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ABSTRACT

The role of nonlinear variation of density with temperature (NDT) and concentration (NDC) on the free convective flow of non-Darcy micropolar
fluid over an inclined plate has been studied for the first time. In addition, the modified form of thermal slip and isothermal condition is utilized
to address heat transfer phenomena in nuclear plants, textile drying, and heat exchangers, etc. The respective partial differential equations and
boundary conditions are cast into a sequence of the ordinary differential equation by the local non-similarity technique. The remodeled equations
are simplified numerically by applying a successive linearization method (SLM). A constructive investigation emphasizing the influence of the Biot
number, inclination of angle, nonlinear convection parameters on the drag coefficient, couple stress, mass and heat transfer rates. The results of this
qualitative analysis are displayed graphically and the physical significance of the pertinent parameters is discussed in detail.

Keywords: Successive linearization method, Micropolar fluid, Non-linear convection Convective boundary condition Non-Darcy porous medium.

1. INTRODUCTION

Free convective transport of mass and heat transfer from non-identical
geometries in a porous medium has a huge thrust in geophysical and en-
gineering industries such as moisture over reservoirs in geothermal en-
gineering, agricultural fields, drying of porous solids etc. A comprehen-
sive evaluation of convective heat transfer of various fluids in the non-
Darcy porous medium can be seen in the textbook by Nield and Bejan
(2013). Eringen (1966) initiated the theory of a micropolar fluid to de-
scribe fluids which contradict to Newton’s law of viscosity like animal
blood, polymeric fluids, etc. The micropolar fluid contains rigid, cylindri-
cal elements, for instance, large dumbbell-shaped molecules, the intrin-
sic motion, and microstructure of fluid elements are conceptualized in this
theory. The mathematical aspects of micropolar fluid theory and its appli-
cations are reported in the books by Lukaszewicz (1999) and Eremeyev
et al., 2013. Further, various authors to mention few ( Murthy and Singh,
1999; Bég et al., 2008; Srinivasacharya and RamReddy, 2013 ) scru-
tinized the mass and heat transfer characteristics of non-Newtonian and
viscous fluid flows over a different surfaces in the Forchheimer porous
medium.

The foremost theories of heat transfer in porous medium concen-
trated its attention on the onset of thermal convection by adopting a lin-
ear relation between density and temperature. But, it is noticed by many
researchers that the density temperature relationship may become non-
linear, if the difference between the ambient fluid temperature and the
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plate temperature is appreciably large (for more details see Barrow and
Sitharamarao, 1971; Vajravelu and Sastri, 1977). Partha (2010) stud-
ied the effect of nonlinear convection in a non-Darcy porous medium and
concluded that, with the increase of nonlinear concentration-temperature
parameter, increases the mass and heat transfer rates rapidly in Darcy
porous medium when compared with the Forchheimer model. The ef-
fects of nonlinear convection and thermophoresis in a non-Darcy porous
medium have been discussed by Kameswaran et al. (2014) and con-
cluded that the temperature and concentration boundary layer thickness
reduces with enhancing values of nonlinear concentration (NDC) and
temperature (NDT) parameters. Quite recently, Shaw et al. (2016) fo-
cused on the behavior of non-linear thermal convection in nanofluid flow
over a stretching surface.

In the field of thermal insulation, material processing, and geother-
mal systems the flux or isothermal conditions are inappropriate, due to
thermal stresses caused by natural convection results to damage in the
nuclear reactors piping systems. To overcome this, a fixed amount of
heat is supplied to the fluid through a surface so that damage caused by
the continuous supply of heat transfer can be controlled. This type of
analysis frequently appears in industrial and engineering processes such
as transpiration cooling, material drying process, etc. Makinde (2010)
analyzed the impact of convective boundary condition on hydromagnetic
flow over a moving vertical plate whereas Yacob and Ishak (2012) con-
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sidered micropolar fluid past stretching sheet and provided the similarity
solutions. RamReddy et al. (2015) addressed convective surface bound-
ary condition on the natural convective micropolar fluid flow along the
vertical plate, the authors reported that the enhancement of Biot num-
ber leads a nonlinear growth in mass and heat transfer rates within the
boundary layer(also refer the references given therein). In recent times,
the influence of Joule heating and thermal radiation on MHD micropolar
fluid has been discussed by Ramzan et al. (2016) by taking the partial
slip and convective surface boundary conditions.

In this study, the influence of NDT and NDC parameters on natu-
ral convection flow along an inclined plate in a non-Darcy micropolar
fluid under the convective surface boundary condition has been analyzed.
The governing highly nonlinear system of partial differential equations
is transformed to a system of nonlinear ordinary differential equations
by local non-similarity procedure and then the successive linearization
method is used to solve reduced boundary value problem. Hence, the
physically important profiles are illustrated for representative values of
the major parameters. This kind of analysis has important applications
in aerosol technology, high-temperature polymeric mixtures, which are
associated with temperature-concentration-dependent density.   
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Fig. 1 Physical model

2. MATHEMATICAL FORMULATION

Consider a two-dimensional steady free convection flow of an incom-
pressible micropolar fluid over a semi-infinite inclined flat plate in a non-
Darcy porous medium, with an acute angle to the vertical direction and
constant physical properties expect in the buoyancy term, as shown in
Fig. (1). The respective distances along the plate and normal to the plate
in the coordinate system are measured by x and y. The plate is either
cooled or heated from a fluid of temperature Tf to the left by convection
with Tf < T∞ relating to a cooled surface and Tf > T∞ relating to
a heated surface respectively. Over the wall the solutal concentration is
taken to be constant Cw and the free stream concentration and tempera-
ture are assumed to be C∞ and T∞ respectively. Further, the temperature
and concentration variation between the ambient fluid and surface of the
plate assumed to be notably large, so that the NDT and NDC variations
in the buoyancy force term exert a strong influence on the flow field.

By using nonlinear Boussinesq approximation and boundary layer
assumptions, the flow governing equations for Forchhiemer model of the
micropolar fluid are given by

∂u

∂x
+
∂v

∂y
= 0 (1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+ κ)

∂2u

∂y2
+κ

∂ω

∂y
− µ

KP
u− ρ b

KP
u2 +ρg∗[

β0 (T − T∞) + β1(T − T∞)2 + β2 (C − C∞) + β3(C − C∞)2
]

cosΩ
(2)

ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(5)

where ω is the microrotation component in which the direction of rotat-
ing fluid element in the xy-plane, (u, v) are the Darcian velocities. Also,
b, ε, Kp, g∗ , C , T , µ, ρ, j, Ω, κ and γ denotes the empirical constant,
porosity, permeability, acceleration due to gravity, concentration, tem-
perature, dynamic viscosity, density, micro-inertia density, inclination of
angle, vortex viscosity and spin-gradient viscosity, respectively. Here β0
and β1, β2 and β3 are the first and second order expansions of thermal
and solutal coefficients, respectively. Further, D and α are the solutal and
thermal diffusivities of the medium, respectively.

The subject to the boundary conditions are

on y = 0 : u = 0, v = 0, ω = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw

as y →∞ : u = 0, ω = 0, T = T∞, C = C∞ (6)

where, kf and hf indicates the thermal conductivity of the fluid and con-
vective heat transfer coefficient, respectively.

Introducing the following dimensionless variables

ξ =
x

L
, η =

y

L

(
Gr

ξ

) 1
4

, ψ(ξ, η) =
µGr

1
4 ξ

3
4

ρ
f(ξ, η)

ω(ξ, η) =
µGr

3
4 ξ

1
4

ρL2
g(ξ, η), θ(ξ, η) =

T − T∞
Tf − T∞

,

φ(ξ, η) =
C − C∞
Cw − C∞


(7)

In view of the continuity equation (1), we introduce the stream func-
tion ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
(8)

Using Eqs. (7) and (8) into Eqs.(2) - (5), we get the following dimension-
less momentum, angular momentum, energy and concentration equations

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′

− Fs
Da

ξ f ′2 − ξ
1
2

DaGr
1
2

f ′ + [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω

=
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′ ∂f

∂ξ

) (9)

λg′′ +
3

4ε
fg′ − 1

4ε
f ′g −

(
N

1−N

)
J ξ

1
2

(
2g +

1

ε
f ′′
)

(10)

=
ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)

1

Pr
θ′′ +

3

4
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(11)

1

Sc
φ′′ +

3

4
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(12)

In the above equations, the primes represent partial derivative in respec-
tive of η alone. Further, N = κ/(µ + κ), (0 ≤ N < 1) ( Cowin,
1968), Gr = [g∗β0(Tf −T∞)L3]/ν2, ν, Da = Kp/L

2, B = β2(Cw −

2
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Table 1 Comparison of−θ′(ξ, 0) for natural convection along a vertical
flat plate in regular fluid when N = 0, B = 0, α1 = 0, α2 = 0,
ε = 1,Da→∞ , λ = 0 , ξ = 1 ,Bi→∞, Ω = 0 and Pr = 1.

Bejan (2013) Present
0.401 0.40103

C∞)/ [β0(Tf − T∞)], Fs = b/L, Pr = ν/α, λ = γ/(jρν), J =

L2/(jGr
1
2 ), Sc = ν/D, Ω, α1 = β1(Tf−T∞)/β0 and α2 = β3(Cw−

C∞)/β2 indicates the coupling number, global thermal Grashof num-
ber, kinematic viscosity, Darcy number, Buoyancy ratio, Forchheimer
number, Prandtl number, spin-gradient viscosity, micro-inertia density,
Schmidt number, angle of inclination, nonlinear temperature parame-
ter(NDT) and nonlinear concentration parameter(NDC), respectively.

The boundary conditions (6) become

f ′(ξ, 0) = 0, f(ξ, 0) = −4

3
ξ

(
∂f

∂ξ

)
η=0

, g(ξ, 0) = 0,

θ′ (ξ, 0) = −Biξ
1
4 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 0, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(13)

where Bi = hfL/(kf Gr
1/4) is the Biot number.

Non-dimensional shear stress Cf =
2

ρU2
∗

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

,

the wall couple stress Mw =
γ

ρU2
∗L

[
∂ω

∂y

]
y=0

, the Nusselt number

Nux = − x

(Tf − T∞)

[
∂T

∂y

]
y=0

and the Sherwood number

Shx = − x

(Cw − C∞)

[
∂C

∂y

]
y=0

are given by

CfGr
1
4
x = (

2

1−N )f ′′(ξ, 0), MwGr
1
2
x = (

λ

J ) ξ
1
2 g′(ξ, 0),

NuxGr
−1
4
x = −θ′(ξ, 0), ShxGr

−1
4
x = −φ′(ξ, 0).

(14)

where U∗ and Grx = [g∗β0(Tf − T∞)x3]/ν2 are the characteristic ve-
locity and the local thermal Grashof number, respectively.

3. SOLUTION OF THE PROBLEM

We now obtain approximate solutions to Eqs. (9) - (12) together with the
boundary conditions (13) in two steps: (i) First, we use, the local non-
similarity procedure to convert the set of partial differential equations
(9)-(12) along with the boundary conditions (13) into ordinary differen-
tial equations system, (ii) Next, the resulting set of nonlinear ordinary dif-
ferential equations is evaluated using a Successive Linearisation Method
(SLM), it utilizes first the successive linearization and then the Cheby-
shev spectral collocation scheme. According to local similarity and non-
similarity procedure of Sparrow and Yu (1971), the set of non-similar
equations considered here are first transformed to a set of ordinary non-
linear differential equations by introducing new unknown functions of ξ
derivatives. The preliminary approximate solution can be found from lo-
cal similarity equations for a particular case of ξ << 1 and the terms
containing ξ ∂

∂ξ
are supposed to be very small. So that we can neglect

terms containing the ξ derivatives in equations (9)-(13). Thus the first
level truncation or local similarity equations are

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − Fs

Da
ξ f ′2

− 1

DaGr
1
2

ξ
1
2 f ′ + [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω = 0 (15)

λg′′ − 1

4ε
g f ′ +

3

4ε
g′ f −

(
N

1−N

)
J ξ

1
2

(
1

ε
f ′′ + 2g

)
= 0 (16)

1

Pr
θ′′ +

3

4
fθ′ = 0 (17)

1

Sc
φ′′ +

3

4
fφ′ = 0 (18)

The associated boundary conditions are

f ′(ξ, 0) = f(ξ, 0) = g(ξ, 0) = 0, θ′ (ξ, 0) +Bi ξ
1
4 [1− θ(ξ, 0)] ,

(19)
φ(ξ, 0) = 1, f ′(ξ,∞) = g(ξ,∞) = θ(ξ,∞) = φ(ξ,∞) = 0.

The local non-similarity ordinary nonlinear differential equations in the
second level truncation is discovered by introducing new variables to
recall the omitted expressions from the first level truncation i.e. take

U =
∂f

∂ξ
, V =

∂g

∂ξ
,H =

∂θ

∂ξ
,K =

∂φ

∂ξ
. Thus the second level trunca-

tion is

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − Fs

Da
ξ f ′2

− 1

DaGr
1
2

ξ
1
2 f ′ + [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω

=
ξ

ε2
(
f ′ U ′ − f ′′ U

)
(20)

λg′′ +
3

4ε
fg′ − 1

4ε
f ′g −

(
N

1−N

)
J ξ

1
2

(
2g +

1

ε
f ′′
)

=
ξ

ε

(
f ′ V − g′ U

)
(21)

1

Pr
θ′′ +

3

4
fθ′ = ξ

(
f ′H − θ′ U

)
(22)

1

Sc
φ′′ +

3

4
fφ′ = ξ

(
f ′K − φ′ U

)
(23)

The corresponding boundary conditions are

f(ξ, 0) +
4

3
ξ U(ξ, 0) = f ′(ξ, 0) = g(ξ, 0) = 0, θ′ (ξ, 0)

−Biξ
1
4 [θ(ξ, 0)− 1] = 0, φ(ξ, 0) = 1, f ′(ξ,∞) = g(ξ,∞)

= θ(ξ,∞) = φ(ξ,∞) = 0.

(24)

The two level local non-similarity technique is accomplished with a third
level of truncation, for this we differentiate equations (20)-(24) with re-
spect to ξ and omit the partial derivatives ofU, V,H,K.Then the resultant
equations are

1

ε

(
1

1−N

)
U ′′′+

7

4ε2
Uf ′′+

3

4ε2
fU ′′+

(
N

1−N

)
V ′− ξ

−1
2

2DaGr
1
2

f ′

− ξ
1
2

DaGr
1
2

U ′ − Fs

Da
f ′2 + [H(1 + 2α1θ) + BK(1 + 2α2φ)] cos Ω

−2

[
Fs

Da
ξ +

1

ε2

]
f ′U ′ =

ξ

ε2

(
U ′

2 − U ′′U
)

(25)

λV ′′+
7

4ε
Ug′+

3

4ε
fV ′− 1

4ε
U ′g− 1

2

(
N

1−N

)
J ξ

−1
2

(
2g +

1

ε
f ′′
)

− 5

4ε
V f ′−

(
N

1−N

)
J ξ

1
2

(
2V +

1

ε
U ′′
)

=
ξ

ε

(
V U ′ − V ′U

)
(26)

1

Pr
H ′′ +

7

4
Uθ′ +

3

4
fH ′ − f ′H = ξ

(
HU ′ −H ′U

)
(27)

1

Sc
K′′ +

7

4
Uφ′ +

3

4
fK′ − f ′K = ξ

(
KU ′ −K′U

)
(28)
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Table 2 A comparison of f ′′(ξ, 0),−g′(ξ, 0), −θ′(ξ, 0),−φ′(ξ, 0) using the SLM and Shooting method for different values of N with B = 0.5,
ε = 0.3, α1 = 0, α2 = 0, Da→∞, λ = 5.0, J = 5.0, Bi→∞, Ω = 0, Pr = 0.7 and Sc = 0.22.

SLM Shooting Method
N f ′′(0.2, 0) −g′(0.2, 0) −θ′(0.2, 0) −φ′(0.2, 0) f ′′(0.2, 0) −g′(0.2, 0) −θ′(0.2, 0) −φ′(0.2, 0)

0.1 0.44697 0.028502 0.25942 0.13309 0.44697 0.028502 0.25942 0.13309
0.3 0.38280 0.114050 0.25303 0.13114 0.38280 0.114050 0.25303 0.13114
0.6 0.26376 0.295950 0.23859 0.12661 0.26376 0.295950 0.23859 0.12661
0.9 0.09660 0.491030 0.20265 0.11428 0.09660 0.491030 0.20265 0.11428

The corresponding boundary conditions are

U ′(ξ, 0) = U(ξ, 0) = V (ξ, 0) = 0;H ′ (ξ, 0)−Biξ
1
4H (ξ, 0)

+
1

4
Biξ

−3
4 [1− θ(ξ, 0)] = 0;K(ξ, 0) = U ′(ξ,∞) = V (ξ,∞)

= H(ξ,∞) = K(ξ,∞) = 0.

(29)

The coupled nonlinear differential Eqs. (20) - (23) and Eqs. (25) - (28)
along with the boundary conditions (24) and (29) are evaluated using
one of the non-perturbation method named as Successive Linearization
Method(for more details see, Makukula et al., 2010; Awad et al., 2011;
Khidir et al., 2015 ). Using the successive linearization technique, the
nonlinear boundary layer equations will reduce to a system of linear dif-
ferential equations. For this, let us consider an independent vector
Q(η) = [f (η) , g(η), θ (η) , φ(η), U(η), V (η), H(η),K(η)]
and assume that it can be represented as

Q(η) = Qn(η) +

n−1∑
m=0

Qm(η) (30)

where Qn(η), n = 1, 2, 3... are unknown vectors those are determined
by recursively evaluating the linearised version of the governing equation
and presuming that Qm(η), (0 ≤ m ≤ n − 1) are expected from an-
tecedent iterations. The initial guess Q0(η) is selected so that it satisfy
the boundary conditions (24) and (29). By imposing Eq.(30) in Eqs.(20)-
(28) and considering only linear terms, we get the linearised equations to
be evaluated are

p̃1,n−1f
′′′
n + p̃2,n−1f

′′
n + p̃3,n−1f

′
n + p̃4,n−1fn + p̃5,n−1g

′
n

+p̃6,n−1θn+p̃7,n−1φn+p̃8,n−1U
′
n+p̃9,n−1Un = r̃1,n−1 (31)

q̃1,n−1f
′′
n + q̃2,n−1f

′
n + q̃3,n−1fn + q̃4,n−1g

′′
n + q̃5,n−1g

′
n

+ q̃6,n−1gn + q̃7,n−1Un + q̃8,n−1Vn = r̃2,n−1 (32)

s̃1,n−1f
′
n + s̃2,n−1fn + s̃3,n−1θ

′′
n + s̃4,n−1θ

′
n + s̃5,n−1Un

+s̃6,n−1Hn = r̃3,n−1

(33)

t̃1,n−1f
′
n + t̃2,n−1fn + t̃3,n−1φ

′′
n + t̃4,n−1φ

′
n + t̃5,n−1Un

+t̃6,n−1Kn = r̃4,n−1

(34)

ã1,n−1f
′′
n + ã2,n−1f

′
n + ã3,n−1fn + ã4,n−1θn + ã5,n−1φn

+ã6,n−1U
′′′
n + ã7,n−1U

′′
n + ã8,n−1U

′
n + ã9,n−1Un

+ã10,n−1V
′
n + ã11,n−1Hn + ã12,n−1Kn = r̃5,n−1

(35)

b̃1,n−1f
′′
n + b̃2,n−1f

′
n + b̃3,n−1fn + b̃4,n−1g

′
n + b̃5,n−1gn+

b̃6,n−1U
′′
n + b̃7,n−1U

′
n + b̃8,n−1Un + b̃9,n−1V

′′
n + b̃10,n−1V

′
n

+b̃11,n−1Vn = r̃6,n−1

(36)

c̃1,n−1f
′
n + c̃2,n−1fn + c̃3,n−1θ

′
n + c̃4,n−1U

′
n + c̃5,n−1Un

+c̃6,n−1H
′′
n + c̃7,n−1H

′
n + c̃8,n−1Hn = r̃7,n−1

(37)

d̃1,n−1f
′
n + d̃2,n−1fn + d̃3,n−1φ

′
n + d̃4,n−1U

′
n + d̃5,n−1Un

+d̃6,n−1K
′′
n + d̃7,n−1K

′
n + d̃8,n−1Kn = r̃8,n−1

(38)

The boundary conditions reduce to

fn(0) = f ′n(0) = f ′n(∞) = 0, gn(0) = gn(∞) = 0,

θ′n(0)−Bi ξ
1
4 θn(0) = 0, θn(∞) = 0, φn(0) = φn(∞) = 0,

Un(0) = U ′n(0) = U ′n(∞) = 0, Vn(0) = Vn(∞) = 0,

H ′n(0)−Bi ξ
1
4Hn(0)− 1

4
Bi ξ

−3
4 θn(0) = 0, Hn(∞) = 0,

Kn(0) = Kn(∞) = 0.

(39)

Here the coefficient parameters p̃i,n−1, q̃i,n−1, s̃i,n−1, t̃i,n−1, ãi,n−1,,
b̃i,n−1, c̃i,n−1, d̃i,n−1 and r̃i,n−1 depend on the initial guesses Q0(η)
and on their derivatives.

We solve linearised Eqs. (31) - (38) by an established procedure,
namely Chebyshev collocation method( Canuto et al., 2006). In the con-
text of numerical implication, the original region [0,∞) is truncated to
[0, L] for large value of L, and further the truncated region [0, L] is trans-
formed into [−1, 1] using the following mapping

η

L
=
τ + 1

2
, −1 ≤ τ ≤ 1 (40)

In this procedure, the Chebyshev polynomials Tw(τ) = cos[w cos−1τ ]
are used to approximate the unknown functions Qn(η) and these polyno-
mials are collocated atK+1 Gauss-Lobatto points in the interval [−1, 1]
and those are defined as

τm = cos
πm

K
, m = 0, 1, ...,K (41)

The unknown function Qn(η) is imprecise at the collocation points by

Qn(τ) =

K∑
i=0

Qn(τi)Ti(τm) and
dZ

dηZ
Qn(τ) =

K∑
i=0

DZ
imQn(τi),

m = 0, 1, ...K

(42)

where D is the Chebyshev spectral derivative matrix such that D =
(2/L)D and Z is the order of differentiation. After employing Eqs.(40) -
(42) into linearized form of equations (31)- (38), the resultant solution is

Ỹn = B̃−1
n−1R̃n−1 (43)

In Eq.(43), B̃n−1 is a square matrix of order (8K + 8)× (8K + 8) and
Ỹn, R̃n−1 are column matrix of order (8K + 1)× 1, which are defined
by

B̃n−1 =
[
B̃pq

]
, p, q = 1, 2, ....8, X̃n =[

F̃n G̃n Θ̃n Φ̃n Ũn Ṽn H̃n K̃n
]
T , R̃n−1 =

[̃r1,n−1 r̃2,n−1 r̃3,n−1 r̃4,n−1 r̃5,n−1 r̃6,n−1 r̃7,n−1 r̃8,n−1]T

(44)
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Fig. 2 Effect of α1 on the (a) velocity, (b) microrotation, (c) temperature
and (d) concentration.
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Fig. 3 Effect of α2 on the (a) velocity, (b) microrotation, (c) temperature
and (d) concentration.

5



Frontiers in Heat and Mass Transfer (FHMT), 9, 35 (2017)
DOI: 10.5098/hmt.9.35

Global Digital Central
ISSN: 2151-8629

0 2 4 6 80.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7  =
N = 0.5 
Fs= 0.5
1= 5.0 
2= 5.0 



f' ( 
)

Bi= 0.1,1.0, 5.0,10

 

 

(a)

0 2 4 6 8 10-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12  =
N = 0.5 
Fs= 0.5
1= 5.0 
2= 5.0 



g 


Bi= 0.1,1.0,5.0,20.0

 

 

(b)

0 2 4 60.0

0.2

0.4

0.6

0.8

1.0  =
N = 0.5 
Fs= 0.5
1= 5.0 
2= 5.0 

Bi= 0.1,1.0,5.0, 20.0








 

 

(c)

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
 =
N = 0.5 
Fs= 0.5
1= 5.0 
2= 5.0 

Bi= 0.1,1.0,5.0, 20.0






 

 

(d)

Fig. 4 Effect of Bi on the (a) velocity, (b) microrotation, (c) temperature
and (d) concentration.
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Fig. 5 Effect of Ω on the (a) velocity, (b) microrotation, (c) temperature
and (d) concentration.6



Frontiers in Heat and Mass Transfer (FHMT), 9, 35 (2017)
DOI: 10.5098/hmt.9.35

Global Digital Central
ISSN: 2151-8629

0.2 0.4 0.6 0.8 1.0
0.26

0.28

0.30

0.32

0.34

 =
N = 0.5 
Bi = 0.5 
Fs= 0.5



Nu
x/Re

1/2 x





 

 

(a)

0.2 0.4 0.6 0.8 1.0
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60  =

N = 0.5 
Bi = 0.5 
Fs= 0.5






Sh
x/Re

1/2 x

 

 

(b)

Fig. 6 Effect of α1 and α2 on the (a) Nusselt (b) Sherwood number’s.

4. RESULTS AND DISCUSSIONS

It is noticed that the present problem reduces to free convection heat trans-
fer over an isothermal vertical plate in a viscous fluid in the absence of
coupling number, buoyancy ratio, nonlinear convection parameters with
ε = 1, Da → ∞, λ = 0, ξ = 1, Bi → ∞ and Ω = 0. In or-
der to assess the accuracy and validity of the present investigation, the
results of the local similarity equations (15)-(18) have been compared
with the regular fluid which is reported in Tab. (4.2) of Bejan (2013) as
exhibited in Tab. 1. Also, the comparison between the SLM and shoot-
ing method has been made for certain values of the physical parameters
as shown in the Tab. 2. It shows an excellent agreement with existing
results. As per the restrictions of thermodynamics on the material pa-
rameters mentioned by Eringen (1966), the numerical computations are
carried out by following default parameter values: J = 5.0, λ = 5.0,
B = 1.0 , Pr = 0.7, Sc = 0.22, Gr = 10, ε = 0.5, Da = 0.1 and
ξ = 0.1 and these values are continued throughout the evaluation, unless
otherwise designated. Figures 2(a)-5(d) illustrate the influence of various
parameters on the fluid for the velocity, microrotation, temperature and
concentration profiles. The effects of nonlinear temperature, nonlinear
concentration, non-Darcy parameter, micropolar parameter, Biot number
and inclination of angle on heat and mass characteristics of the fluid have
been discussed and reported in Figs. 6(a) -8(b). The effect of the non-
linear density-temperature (NDT) parameter α1 on the microrotation, ve-
locity, temperature and the concentration profiles are displayed in Figs.
2(a)-2(d). As NDT parameter α1 increases, the direction of fluid velocity
is changed from increasing to decreasing nearer to the free stream value
as shown in Fig. 2(a). Physically, α1 > 0 implies that Tf > T∞; hence,
the surface of the wall will induce some amount of heat to the fluid flow
region. Similarly, there is a possibility for heat transformation of fluid

flow to the wall in the case of α1 < 0. It is clearly noticed from Fig. 2(b)
that the effect of the NDT parameter α1 on the microrotation is notable
in every part of the boundary layer, but more significant away from the
plate and also the rise of α1 changes the sign of microrotation. The mag-
nitude of the temperature and concentration are more in the absence of
NDT parameter α1 in comparison with the presence of NDT parameter
α1 as shown in Figs. 2(c) - 2(d).

Figures 3(a) to 3(d) depict the influence of the nonlinear density-
concentration (NDC) parameter α2 for a fixed value of α1 = 0.05 on the
behavior of velocity, microrotation, temperature and concentration. Usu-
ally, the motion of the fluid flow increases sequentially away from the
plate so that it reaches an eminent position within the boundary layer and
then drops to fulfill the free stream values as given in Fig. 3(a). How-
ever, the rise of NDC parameter α2 changes the sign of microrotation
within the boundary layer from negative to positive and also the trend of
microrotation is modified from enhancing to diminish nearer to the free
stream value η = 5, as shown if Fig. 3(b). The concentration and tem-
perature boundary layer thicknesses decrease with the rise of α2 and the
same effect is displayed in Figs. 3(c) and 3(d). In the case of thermal and
concentration distributions, present results correlate with the findings of
Partha (2010). This is due to the enhancement of thermal and solutal gra-
dients by nonlinear terms in the momentum equation. By the experience
of these two NDT and NDC parameters, we conclude that the authority
of NDC parameter α2 is more prominent compared with that of NDT
parameter α1.

The profiles of fluid flow for different values of conductive-convective
parameter Bi has been displayed in Figs. 4(a) - 4(d). It is noteworthy,
from Figs.4(a) - 4(b) that as the Biot number increases, the velocity of
flow field attains peak state in the neighborhood of the plate due to the
reduction in the thermal resistance of the inclined plate. Also, the di-
rection of the velocity and the microrotation changes from increasing to
decreasing values within the boundary layer. As seen in Aziz (2009), Fig.
4(c) signifies the impact Biot number of on the temperature distribution
and serves as a dual result (i.e., for isothermal and non-isothermal condi-
tion). Since the specified convective boundary condition is changing into
wall condition, when the Biot number tends to infinity and it is proved,
which is displayed in Fig. 4(c). As Bi increases from thermally thin case
Bi < 0.1 to thermally thick case Bi > 0.1, the temperature distribution
is increased on the surface of the plate. The effect of the Biot number
on the concentration profile is displayed by Fig. 4(d) and it depicts that
the concentration profile decreases within the boundary layer with the
increasing value of the Biot number. The specified temperature and con-
centration profiles are subjectively equal with those of Makinde and Aziz
(2011) who investigated the results for a nanofluid over a stretching sheet.

The influence of inclination of angle (Ω) on the tangential velocity
profile is displayed in Fig. 5(a). Due to the reduction in the thermal and
concentration buoyancy effect in Eq.(2), an increase in the inclination of
angle leads to reduce the velocity distribution within the boundary layer
region. From Fig.5(b), one can notice that the microrotation is increasing
near the plate and it is showing a reverse trend far away from the plate
within the boundary layer when the position of a flat plate is changed
from vertical to horizontal. Similar to the results of Chamkha et al.
(2002) and Chen (2004), the thickness of temperature and concentration
boundary layers enhances with rising values of inclination of angle. Since
the displacement of the plate from vertical position to horizontal induces
reduction in buoyancy force, the same effect projected in Figs. 5(c) and
5(d). Also, one can observe that the maximum buoyancy force for the
same temperature and concentration difference occurs for Ω = 0 (vertical
plate) and this is noticed in Figs. 5(a) - 5(d).

The effects of the nonlinear density-temperature (NDT) and con-
centration (NDC) parameters α1 and α2 respectively on the mass and
heat transfer rates against streamwise coordinate ξ shown in Figs. 6(a) -
6(b). As expected, both mass and heat transfer rates are increasing with
α1 when α2 is fixed. The effect of α2 on mass and heat transfer rates is
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Fig. 7 Effect of Fs and N on the (a) Nusselt (b) Sherwood number’s.

showing the same behavior like that of α1. But, along streamwise coordi-
nate ξ the nature of mass transfer rate is contrary to the heat transfer rate.
The effect of varying the Forchheimer number Fs and Coupling number
N on mass and heat transfer rates are presented in Figs. 7(a) - 7(b) The
results point out that as Fs increases, the mass and heat transfer rates de-
crease for a fixed value of coupling number. The rise of coupling number
reduces the mass and heat transfer rates. Figs. 8(a) - 8(b) demonstrate the
influence of Biot number Bi and the variation of the inclination of angle
Ω on the mass and heat transfer rates. It is found that the mass and heat
transfer rates diminish when the inclined plate rotating from vertical to
horizontal, and it is easily perceived from the fact that there is a reduction
in the buoyancy force by a function of cosΩ as the inclination of angle
increases. With the enhancement of Biot number, there is a considerable
increment in mass and heat transfer rates. The modification in the Biot
number (i.e from thermally thin case to thick case) ceases the rate of heat
conduction inside the inclined plate drastically as compared to thermal
convection away from its surface. These results are confined to the work
of Bég et al. (2014). One can notice that the effect of angle of inclination
is more on mass transfer rate Sh as compared with that of heat transfer
rate Nu.

The proportional quantities of skin friction and the gradient of mi-
crorotation (wall couple stress) are computed for the enhanced values of
N , Fs, α1, α2, Ω, Bi and the results are presented in Tab. 3. It is
observed that an enhancement in the Biot number causes an increase in
the couple stress and skin friction, whereas with the increasing of the
angle of inclination they show the opposite trend. An increase in the
coupling number tends to reduce the drag coefficient and the opposite
change is noticed in wall couple stress. The rate of wall couple stress and
skin friction are enhanced by nonlinear density-temperature and concen-
tration parameters, in which the influence of NDT parameter is nominal
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Fig. 8 Effect of Bi and Ω on the (a) Nusselt (b) Sherwood number’s.

when compared with the NDC parameter effect. The insignificant influ-
ence of the wall couple stress and considerable increment in skin friction
is experienced for high enough values of Biot number. Furthermore, the
coefficient of drag and the wall couple stress reduce, as Forchheimer pa-
rameter increases.

5. CONCLUSIONS

A combination of the local non-similarity approach and successive lin-
earization technique is used to study the free convection boundary-layer
flow of a micropolar fluid over a convectively heated inclined plate in a
saturated non-Darcy porous medium. The effects of various parameters
on the velocity, microrotation, temperature, concentration, heat and mass
transfer, skin friction and wall couple stress have been analyzed. The
main findings are summarized as follows:

• The major conclusion is that the influence of nonlinear density-
concentration (NDC) parameter is additional outstanding on all the
physical characteristics of the present model, compared therewith
of nonlinear density-temperature (NDT) parameter.

• One of the implications of this study is that the mass and heat trans-
fer rates of micropolar fluids are less than Newtonian fluid.

• It is perceived that the rise of the Biot number elevates the skin
friction, mass, and heat transfer rates.

• Further, the velocity, microrotation, local mass and heat transfer
rates reduce whereas, the boundary layer thicknesses of tempera-
ture and concentration enhance with the increase of inclination of
angle.
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Table 3 Effect of skin friction and wall couple stress for various values of
N , Fs, α1, α2, Ω, Bi.

N Fs α1 α2 Ω Bi f ′′(ξ, 0) −g′(ξ, 0)

0.5 0.5 5.0 5.0 30 0.5 1.09565723 0.20210076
0.0 0.5 5.0 5.0 30 0.5 1.70980700 0.00000000
0.3 0.5 5.0 5.0 30 0.5 1.36342605 0.08611371
0.8 0.5 5.0 5.0 30 0.5 0.58004739 0.52444524
0.5 0.0 5.0 5.0 30 0.5 1.10628598 0.20474609
0.5 0.8 5.0 5.0 30 0.5 1.08951988 0.20055820
0.5 2.0 5.0 5.0 30 0.5 1.06664851 0.19471480
0.5 0.5 0.0 5.0 30 0.5 0.99213184 0.19086334
0.5 0.5 1.5 5.0 30 0.5 1.02420439 0.19438906
0.5 0.5 5.5 5.0 30 0.5 1.10551683 0.20314992
0.5 0.5 5.0 0.0 30 0.5 0.52178837 0.12870159
0.5 0.5 5.0 3.0 30 0.5 0.87641989 0.17646774
0.5 0.5 5.0 6.0 30 0.5 1.20123955 0.21367778
0.5 0.5 5.0 5.0 15 0.5 1.18829140 0.21320555
0.5 0.5 5.0 5.0 45 0.5 0.94213199 0.18277058
0.5 0.5 5.0 5.0 75 0.5 0.44302379 0.10818973
0.5 0.5 5.0 5.0 30 0.1 0.95972062 0.18510996
0.5 0.5 5.0 5.0 30 5.0 1.46554157 0.24361328
0.5 0.5 5.0 5.0 30 15 1.54705183 0.25227221
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