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For N = 0, there is no mass diffusion and we assume that thermal 
and species diffusions are opposed. For 0 < N < 1 the flow is thermal 
dominated and for N > 1 the flow is Compositional dominated. 

The mathematical model described above is written by a 
FORTRAN program. The control volume method is used to discretize 
equations (7, 8, 9 and 14). The central-difference scheme is used for 
treating convective terms while the fully implicit procedure is used to 
discretize the temporal derivatives. The grids are considered uniform in 
all directions with clustering nodes on boundaries. The successive 
relaxation iteration scheme is used to accelerate the convergence.  

To handle the irregularly shaped computational domain the 
blocked-off method was used. In this technique, the whole region is 

divided into two active and inactive (blocked-off regions) parts (Fig. 2). 
Thus the inclined surface is approximated by a series of small cubes. 
Using the blocked-off technique, known values must be established in 
inactive control volumes; in our case all velocity components are equal 
to zero and temperature is constant. The control volumes, which are 
inside the active region, are designated as (1) and otherwise they are 

(0). The time step (10-4) and spatial mesh (818181) are utilized to 
carry out all the numerical tests. The solution is considered acceptable 
when the following convergence criterion is satisfied for each step of 
time as: 
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Fig. 2  Blocked-off region in a regular grid 

3. VALIDATION 

The results of this study were compared to those of Sezai et al. 
(2000), Fig. 3. The carried comparison indicates a perfect agreement 
with a difference less than 1% for all values of N. 
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Fig. 3  Comparison between the present results and those of Sezai et al. 

(2000) (Ra = 105, Pr = 10 and Le = 10) 

4. RESULTS AND DISCUSSIONS 
Numerical results are presented for Pr = 0.7 and Le = 0.85 (Sh = 0.6) 
which cover water vapor diffusion into air. The Rayleigh number is 
varies from 103 to 105, and the buoyancy ratio ranges from N = -10 to 

10. The dimensionless irreversibilities distribution ratios ( 1 , 2  and 

3 ), are fixed respectively at 10-4, 0.5 and 10-2 (Ghachem et al. 

(2012)).  
Particle trajectories for different buoyancy ratio, for Ra=105, are 

shown in Fig.4. For lower values of buoyancy ratio (N = -10 and N = -
2), the flow is thermal dominated characterized by one central vortex 
which turns in the anticlockwise direction. For N= -1, the intensity of 
convection increases and causes secondary vortex to develop on the 
lower right corner which turns in the clockwise direction. By increasing 
the buoyancy ratio, we notice that the flow becomes chaotic for N= -0.9 
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and then for N ≥ -0.5, the secondary vortex becomes bigger and invades 
the central part by pushing the primary one until it disappears. 

In fig.5, the projection of velocity vector in the XY-plan is 
depicted. For N ˂ -1 the flow is thermally dominated with only one 
anticlockwise rotating thermal vortex. Regarding N= -1, it is noticed 
that a great compositional vortex appears and grows in in size by 
increasing the buoyancy ratio. Starting from N = -0.5, we note the 

reappearance of the single vortex structure but with inversed flow 
rotation caused by the compositional domination and the increase of the 
N beyond this value has no effect on the flow structure. it has become 
obvious, therefore, that the desirable flow pattern would be one 
whereby the inclined surface was associated with a single cell, which 
would rotate in a sense that could drive the condensed vapor toward the 
right lower end of the inclined glass cover (clockwise rotation).  

 
 
 
 
 

 

    

N = -10 N = -2 N = -1 N = -0.9 N = -0.5 

  
N = 0 N = 0.5 N = 1 N = 2 N = 10 

Fig. 4  Some particles trajectories for different N; Ra = 105 

 

 

 

 

  
N = -10 N = -2 N = -1 N = -0.9 N = -0.5 

  
N = 0 N = 0.5 N = 1 N = 2 N = 10 

Fig. 5  Projection of the velocity vector in the central plan (XY-plan) for different N; Ra = 105 
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N = -10 N = -2 N = -1 N = -0.9 N = -0.5 

N = 0 N = 0.5 N = 1 N = 2 N = 10 
Fig. 6  Iso-surfaces of temperature for different N; Ra = 105 

N = -10 N = -2 N = -1 N = -0.9 N = -0.5 

N = 0 N = 0.5 N = 1 N = 2 N = 10 
Fig. 7  Iso-surfaces of concentration for different N; Ra = 105 

 
N = -10 N = -2 N = -1 N = -0.9 N = -0.5 

N = 0 N = 0.5 N = 1 N = 2 N = 10 
Fig. 8   Iso-temperatures and iso-concentrations in the XY-plan for different N. 
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Figs. 6 and 7 present, respectively, the iso-surfaces of temperature 

and the iso-surfaces of concentration for different buoyancy ratios. First 
of all, it is noted that the maps of temperature and concentrations are 
similar to all the studied cases due to the chosen Lewis number which is 
neat to unity. For N < -1, the isotherms and iso-concentrations present 
horizontal stratifications in the lower part of the cavity and excessive 
gradients near the lower part of the inclined cold wall and they become 
bent on approaching the sloping top wall. For N ≥ -1, they become 
increasingly distorted in the core region and horizontal stratification 
persists only in the right corner of the lower part of the cavity. These 
distortions are more notable for highest buoyancy ratios. This result is 
more tangible from Fig. 8, representing the isotherms and iso-
concentrations in the central XY-plan. 

The local Nusselt and Sherwood numbers at the hot bottom wall 
are illustrated in Fig. 9. As seen from the figure, Nusselt and Sherwood 
numbers values decrease from left to right (away from the adiabatic 
vertical wall) but they are distributed almost in a symmetric manner 
regardless of buoyancy ratio. However, increasing this parameter is 

accompanied by an increase of both Numbers which means an 
enhancement of heat and mass transfer. Mean Nusselt and Sherwood 
numbers (Fig. 10), present the same profile versus the buoyancy ratio, 
by exhibiting a minimum for N = -1. The highest values are obtained 
for the highest of both Rayleigh number and buoyancy ratio. 

Fig. 11 shows the local entropies generations in the central plan. 
For both thermal and compositional dominated flow cases, the 
generated entropies are concentrated near of the active walls. For N = -
2, the creations of thermal, compositional and friction entropies are 
mainly localized near the bottom of the hot inclined surface. For N = -1, 
the generated entropies become more and more distributed in the entire 
cavity especially the friction one due to the equilibrium between 
thermal and solutal forces. This equilibrium induces the reduction of the 
boundary layer phenomenon. Then, the increase of buoyancy ratio (N ≥ 
0) leads to a distribution increasingly localized near walls. In this case, 
entropy generation becomes dominated by entropy generation due to 
friction. For higher N, local entropy generations become closer to the 
active walls.
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Fig. 11  Local entropies generation in the XY plan for different N; (a) thermal;  (b) friction;  (c) compositional and (d) total; ; Ra = 105 
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Fig. 12 shows that the variation of thermal and compositional 
entropies are similar versus the buoyancy ratio, and for positive values, 
they are dominated by friction irreversibility. A minimum in entropy 
generations occurs for N = -1, due to equilibrium between thermal and 
compositional forces inducing reduction in velocity, temperature and 
concentration gradients. The variation of the Bejan number as a 
function of N (Fig. 13) shows that only for N = 1, irreversibility due to 
fluid friction is dominated by those due to heat and mass transfers. For       
N = -1 this variation presents a maximum indicating the net domination 
of the heat and mass transfer entropy generation. 
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Fig. 13  Bejan number as a function of N 

5. CONCLUSIONS 

A numerical analysis of thermo-solutal natural convection and entropy 
generation in 3D trapezoidal solar distiller was performed using 
computational fluid dynamics (CFD). Some conclusions can be drawn 
as follows: 
- The distributions of thermal and species fields and the structure of 

the flow are significantly affected by the variation of the 
buoyancy ratio. Particularly for N= -1, the flow is completely 
three-dimensional. 

- Except for N= -1 where the variation presents a minimum, all 
types of entropy generation increase by increasing (positively or 
negatively) the buoyancy ratio.   

- For all Rayleigh number values, the highest Bejan number is 
obtained for N= -1, indicating the domination of heat and mass 
irreversibilities. Otherwise, friction irreversibilities are largely 
dominant. 

- Mean Nusselt and Sherwood numbers present the same variation 
as a function of buoyancy ratio and display a minimum for N=-1. 
The highest values are obtained for the highest Rayleigh number 
and buoyancy ratio. 

- The increased buoyancy ratio (N ≥ 0) leads to a distribution 
increasingly localized near walls. In this case, entropy generation 
becomes dominated by irreversibilities due to friction 
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NOMENCLATURE 

Be Bejan number 
C Dimensionless concentration                                       
 [= )]''/()''( lhl CCCC  )] 

D Mass diffusivity (m2/s) 
Gr Grashof  number 
k Thermal conductivity (W/m.K) 

Le Lewis number 
N Buoyancy ratio 
Ns Local generated entropy 
Pr Prandtl number 
R Gas constant (J/mol.K) 
Ra Rayleigh  number 
Ri Richardson number 
Sc Schmidt number 
Sh Sherwood number  
S ' gen Generated entropy (J/K) 

t Dimensionless time (= 2/'. Wt  ) 
T  Dimensionless temperature [= )]''/()''( chc TTTT   

cT '  Cold temperature (K) 

hT '  Hot temperature (K) 

V


 Dimensionless velocity vector (= /'.WV


) 
W Enclosure width (m) 
 
Greek symbols 
  Thermal diffusivity (m2/s) 
   Coefficient of thermal expansion (K-1)  

  Dynamic viscosity (kg /m.s) 
          Kinematics viscosity (m2/s) 

0  Characteristic speed of fluid (= W/ ) 

i  Irreversibility coefficient 

'  Dissipation function 




 Dimensionless vector potential (  /'
 ) 




 Dimensionless vorticity (= 2/'. W
 ) 

 
Subscripts 
 
x, y, z  Cartesian coordinates  
dif                     diffusive 
fr Friction 
th Thermal 
tot Total 
 
Superscript 

'
 Dimensional variable 
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