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ABSTRACT

In this work, we present a compliment of the spectral perturbation method (SPM) for solving nonlinear partial differential equations (PDEs) with
applications in fluid flow problems. The (SPM) is a series expansion based approach that uses the Chebyshev spectral collocation method to solve
the governing sequence of differential equation generated by the perturbation series approximation. Previously the SPM had the limitation of
being used to solve problems with small parameters only. This current investigation seeks to improve the performance of the SPM by doing the
series expansion about a large parameter. The new method namely the large parameter spectral perturbation method (LSPM) combines the idea of
asymptotic analysis approach with numerical solution techniques. In the (LSPM), the resulting equations from the asymptotic expansion are solved
numerically using the Chebyshev spectral method. The purpose of this study is to extend the existing spectral perturbation method (SPM) which
was used for small parameters to be suitable for problems with large parameters. The applicability of the (LSPM), is tested on systems of earlier
reported nonlinear partial differential equations that describe boundary layer fluid flow problems. The validity of the (LSPM) numerical solutions is
verified by comparing with published results and the bivariate Chebyshev spectral quasilinearisation method (BSQLM) and an excellent agreement
were observed. The (BSQLM) is a numerical method that blends the quasilinearisation method, the Chebyshev spectral method, and the bivariate
Lagrange interpolation method. One of the advantages of this approach is that it gives results in a fraction of seconds. We remark also that simple
decoupled linear systems formulas are derived for generating the solutions in the form of decoupled linear systems. Tables are generated to present
error and convergence properties of the LSPM.

Keywords: Spectral Perturbation Method; Bivariate Chebyshev spectral quasilinearisation method; Chebyshev spectral collocation method.

1. INTRODUCTION

Nonlinear partial differential equations (PDEs) arise in various fields of
science and engineering problems such as mathematical modelling, heat
transfer, fluid mechanics, quantum mechanics and many applications in
biological process. In addition, there is a large volume of published litera-
ture describing the numerous important of engineering and science appli-
cations of boundary layer flows. Examples include the cooling and drying
of paper and textiles, aerodynamic extrusion of plastic sheets, cooling of
metallic plates in a cooling bath. The equations defined by systems of
nonlinear partial differential equations (PDEs) are often difficult to solve
exactly. As a result of the difficulties often encountered in solving these
nonlinear partial differential equations exactly, some researchers have de-
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veloped both numerical and analytical method for finding analytical and
approximate solutions to these complicated nonlinear partial differential
equations. These numerical and analytical methods have their own advan-
tages and limitations. Hence, there is need to improve the performance of
these existing numerical and analytical methods.

An innumerable amount of literature now exists on asymptotic solu-
tion method of boundary layer fluid flow problems modelled by nonlinear
PDEs. These includes the study of Hossain and Paul (2001a,b), who in-
vestigated the flow of a free convection from a vertical permeable circular
cone with non-uniform surface temperature and surface heat flux respec-
tively, Chamkha et al. (2003) who studied the unsteady MHD rotating
flow over a rotating sphere near the equator, Takhar et al. (2003) who con-
sidered the unsteady three-dimensional MHD-boundary-layer flow due to
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the impulsive motion of a stretching surface equations and employed the
asymptotic method to obtain asymptotic solutions for large values of the
independent variable. Free convection in micropolar fluids over a uni-
formly heated vertical plate was investigated by Gorla et al. (1998) and
asymptotic solutions were presented for distances away from the lead-
ing edge. Bhattacharyya (2013) examined boundary layer stagnation-
point flow of Casson fluid and heat transfer towards a shrinking/stretching
sheet is studied. Recently, Oyelakin et al. (2017) studied the effects of
thermal radiation, heat and mass transfer on the unsteady magnetohy-
drodynamic(MHD) flow of a three dimensional Casson nanofluid using
the spectral quasi-linearisation method. The partial differential equations
governing the unsteady MHD flow on a rotating cone in a rotating fluid
were solved by Roy et al. (1998), asymptotic solutions were presented
for large magnetic parameter M . Natural convection flow from a ver-
tical permeable flat plate with variable surface temperature and species
concentration was studied by Hussain et al. (2000) using the perturba-
tion method, asymptotic method, local non-similarity method and Keller-
box method. Saha et al. Saha et al. (2007) used the regular perturbation
method, asymptotic method, implicit finite difference method together
with Keller-box scheme, and the local non-similarity method to solve the
effect of Hall current on the MHD laminar natural convection flow from
a vertical permeable flat plate with uniform surface temperature. Slaouti
et al. (2002) solved the equations modelling the spin-up and spin-down
of a viscous fluid over a heated disk rotating in a vertical plane in the
presence of a magnetic field and a buoyancy force and also developed
an asymptotic analysis for a large magnetic parameter. An asymptotic
solution for large values of the independent variable η was generated by
Takhar et al. (2001) who investigated the unsteady MHD-boundary-layer
of a source and vortex flow adjacent to a stationary surface and obtained a
closed form solution for large values of the suction parameter. The above-
mentioned authors solved the resulting asymptotic perturbation equations
analytically and their results only yield the first, second and a maximum
of a third-order asymptotic solution. The problem associated with the an-
alytical approach used by all the above-mentioned authors in solving the
resulting asymptotic perturbation equations is that higher order asymp-
totic perturbation equations may be impossible to solve exactly beyond a
maximum of third-order approximation. This is because it takes far too
long to generate higher order solution even with the use of a computer.

This current investigation serves to first present a Chebyshev spec-
tral based approach that addresses the problem encountered by previous
researchers on this subject in attempting to solve higher order asymp-
totic perturbation equations exactly. The method namely the large pa-
rameter spectral perturbation method (LSPM) is a method which blends
the idea from asymptotic analysis with numerical solution techniques.
The Chebyshev spectral method is used to obtain a numerical approxi-
mate solution of the higher order asymptotic perturbation approximations
which may be impossible to solve exactly. We demonstrate that using the
Chebyshev spectral method to integrate the higher order asymptotic per-
turbation equations gives very accurate numerical results even for com-
plicated nonlinear partial differential equations in a computationally fast
manner. The Chebyshev spectral was chosen in this work because spec-
tral methods are well documented for their high level of accuracy and
also with the spectral methods only few grid points are required to obtain
accurate results. In addition, we show that using the spectral methods
leads to a significant saving in computational time. This is in contrast
with the analytical approach earlier employed by previous researchers
because, in the analytical approach, it takes too long to solve higher or-
der asymptotic equations even with the use of a scientific software but
with the spectral methods, higher order asymptotic solutions are gener-
ated in a fraction of seconds. Secondly, in this present study, we aim to
introduce the (LSPM) as a compliment of the existing spectral perturba-
tion method (SPM) which was used for small parameters and its limited
in its application. The (SPM) is limited in the sense that the (SPM) is
valid for small parameters and the (LSPM) approach is valid for large

parameters. The (SPM) is a series expansion based method that extends
the use of the traditional perturbation scheme coupled with the Cheby-
shev spectral method. The (SPM) was used in the study carried out by
Agbaje and Motsa (2015) to address some of the drawbacks of the tra-
ditional perturbation method and the approach was able to correct some
of the conclusions drawn by researchers regarding perturbation methods.
It was observed in the study conducted by Agbaje and Motsa (2015) on
the SPM that the approach though accurate is not suitable for large pa-
rameters. As a result of that observation made on the (SPM), we aim
to extend the range of validity of the (SPM) by expanding about a large
physical parameter so as to make the usual (SPM) robust and extends its
application to new areas. Also, we show that the convergence speed of
the usual (SPM) can be improved even when ξ is large by doing the series
expansion about a large physical parameter. Furthermore, simple decou-
pled linear systems formulas for generating the solutions in the form of
decoupled linear systems were derived in this study. This is an advan-
tage of this method because the derived simple linear systems formulas
enable us to solve the equations independently of each other. In order to
demonstrate the applicability of the (LSPM), we consider three earlier re-
ported boundary layer flow problem modelled by coupled systems of two
and three nonlinear PDEs. The accuracy of the (LSPM) numerical results
was compared with the bivariate quasilinearisation method (BSQLM) and
the published results of Saha et al. (2007) and Hossain and Paul (2001a,b)
and a good agreement was observed.

2. GOVERNING SYSTEMS OF NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

In this section, we present the systems of nonlinear partial differential
equations (PDEs) that describes the different types of boundary layer
flows that will be investigated in this study. In order to demonstrate the
applicability of the (LSPM) numerical method of solution, we consider
three various types of nonlinear PDEs.

2.1. Effect of Hall current on the MHD laminar natural convection
flow from a vertical permeable flat plate with uniform surface
temperature

We consider the effect of hall current on the MHD laminar natural con-
vection flow from a vertical permeable flat plate with uniform surface
temperature investigated by Saha et al. Saha et al. (2007). The governing
nonlinear partial differential equations are given in Saha et al. (2007) in
dimensionless form as:

f
′′′

+
3

4
ff
′′ −

1

2
f
′2

+ ξf
′′

+ θ −
M

(1 +m2)

(
f
′
+mg

)
=

1

4
ξ

[
f
′ ∂f
′

∂ξ
− f ′′

∂f

∂ξ

]
,

(1)

g
′′

+
3

4
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′ −

1

2
f
′
g + ξg

′ −
M

(1 +m2)

(
g −mf ′

)
=

1

4
ξ

[
f
′ ∂g

∂ξ
− g′

∂f

∂ξ

]
,

(2)

1

Pr
θ
′′

+
3

4
fθ
′
+ ξθ

′
=

1

4
ξ

[
f
′ ∂θ
′

∂ξ
− θ′

∂f

∂ξ

]
. (3)

In the above equation, M is the magnetic field, ξ is the transpiration
parameter, m is the hall parameter, (Pr = v/α) is the Prandtl number
and prime denotes differentiation of the functions with respect to η. The
corresponding boundary conditions to the above equations are:

f(ξ, 0) = f ′(ξ, 0) = 0, g(ξ, 0) = 0, θ(ξ, 0) = 1,

f ′(ξ,∞) = g(ξ,∞) = θ(ξ,∞) = 0. (4)

The physical quantities of interest are the skin-friction and Nusselt num-
ber, which may be calculated from the following expressions and are
given in Saha et al. (2007) as:

CfxGr
−3/4
x = f ′′(ξ, 0), NuxGr

−1/4
x = −θ′(ξ, 0). (5)
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2.2. Free convection from a vertical permeable circular cone with
non-uniform surface temperature

We investigate a steady two-dimensional laminar free convection flow
past a non-isothermal vertical porous cone with variable surface tempera-
ture. The governing non-similarity system of partial differential equations
are expressed in dimensionless form as Hossain and Paul (2001a):

f
′′′

+
n+ 7

4
ff
′′ −

n+ 1

2
f
′2

+ θ + ξf
′′

=
1− n

4
ξ

(
f
′ ∂f
′

∂ξ
− f ′′

∂f

∂ξ

)
, (6)

1

Pr
θ
′′

+
n+ 7

4
fθ
′ − nf ′θ + ξθ

′
=

1− n
4

ξ

(
f
′ ∂θ

∂ξ
− θ′

∂f

∂ξ

)
, (7)

where Pr = ν/α is the Prandtl number, ξ is the dimensionless suction
parameter. The appropriate corresponding boundary conditions are;

f(ξ, 0) = 0, f ′(ξ, 0) = 0, f ′(ξ,∞) = 0,

θ(ξ, 0) = 1, θ(ξ,∞) = 0. (8)

The skin friction coefficient Cfx and the Nusselt number Nux describe
the shear-stress and heat flux rate at the surface, respectively, and are
defined by Hossain and Paul (2001a) as:

CfxGr
1/4
x = f ′′(ξ, 0),

Nux

Gr
1/4
x

= −θ′(ξ, 0). (9)

2.3. Free convection from a vertical permeable circular cone with
non-uniform surface heat flux

We consider a steady two-dimensional laminar free convection flow of a
viscous incompressible fluid with temperature, T , from a vertical porous
cone with variable heat flux. The governing systems of nonlinear partial
differential equations are given in Hossain and Paul (2001b) in dimen-
sionless form as:

f
′′′

+
m+ 9

5
ff
′′ −

2m+ 3

2
f
′2

+ φ+ ξf
′′

=
1−m

5
ξ

(
f
′ ∂f
′

∂ξ
− f ′′

∂f

∂ξ

)
,

(10)

1

Pr
φ
′′

+
m+ 9

5
fφ
′ −

4m+ 1

5
f
′
φ+ ξφ

′
=

1−m
5

ξ

(
f
′ ∂φ

∂ξ
− φ′

∂f

∂ξ

)
, (11)

where Pr = ν/α is the Prandtl number. The corresponding boundary
conditions are Hossain and Paul (2001b);

f(ξ, 0) = 0, f ′(ξ, 0) = 0, f ′(ξ,∞) = 0,

φ′(ξ, 0) = −1, φ(ξ,∞) = 0. (12)

The skin friction coefficient Cfx and the Nusselt number Nux describe
the shear-stress and heat flux rate at the surface, respectively, and are
defined by Hossain and Paul (2001b) as:

1

2
CfxGr

1/5
x = f ′′(ξ, 0),

Nux

Gr
1/5
x

=
1

φ(ξ, 0)
. (13)

3. METHOD OF SOLUTION

In this section, we present the large parameter spectral perturbation method
(LSPM) solution for the problems described in the previous section. Asymp-
totic perturbation analysis is carried out on the set of partial differential
equations described in the previous section and the resulting differential
equations are solved using the Chebyshev spectral method. Perturbation
methods, in general, construct a solution for a problem by generating
series expansions of the perturbation parameter. In perturbation meth-
ods, higher order perturbation approximations are difficult to get which
may result in less accurate results if only one or two series solutions
are used. For instance, Hossain and Paul (2001a,b) presented the first
order asymptotic approximate solutions for large perturbation parame-
ter using the analytical approach. Hossain and Paul (2001a,b) analytical

approach yielded only the first order approximate asymptotic solution be-
cause higher order solutions may be difficult to obtain exactly even with
the use of a computer. Below, the development of the large parameter per-
turbation approach and the application of the Chebyshev spectral method
to solve the resulting ordinary differential equations is being discussed.

3.1. Large Parameter Spectral Perturbation Method Solution for
large (ξ) for Equations (1- 3)

We shall give attention to the solutions of equations (1 - 3) when ξ is
large. The order of magnitude of different terms in (1 - 3) shows that the
largest in (1) are f ′′′ and ξf ′′, in (2) g′′ and ξg′, and θ′′ and ξθ′ in (3).
Both the terms have to be balanced in the respective equations and the
only way to do this is to assume that η to be small and its derivatives are
large. Given that θ = O(1) as ξ →∞, it is necessary to find appropriate
scaling for f and η. On balancing the f ′′′ , θ and ξf ′′ terms in (1), it
is found that η = O(ξ−1) and f = O(ξ−3) as ξ → ∞. Therefore,
the following transformations are introduced to switch the equations for
small ξ to those for large ξ;

f = ξ−3F (ξ, η̄), η̄ = ξη, g = ξ−2G(ξ, η̄), θ = Θ(ξ, η̄). (14)

Substituting these transformations given in (14) into equations (1 - 3), we
obtain the following equations:

F
′′′

+ F
′′

+ Θ−
M

(1 +m2)
ξ
−2 (

F
′
+mG

)
=

1

4
ξ
−3

[
F
′ ∂F

′

∂ξ
− F ′′

∂F

∂ξ

]
,

(15)

G
′′

+G
′ −

M

(1 +m2)
ξ
−2 (

G−mF ′
)

=
1

4
ξ
−3

[
F
′ ∂G

∂ξ
−G′

∂F

∂ξ

]
, (16)

Θ
′′

+ PrΘ
′

=
1

4
Prξ

−3

[
F
′ ∂Θ

∂ξ
−Θ

′ ∂F

∂ξ

]
. (17)

The corresponding boundary conditions are given as ;

F (ξ, 0) = F ′(ξ, 0) = 0, G(ξ, 0) = 0, Θ(ξ, 0) = 1,

F ′(ξ,∞) = G(ξ,∞) = Θ(ξ,∞) = 0. (18)

Since ξ is large, solutions of equations (15 - 17) is obtained using the
perturbation method. Hence, we expand the functions F (η̄), G(η̄) and
Θ(η̄) in powers of ξ−2 as given below;

F (ξ, η̄) =

∞∑
k=0

ξ−2kFk(η̄), (19)

G(ξ, η̄) =

∞∑
k=0

ξ−2kGk(η̄), (20)

Θ(ξ, η̄) =

∞∑
k=0

ξ−2kΘk(η̄). (21)

Substituting equations (19 - 21) into equations (15) - (17) and then equat-
ing the coefficients of like powers of ξ, we obtain the equations for k = 0
as;

F ′′′0 + F ′′0 + Θ0 = 0, (22)

G′′0 +G′0 = 0, (23)

Θ′′0 + PrΘ′0 = 0, (24)

subject to the following boundary conditions

F0(0) = F ′0(0) = 0, G0(0) = 0, Θ0(0) = 1,

F ′0(∞) = G0(∞) = Θ0(∞) = 0. (25)

The equations for k = 1, corresponding to order O(ξ−2) are given as;

F ′′′1 + F ′′1 =
M

(1 +m2)

(
F ′0 +mG0

)
−Θ1, (26)

G′′1 +G′1 =
M

(1 +m2)

(
G0 −mF ′0

)
, (27)

Θ′′1 + PrΘ′1 = 0, (28)
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subject to the following boundary conditions

F1(0) = F ′1(0) = 0, G1(0) = 0, Θ1(0) = 0,

F ′1(∞) = G1(∞) = Θ1(∞) = 0. (29)

The equations for k ≥ 2 are given as;

F
′′′
k + F

′′
k + Θk =

M

(1 +m2)
F
′
k−1 +

M

(1 +m2)
mGk−1

−
1

2

k−2∑
n=0

F
′
k−2−nnF

′
n −

k−2∑
n=0

F
′′
k−2−nnFn

 , (30)

G
′′
k +G

′
k =

M

(1 +m2)
Gk−1 −

M

(1 +m2)
mF
′
k−1,

−
1

2

k−2∑
n=0

F
′
k−2−nnGn −

k−2∑
n=0

G
′
k−2−nnFn

 (31)

Θ
′′
k + PrΘ

′
k = −

1

2
Pr

k−2∑
n=0

F
′
k−2−nnΘn −

k−2∑
n=0

Θ
′
k−2−nnFn

 (32)

subject to the following boundary conditions

Fk(0) = F ′k(0) = 0, Gk(0) = 0, Θk(0) = 0,

F ′k(∞) = Gk(∞) = Θk(∞) = 0. (33)

Solving equations (22 - 28) analytically yields:

F0(η̄) =
1

Pr2
+

e−η̄

Pr(1− Pr) −
e−Prη̄

Pr2(1− Pr) , (34)

G0(η̄) = 0, (35)

Θ0(η̄) = e−Prη̄, (36)

F1(η̄) =
M
[
ePrη̄ − e−η̄

(
Pr + (−1 + Pr)

(
eη̄
(
−1 + Pr2

)
− Pr2 (1 + η̄)

))]
(1 +m2) (−1 + Pr)2 Pr3

,

(37)

G1(η̄) =
mM

[
e−Prη̄ + eη̄

(
−1− Prη̄ + Pr2η̄

)]
(1 +m2) (−1 + Pr)2 Pr2

, (38)

Θ1(η̄) = 0. (39)

The Chebyshev spectral collocation method is then applied to integrate
(30 - 32). It is important to note that the spectral method is based on the
Chebyshev polynomials defined on the domain [−1, 1] by

Tl(x) = cos
[
l cos−1(x)

]
. (40)

Before using the spectral method, it is necessary to first transform the
physical domain on which the governing equation is defined to the region
[−1, 1] where the spectral method can then be applied. This can be done
with the aid of the domain truncation procedure, the problem is solved
in the interval [0, L] in place of [0,∞), where L is the scaling parameter
taken to be large. The transformation x = 2η̄

L
− 1, −1 ≤ x ≤ 1, is

used to map the domain [0, L] to [−1, 1]. The Gauss-lobatto collocation
points Trefethen (2000) are used to define the Chebyshev nodes [−1, 1]
as;

xj = cos

(
πj

Nx

)
, −1 ≤ x ≤ 1, j = 0, 1, 2..., Nx, (41)

where (Nx + 1) is the total number of collocation points.

The basic idea behind the spectral collocation method is the intro-
duction of the chebyshev differential matrix D (see for example,Trefethen
(2000),Canuto et al. (1988)). The chebyshev differential matrix D is used
to approximate the derivatives of the unknown variablesFk(η̄), Gk(η̄),Θk(η̄)
at the collocation points as the matrix vector product

dFk
dη̄

∣∣∣∣
η̄=η̄j

=

Nx∑
l=0

DjlFk(xl) = DFk, j = 0, 1, ..., Nx, (42)

dGk
dη̄

∣∣∣∣
η̄=η̄j

=

Nx∑
l=0

DjlGk(xl) = DGk, j = 0, 1, ..., Nx, (43)

dΘk

dη̄

∣∣∣∣
η̄=η̄j

=

Nx∑
l=0

DjlΘk(xl) = DΘk, j = 0, 1, ..., Nx, (44)

where (Nx + 1) is the number of collocation points, D = 2D/L, and

Fk = [Fk(x0), Fk(x1), ..., Fk(xNx)]T , (45)

Gk = [Gk(x0), Gk(x1), ..., Gk(xNx)]T , (46)

Θk = [Θk(x0),Θk(x1), ...,Θk(xNx)]T , (47)

is the vector function at the collocation points. We obtain the higher order
derivatives as powers of D, that is;

F(p)
k = DpFk, G(p)

k = DpGk, Θ
(p)
k = DpΘk, (48)

where p is the order of the derivatives. The matrix D is of size
(Nx + 1) × (Nx + 1) and its entries are defined in Trefethen (2000);
Canuto et al. (1988) as;

Djl =
cj
cl

(−1)j+l

τj − τl
j 6= l; j, l = 0, 1, 2, N,

Dll = − τl
2(1− τ2

l )
1 ≤ j = l ≤ N − 1,

D00 =
2N2 + 1

6
= −DNxNx , (49)

with

cl =

{
2, l = 0, Nx

−1, − 1 ≤ l ≤ Nx − 1.
(50)

Substituting (42 - 48) in (30 - 32) yields
A1,k−1Fk = B1,k−1, A2,k−1Gk = B2,k−1, A3,k−1Θk = B3,k−1, (51)

subject to the following boundary conditions
Nx∑
l=0

D0lFk(xl) = 0,

Nx∑
l=0

DNxlFk(xl) = 0, Fk(xNx) = 0, (52)

Gk(xNx) = 0, Gk(x0) = 0, (53)

Θk(xNx) = 0, Θk(x0) = 0, (54)

where A1,k−1,A2,k−1,A3,k−1,B1,k−1,B2,k−1, and B3,k−1 are defined
as;

A1,k−1 = D3 + D2, A2,k−1 = D2 + D, A3,k−1 = D2 + D, (55)

B1,k−1 =
M

(1 +m2)
(DFk−1) +

M

(1 +m2)
mGk−1 −Θk + SumF,

(56)

B2,k−1 =
M

(1 +m2)
Gk−1 −

M

(1 +m2)
m (DFk−1) + SumG, (57)

B3,k−1 = SumΘ, (58)

where SumF, SumG and SumΘ are defined as;

SumF = −1

2

k−2∑
n=0

[
(DFk−2−n) (nDFn)−

(
D2Fk−2−n

)
(nFn)

]
,

SumG = −1

2

k−2∑
i=0

[(DFk−2−n) (nGn)− (DGk−2−n) (nFn)] ,

SumΘ = −1

2
Pr

k−2∑
i=0

[(DFk−2−n) (nΘn)− (DΘk−2−n) (nFn)] ,
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The boundary condition (52) is imposed on the first , Nxth row
(second from the last row) and (Nx + 1)st row (last row) rows and first
and last columns of A1,k−1Fk = B1,k−1 to obtain



D0,0 D0,1 · · · D0,Nx−1 D0,Nx

A1,k−1

DNx,0 DNx,1 · · · DNx,Nx−1 DNx,Nx
0 0 · · · 0 1





Fk(x0)

Fk(x1)

.

.

.
Fk(xNx−1)

Fk(xNx
)


=



0

B1,k−1(x1)

.

.

.
B1,k−1(xNx−1)

0

0


(59)

while the boundary conditions (53) and (54) are imposed the first and
last rows and columns of A2,k−1Gk = B2,k−1 and A3,k−1Θk = B3,k−1

respectively, to obtain:
1 0 · · · 0 0

A2,k−1

0 0 · · · 0 1




Gk(x0)
Gk(x1)

...
Gk(xNx )

 =


0

B2,k−1(x1)

...
B2,k−1(xNx−1)

0

 ,
(60)

and
1 0 · · · 0 0

A3,k−1

0 0 · · · 0 1




Θk(x0)
Θk(x1)

...
Θk(xNx )

 =


0

B3,k−1(x1)

...
B3,k−1(xNx−1)

0

 .
(61)

Therefore, starting from a known F0,Θ0,Φ0, the solutions Fk, Gk, Θk,
for k ≥ 2 can be obtained from equations (59 - 61) as;

Fk = A−1
1,k−1B1,k−1, Gk = A−1

2,k−1B2,k−1, Θk = A−1
3,k−1B3,k−1.

(62)

3.2. Large parameter Spectral Perturbation Method Solution for
large (ξ) for Equations (6 - 7)

To solve equations (6 - 7), attention shall be given to the solutions of
equations (6 and 7) when ξ is large. An order of magnitude of different
terms in equations (6 and 7) shows that the largest terms in (6) are f ′′′

and ξf ′′, and θ′′ and ξθ′ in (7). Both terms have to be balanced in the
respective equations and the only way to do this is to assume that η to be
small and its derivatives are large. Given that θ = O(1) as ξ → ∞, it is
necessary to find appropriate scaling for f and η. On balancing the f ′′′

, θ and ξf ′′ terms in (6), it is found that η = O(ξ−1) and f = O(ξ−3)
as ξ → ∞. Therefore, the following transformations are introduced to
switch the equations for small ξ to those for large ξ;

f = ξ−3F (ξ, η̄), η̄ = ξη, θ = Θ(ξ, η̄). (63)

Substituting these transformations given in (63) into equations (6 - 7), we
obtain the following equations:

F
′′′

+ F
′′

+ Θ + (1 + n)ξ
−4
FF
′′ − nξ−4

F
′2

=
1− n

4
ξ
−3

[
F
′ ∂F

′

∂ξ
− F ′′

∂F

∂ξ

]
,

(64)

Θ
′′

+ PrΘ
′
+ (1 + n)Prξ

−4
FΘ
′ − nPrξ−4

F
′
Θ =

1− n
4

Prξ
−3

[
F
′ ∂Θ

∂ξ
−Θ

′ ∂F

∂ξ

]
.

(65)

The corresponding boundary conditions are given by ;
F (ξ, 0) = F

′
(ξ, 0) = 0, Θ(ξ, 0) = 1, F

′
(ξ,∞) = Θ(ξ,∞) = 0. (66)

Since ξ is large, solutions of equations (64 - 65) is obtained using the
spectral perturbation method. Hence, we expand the functions F (ξ, η̄),
and Θ(ξ, η̄) in powers of ξ−4 as given below;

F (ξ, η̄) =
∞∑
k=0

ξ−4kFk(η̄), Θ(ξ, η̄) =

∞∑
k=0

ξ−4kΘk(η̄). (67)

Substituting equation (67) into equations (64) and (65) and then equating
the coefficients of like powers of ξ, we obtain the equations for k = 0 as;

F ′′′0 + F ′′0 + Θ0 = 0, Θ′′0 + PrΘ′0 = 0, (68)

subject to the following boundary conditions

F0(0) = F ′0(0) = 0, Θ0(0) = 1, F ′0(∞) = Θ0(∞) = 0. (69)

The equations for k ≥ 1 are given as;

F ′′′k + F ′′k + Θk = n

k−1∑
i=0

F ′k−1−iF
′
i − (1 + n)

k−1∑
i=0

Fk−1−iF
′′
i ,

+ (1− n)

[
k−1∑
i=0

F ′′k−1−iiFi −
k−1∑
i=0

F ′k−1−iiF
′
i

]
, (70)

Θ′′k + PrΘ′k = nPr

k−1∑
i=0

F ′k−1−iΘi − (1 + n)Pr

k−1∑
i=0

Fk−1−iΘ
′
i,

+ (1− n)Pr

[
k−1∑
i=0

Θ′k−1−iiFi −
k−1∑
i=0

F ′k−1−iiΘi

]
(71)

subject to the following boundary conditions

Fk(0) = F ′k(0) = 0, Θk(0) = 0, F ′k(∞) = Θk(∞) = 0. (72)

Since the left hand side of of the higher order perturbation equations (71)
- (72) are linear, we therefore apply the Chebyshev spectral collocation
method described in the previous section to integrate equations (71 - 72).
We remark that the equations at k = 0 and k = 1, can be solved analyti-
cally. The equations corresponding to k = 1 is;

F ′′′1 + F ′′1 + (1 + n)F0F
′′
0 − nF ′20 = −Θ1,

Θ′′1 + PrΘ′1 + (1 + n)PrF0Θ′0 − nPrF ′0Θ0 = 0, (73)

subject to the following boundary conditions:

F1(0) = F ′1(0) = 0, Θ1(0) = 0, F ′1(∞) = Θ1(∞) = 0.

On solving equations (68) and (73) analytically, their solutions were ob-
tained as;

F0(η̄) =
1

Pr2
+

1

Pr(1− Pr)e
−η̄ − 1

Pr2(1− Pr)e
−Prη̄, (74)

Θ0(η̄) = e−Prη̄. (75)

F1(η̄) =
(1 + Pr)− 2Pr3 + 2Pr2(1− Pr)n

2Pr4(1− Pr2)
−

3(1 + n)

Pr4(1− Pr)
+

1 + Pr + Pr2

8Pr4(1− Pr)2
,

+
Pr − (1− Pr)n

(1− Pr2)(1− Pr)2
+

(1 + n)(1 + Pr2)− 2Prn

Pr3(1− Pr2)2
,

+

[
(1 + Pr)− 2Pr3 + 2Pr2(1− Pr)n

2Pr3(1− Pr)2(1 + Pr)
−

3(1 + n)

Pr3(1− Pr)

]
e
−η̄
,

+

[
1 + Pr

8Pr3(1− Pr)2(1− 2Pr)
−

Pr − (1− Pr)n
Pr(1− Pr2)(1 + Pr)

]
e
−η̄
,

+

[
(1 + n)(1 + Pr2)− 2Prn

Pr4(1− Pr2)2(1 + Pr)
−

1

2Pr2(1− Pr)2

]
e
−η̄
,

+

[
−

(1 + Pr)− 2Pr3 + 2Pr2(1− Pr)n
2Pr4(1− Pr)2(1 + Pr)

−
3(1 + n)

Pr4(1− Pr)

]
e
−Prη̄

,

+

[
1 + n

Pr3(1− Pr)
η̄

]
e
−Prη̄ −

[
1 + n

Pr3(1− Pr)

]
η̄e
−η̄
,

+

[
Pr − (1− Pr)n

Pr(1− Pr2)(1 + Pr)2
−

(1 + n)(1 + Pr2)− 2Prn

Pr4(1− Pr2)2

]
e
−(1+Pr)η̄

,

−
[

1 + Pr

8Pr4(1− Pr)2(1− 2Pr)

]
e
−2Prη̄

+
e−2η̄

4Pr2(1− Pr)2
. (76)

Θ1(η̄) =

[
(1 + Pr)− 2Pr3 + 2Pr2(1− Pr)n

2Pr2(1− Pr2)
−
η̄ + nη̄

Pr

]
e
−Prη̄

+

[
Pr − (1− Pr)n

1− Pr2

]
e
−(1−Pr)η̄ −

e−2Prη̄

Pr2(1− Pr)
. (77)

5



Frontiers in Heat and Mass Transfer (FHMT), 9, 36 (2017)
DOI: 10.5098/hmt.9.36

Global Digital Central
ISSN: 2151-8629

The differential matrix D is used to approximate the derivatives of
the unknown variables Fk(η̄),Θk(η̄ at the collocation points and are de-
fined as;

dFk
dη̄

∣∣∣∣
η̄=η̄j

=

Nx∑
l=0

DjlFk(xl) = DFk, j = 0, 1, ..., Nx, (78)

dΘk

dη̄

∣∣∣∣
η̄=η̄j

=

Nx∑
l=0

DjlΘk(xl) = DΘk, j = 0, 1, ..., Nx, (79)

where Nx + 1 is the total number of collocation points, D = 2D/L, and

Fk = [Fk(x0), Fk(x1), ..., Fk(xNx)]T ,

Θk = [Θk(x0),Θk(x1), · · · ,Θk(xNx)]T , (80)

are the vector functions at the collocation points. The matrix D is of size
(Nx + 1)× (Nx + 1) and its entries are defined in the previous section.
Substituting (78 - 80) in (70 - 71) gives

A1,k−1Fk = B1,k−1, A2,k−1Θk = B2,k−1, (81)

subject to the boundary conditions

Nx∑
l=0

D0kFk(η̄k) = 0,

Nx∑
l=0

DNxkFk(η̄k) = 0, Fk(η̄Nx) = 0, (82)

Θk(ηNx) = 0, Θk(η0) = 0. (83)

The coefficients A1,k−1, A2,k−1, B1,k−1, B2,k−1, are defined as;

A1,k−1 = D3 + D2 + Θk, A2,k−1 = D2 + PrD, (84)

B1,k−1 = n

k−1∑
i=0

(DFk−1−i) (DFi)− (1 + n)

k−1∑
i=0

Fk−1−i
(
D2Fi

)
+ (1− n)

[
k−1∑
i=0

(
D2Fk−1−i

)
(iFi)−

k−1∑
i=0

(DFk−1−i) (iDFi)

]
, (85)

B2,k−1 = nPr

k−1∑
i=0

(DFk−1−i) (Fi)− (1 + n)Pr

k−1∑
i=0

Fk−1−i (DΘi)

+ (1− n)Pr

[
k−1∑
i=0

(DΘk−1−i) (iFi)−
k−1∑
i=0

(DFk−1−i) (iΘi)

]
.

(86)

The boundary condition (82) is imposed on the first , Nxth row (second
from the last row) and (Nx + 1)st row (last row) rows and first and last
columns of A1,k−1Fk = B1,k−1, while the boundary conditions (83) is
imposed on the first and last rows and columns of A2,k−1Θk = B2,k−1,
. Thus, starting from a known F0, and Θ0, the solutions Fk, and Θk, for
k ≥ 1 can be obtained as;

Fk = A−1
1,k−1B1,k−1, Θk = A−1

2,k−1B2,k−1. (87)

3.3. Large Parameter Spectral Perturbation Method Solution for
large (ξ) for Equations (10 - 11)

To find the solutions of equations (10 - 11) along with boundary condi-
tions 12, attention shall be given to the solutions of equations (10 - 11)
when ξ is large. An order of magnitude of various terms carried out in
equations (10 - 11) depicts that the largest in (10) are f ′′′ and ξf ′′, and
φ′′ and ξφ′ in (11). Both terms have to be balanced in the respective
equations and the only way to do this is to assume that η is small and
its derivatives are large. Given that φ = O(ξ−1) as ξ → ∞, it is es-
sential to find appropriate scaling for f and η. On balancing the f ′′′ , φ

and ξf ′′ terms in (10), it is found that η = O(ξ−1) and f = O(ξ−4)
as ξ → ∞. Therefore, the following transformations are introduced to
switch the equations for small ξ to those for large ξ;

f = ξ−4F (ξ, η̄), η̄ = ξη, φ = ξ−1Φ(η, η̄). (88)

Substituting these transformations given in (88) into equations (10 - 11),
we obtain the following equations:

F ′′′ + F ′′ + Φ + (1 +m)ξ−5FF ′′ −mξ−5F ′2,

=
1−m

5
ξ−4

[
F ′
∂F ′

∂ξ
− F ′′ ∂F

∂ξ

]
, (89)

Φ′′ + PrΦ′ + (1 +m)Prξ−5FΦ′ −mPrξ−5F ′Φ,

=
1−m

5
Prξ−4

[
F ′
∂Φ

∂ξ
− Φ′

∂F

∂ξ

]
. (90)

The corresponding boundary conditions are given as;

F (ξ, 0) = F ′(ξ, 0) = 0, Φ′(ξ, 0) = −1, F ′(ξ,∞) = Φ(ξ,∞) = 0.
(91)

The functions F (ξ, η̄), and Φ(ξ, η̄) are expanded in powers of ξ−5 and
written below as;

F (ξ, η̄) =

∞∑
k=0

ξ−5kFk(η̄), (92)

Φ(ξ, η̄) =

∞∑
k=0

ξ−5kΦk(η̄). (93)

Substituting equations (92) - (93) into equations (89) - (90) and then bal-
ancing terms of same orders of ξ, we obtain the equations for k = 0
as;

F ′′′0 + F ′′0 = −Φ0, Φ′′0 + PrΦ′0 = 0, (94)

subject to the following boundary conditions

F0(0) = F ′0(0) = 0, Φ′0(0) = −1, F ′0(∞) = Φ0(∞) = 0.

The equations for k ≥ 1 are given as;

F ′′′k + F ′′k + Φk = m

k−1∑
i=0

F ′k−1−iF
′
i − (1 +m)

k−1∑
i=0

Fk−1−iF
′′
i ,

+ (1−m)

[
k−1∑
i=0

F ′′k−1−iiFi −
k−1∑
i=0

F ′k−1−iiF
′
i

]
,

(95)

Φ′′k + PrΦ′k = mPr

k−1∑
i=0

F ′k−1−iΦi − (1 +m)Pr

k−1∑
i=0

Fk−1−iΦ
′
i,

+ (1−m)Pr

[
k−1∑
i=0

Φ′k−1−iiFi −
k−1∑
i=0

F ′k−1−iiΦi

]
, (96)

subject to the following boundary conditions

Fk(0) = F ′k(0) = 0, Φ′k(0) = 0, F ′k(∞) = Φk(∞) = 0.

The equations corresponding to k = 1 is;

F ′′′1 + F ′′1 + (1 +m)F0F
′′
0 −mF ′20 = −Φ1,

Φ′′1 + PrΦ′1 + (1 +m)PrF0Φ′0 − nPrF ′0Φ0 = 0, (97)

subject to the boundary conditions;

F1(0) = F ′1(0) = 0, Φ′1(0) = 0, F ′1(∞) = Φ1(∞) = 0.

6
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We remark the analytical solutions obtained on solving equations (94 )
and (97) are:

F0(η̄) =
1

Pr3
+

e−η̄

Pr2(1− Pr)
−

e−Prη̄

Pr3(1− Pr)
, (98)

Φ0(η̄) =
e−Prη̄

Pr
, (99)

F1(η̄) =
1− (1 +m)(4− Pr)

Pr6
+

Pr −m(1− Pr)
Pr2(1− Pr)2(1− Pr2)

,

−
(1 +m)(1 + Pr2)− 2mPr

Pr5(1− Pr2)2
+

1 + Pr + 2Pr2

8Pr6(1− Pr)2
,

+

[
1− (1 +m)(4− Pr)

Pr5(1− Pr)

]
e
−η̄ −

[
Pr −m(1− Pr)

Pr3(1 + Pr)(1− Pr2)

]
e
−η̄
,

+

[
1

2Pr4(1− Pr)2
−

(1 +m)(1 + Pr2)− 2mPr

Pr6(1− Pr)2(1 + Pr)

]
e
−η̄
,

+

[
1 + Pr

4Pr5(1− Pr)2(1− 2Pr)

]
e
−η̄

+

[−η̄ + (1 +m)(−2η̄ − Prη̄ − 1)

Pr6(1− Pr)η̄

]
e
−Prη̄

,

+

[
Pr −m(1− Pr)

Pr3(1 + Pr)2(1− Pr2)

]
e
−(1+Pr)η̄

,

−
[

(1 +m)(1 + Pr2)− 2mPr

Pr6(1− Pr2)2

]
e
−(1+Pr)η̄ −

[
1 +m

Pr5(1− Pr)
η̄

]
e
−η̄
,

−
[

1 + Pr

8Pr6(1 + Pr)2(1− 2Pr)

]
e
−2Prη̄

+
e−2η̄

4Pr4(1− Pr)2
. (100)

Φ1(η̄) =

[
1− (1 +m) (1− Pr + Prη̄)

Pr4

]
e
−Prη̄

,

+

[
Pr −m(1− Pr)
Pr2(1− Pr2)

]
e
−(1+Pr)η̄ −

e−2Prη̄

2Pr4(1− Pr)
.

(101)

Applying the Chebyshev spectral method on equations (95) and (96)
gives:

A1,k−1Fk = B1,k−1, A2,k−1Φk = B2,k−1, (102)

subject to the boundary conditions

Nx∑
l=0

D0kFk(η̄k) = 0,

Nx∑
l=0

DNxkFk(η̄k) = 0, Fk(η̄Nx) = 0,

Φk(ηNx) = 0, Φk(η0) = 0. (103)

The coefficients A1,k−1, A2,k−1, B1,k−1, B2,k−1, are defined as;

A1,k−1 = D3 + D2 A2,k−1 = D2 + PrD, (104)

B1,k−1 = m

k−1∑
i=0

(DFk−1−i) (DFi)− (1 +m)

k−1∑
i=0

Fk−1−i
(
D2Fi

)
+ (1−m)

[
k−1∑
i=0

(
D2Fk−1−i

)
(iFi)−

k−1∑
i=0

(DFk−1−i) (iDFi)

]
−Φk,

(105)

B2,k−1 = mPr

k−1∑
i=0

(DFk−1−n) (Φn)− (1 +m)Pr

k−1∑
i=0

Fk−1−i (DΦi)

+ (1−m)Pr

[
k−1∑
i=0

(DΦk−1−i) (iFi)−
k−1∑
i=0

(DFk−1−i) (iΘi)

]
.

(106)

Thus, starting from a known F0, and Φ0, the solutions Fk, and Φk, for
k ≥ 1 can be obtained.

4. RESULTS AND DISCUSSION

In this section, the nonlinear systems of partial differential equations (1 -
3), (6 - 7), and (10 - 11) were solve numerically using the large parame-
ter spectral perturbation method (LSPM). Results were presented for the

skin friction coefficient and Nusselt number for different physical param-
eters that are of interest to the flow model. The accuracy of the com-
puted (LSPM) approximate numerical results were confirmed by compar-
ing with other reported results from literature. The comparison was done
in particular against the reported results of Saha et al. (2007) who solved
equations (1-2) using regular perturbation method, asymptotic method so-
lution, implicit finite difference method together with Keller-box scheme
and local nonsimilarity method. In addition, comparison were also made
against published results of Hossain and Paul (2001a,b) who used the fi-
nite difference method, series solution method and an asymptotic solution
method to respectively, solve equations (6-7) and (10-11). Validation of
the numerical solutions was further established by comparing the (LSPM)
results with numerical approximate solutions obtained using the bivariate
quasilinearisation method (BSQLM) as described by Motsa et al. (2014)
and Motsa and Ansari (2015). We remark that the values of all physical
parameters used in this study were chosen based on the values used in
the published work of Hossain and Paul (2001a,b); Saha et al. (2007).
The number of collocation points Nx used was 60 if not stated. In order
to further check the accuracy of the LSPM, we obtain the error norm of
the approximate solution and the residual error. The error norm of the
approximate solution can be defined as the difference between the ap-
proximate values of F , Θ, and Φ at the next approximation level, which
is given as;

EF = ||Fm+1 − Fm||∞,
EΘ = ||Θm+1 −Θm||∞,
EΦ = ||Φm+1 −Φm||∞, (107)

where Fm+1, Θm+1 and Φm+1 are the previous approximation level and
Fm, Θm, and Φm are the current approximation level. Furthermore, to
define the residual error, we assume that x∗ is an approximation to the
solution Ax = b, the residual r = b − Ax∗. The residual error after m
approximation over all r = 0, 1, 2, · · · , Nx can be defined as;

Res(F ) = max0≤j≤Nx |N̄F [Fm(ξ, η),Θm(ξ, η)] |,
Res(Θ) = max0≤j≤Nx |N̄Θ [Fm(ξ, η), (ξ, η),Θm(ξ, η)] |,

Res(Φ) = max0≤j≤Nx |N̄Θ [Fm(ξ, η),Θm(ξ, η)] |, (108)

where N̄F , N̄G and N̄Θ are the governing nonlinear PDEs and Fm(ξ, η),
Θm(ξ, η) and Φm(ξ, η) are the LSPM approximate solutions.

Table 1 displays the approximate numerical solutions of the lo-
cal skin-friction coefficient, CfxGr

−3/4
x and the local Nusselt number,

NuxGr
−1/4
x at different values of the transpiration parameter ξ for Prandtl

number Pr = 0.7, Hall parameter m = 100 and magnetic parameter
M = 0.5. The table further shows a comparison of the (LSPM), and the
published work of Saha et al. (2007). From the table, it can be seen that
the (LSPM) results match perfectly well with those of Saha et al. (2007)
up to four decimal digits. In addition, it can be observed from the table
that the skin-friction coefficient decreases with an increase in the values
of the transpiration parameter while the local Nusselt number increases
with an increase in the values of the transpiration parameter. Computed
numerical values of the local skin-friction coefficient, CfxGr

1/4
x and the

local Nusselt number, NuxGr
1/4
x for different values of the suction pa-

rameter ξ, when the Prandtl number Pr = 0.10 and temperature gradient
n = 0.5 is displayed in Table 2. It can be seen from the Table that there is
an excellent agreement between our numerical results and the published
result of Hossain et al. Hossain and Paul (2001a). Also, from Table 2,
we observe that the values of the local skin-friction coefficient decreases
with an increase in the values of the suction parameter while it is noticed
that an increase in the values of the suction parameter causes an increase
in the values of the local Nusselt number.

Tables 3 depicts a comparison between our numerical values of the
local skin-frictionCfxGr

1/5
x /2 and the local Nusselt number,NuxGr

1/5
x

and the published work of Hossain and Paul (2001b) for different values
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Table 1 Comparison of LSPM and BSQLM approximate solutions for F ′′(0, ξ), and −Θ′(0, ξ), against those of Ref. Saha et al. (2007) at different
values of ξ for Equations (1 - 3) when m = 100, Pr = 0.7, and M = 0.5

F ′′(ξ, 0) −Θ′(ξ, 0)
ξ LSPM BSQLM Ref. LSPM BSQLM Ref.

Saha et al. (2007) Saha et al. (2007)
2.5 0.5714 0.5714 0.5717 1.7500 1.7500 1.7499
5 0.2857 0.2857 0.2857 3.5000 3.5000 3.5000
20 0.0714 0.0714 0.0714 14.0000 14.0000 14.0000
40 0.0357 0.0357 0.0357 28.0000 28.0000 28.0000
50 0.0286 0.0286 0.0286 35.0000 35.0000 35.0000
60 0.0238 0.0238 0.0238 42.0000 42.0000 42.0000
70 0.0204 0.0204 0.0204 49.0000 49.0000 49.0000
80 0.0179 0.0179 0.0179 56.0000 56.0000 56.0000

CPU time (sec) 0.001988 80.508407 0.001988 80.508407

Table 2 Comparison of LSPM and BSQLM numerical values of skin friction (F ′′(ξ, 0)) and Nusselt number (−Θ′(ξ, 0)) solutions against those of
Ref. Hossain and Paul (2001a) at different values of ξ for Equations (6 - 7) when n = 0.5, and Pr = 0.10

F ′′(ξ, 0) −Θ′(ξ, 0)
ξ LSPM BSQLM Ref. LSPM BSQLM Ref.

Hossain and Paul (2001a) Hossain and Paul (2001a)
15 0.66387 0.66385 0.66378 1.50269 1.50268 1.49941
20 0.49933 0.49932 0.49932 2.00114 2.00113 1.99975
25 0.39978 0.39978 0.39978 2.50058 2.50058 2.49987
30 0.33324 0.33324 0.33324 3.00034 3.00034 2.99993

CPU time (sec) 0.006431 79.238710 0. 0.006431 79.238710

Table 3 Comparison of LSPM and BSQLM numerical values of skin friction (F ′′(ξ, 0)) and Nusselt number
(

ξ

Φ(ξ, 0)

)
solutions against those of

Ref. Hossain and Paul (2001b) at different values of ξ for Equations (10 - 11) when m = 0.5, and Pr = 0.10

F ′′(ξ, 0)
(

ξ

Φ(ξ, 0)

)
ξ LSPM BSQLM Ref. LSPM BSQLM Ref.

Hossain and Paul (2001b) Hossain and Paul (2001b)
10 0.97055 0.97073 0.98963 1.00884 0.004 1.00950
20 0.24981 0.24976 0.24953 2.00057 2.00057 2.00059
30 0.11110 0.11108 0.11108 3.00011 3.00011 3.00012
40 0.06250 0.06250 0.06250 4.00004 4.00004 4.00004
50 0.04000 0.04000 0.04000 5.00002 5.00002 5.00002

CPU time (sec) 0.005100 76.914510 0.005100 76.914510

of the suction parameter ξ, when Prandtl number Pr = 0.10 and the
heat flux gradient m = 0.5. On comparison, we observe that there is
a good agreement between the (LSPM), and the approximate numerical
solutions obtained by Hossain and Paul (2001b). We observe from the Ta-
ble 4 that for increased values of ξ, there is a decrease in the values of the
local skin-friction, while it is noticed that as ξ increases, the local Nusselt
number increases. We remark that the (LSPM) is computationally faster
than the (BSQLM) in terms of computational time as accurate solutions
are obtained in a fraction of seconds in all the examples considered in this
investigation.

Tables 4, 5 and 8 illustrates the results for the skin-friction and the
Nusselt number respectively. The tables give a comparison between the
(LSPM) and the (BSQLM) numerical approximate solutions and the two
results are in good agreement for all values of ξ considered. Again it can
be seen from the tables that the (LSPM) gives results in a fraction of a sec-
ond when compared with the (BSQLM). This is because, in the (LSPM),
discretization is done only in the ξ−direction while discretization is done
both in the η− and ξ− direction in the (BSQLM). In particular, it can be
observed from the tables that only a few terms of the (LSPM) approxima-
tion are required to give results presented in the tables for all large values

of ξ considered. This is a clear indication that the (LSPM) is a good
numerical tool for solving nonlinear PDEs involving large parameter.

Tables 7 - 9 shows the (LSPM) maximum errors between the current
and previous iteration level. The errors norm were used to measure the
convergence of the solution algorithm over a number of iterations. It can
be seen from the tables that even as ξ becomes very large, the accuracy
of the method improves. We also note from the tables that the solution
error decreases with an increase in the order of LSPM approximation K.
The solution error improves as ξ becomes larger. This is evident from the
convergence level in table 7 with ErrorF , EF which is 10−16 for ξ = 5,
10−23 for ξ = 10 and 10−30 for ξ = 20, ErrorΘ, EΘ up to 10−15 for
ξ = 5, 10−21 for ξ = 10 and 10−27 for ξ = 20. In table 8, accurate
results with ErrorF , EF of order up to 10−26 for ξ = 5, 10−42 for
ξ = 10 and 10−58 for ξ = 20, ErrorΘ, EΘ up to 10−26 for ξ = 5, 10−23

for ξ = 10 and 10−30 for ξ = 20. Also, in table 9, accurate results
with ErrorF , EF of order up to 10−22 for ξ = 5, 10−34 for ξ = 10
and 10−47 for ξ = 20, ErrorΦ, EΦ up to 10−21 for ξ = 5, 10−33 for
ξ = 10 and 10−43 for ξ = 20. We note that the results presented in
Tables (7 - 9) were achieved after nine approximations only. We remark
that even at very large values of ξ, the LSPM gives accurate results with
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Table 4 Comparison between the LSPM and BSQLM numerical values of the skin friction F ′′(0, ξ) and the Nusselt number Θ′(0, ξ) at different values
of ξ for Equations (1 - 3) when m = 100, M = 0.5, and Pr = 0.7

ξ F ′′(ξ, 0) −Θ′(ξ, 0)
K LSPM BSQLM K LSPM BSQLM

2 10 0.714266 0.714691 8 1.400001 1.400096
5 3 0.285713 0.285713 2 3.500000 3.500000

10 2 0.142857 0.142857 2 7.000000 7.000000
15 1 0.095238 0.095238 1 10.500000 10.500000
20 1 0.071429 0.071429 1 14.000000 14.000000
30 1 0.047619 0.047619 1 21.000000 21.000000
40 1 0.035714 0.035714 1 28.000000 28.000000
50 1 0.028571 0.028571 1 35.000000 35.000000

CPU time (sec) 0.009417 80.238359 0.009417 80.238359

Table 5 Comparison between the LSPM and BSQLM numerical values of the skin friction F ′′(0, ξ) and the Nusselt number Θ′(0, ξ) at different values
of ξ for Equations (6 - 7) when n = 0.5, and Pr = 0.7

ξ F ′′(ξ, 0) −Θ′(ξ, 0)
K LSPM BSQLM K LSPM BSQLM

2 16 0.618112 0.618530 15 1.481166 1.481091
5 3 0.284272 0.284256 3 3.506668 3.506668

10 3 0.142812 0.142812 3 7.000840 7.000840
15 2 0.095232 0.095232 2 10.500249 10.500249
20 2 0.071427 0.071427 2 14.000105 14.000105
30 1 0.047619 0.047619 2 21.000031 21.000031
40 1 0.035714 0.035714 2 28.000013 28.000013
50 1 0.028571 0.028571 2 35.000007 35.000007

CPU time (sec) 0.009417 80.238359 0.009417 80.238359

Table 6 Comparison between the LSPM and BSQLM numerical values of the skin friction F ′′(0, ξ) and the Nusselt number
(

ξ

Φ(ξ, 0)

)
at different

values of ξ for Equations (10 - 11) when m = 0.5, and Pr = 0.7

ξ F ′′(ξ, 0)
(

ξ

Φ(ξ, 0)

)
K LSPM BSQLM K LSPM BSQLM

2 13 0.438549 0.438527 15 1.460329 1.460331
5 3 0.081469 0.081469 3 3.501916 3.501916

10 2 0.020407 0.020407 2 7.000120 7.000120
15 1 0.009070 0.009070 2 10.500024 10.500024
20 1 0.005102 0.005102 2 14.000008 14.000008
30 1 0.002268 0.002268 2 21.000001 21.000001
40 1 0.001276 0.001276 1 28.000000 28.000000
50 1 0.000816 0.000816 1 35.000000 35.000000

CPU time (sec) 0.005897 78.838219 0.005897 78.838219
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Table 7 LSPM Convergence of solution maximum error for Equations (1 - 3) at different values of ξ when m = 100, Pr = 0.7, M = 0.5, L = 30,
and Nx = 60

ξ K ||Error F ||∞ K ||Error Θ||∞
5 1 4.503× 10−9 1 1.052× 10−8

2 3.065× 10−10 2 1.218× 10−9

3 3.552× 10−11 3 1.279× 10−10

4 3.498× 10−12 4 1.478× 10−11

5 5.436× 10−13 5 2.260× 10−12

6 6.645× 10−14 6 2.818× 10−13

7 1.241× 10−14 7 5.249× 10−14

8 1.767× 10−15 8 7.493× 10−15

9 3.771× 10−16 9 1.599× 10−15

10 1 3.518× 10−11 1 2.478× 10−10

2 5.985× 10−13 2 1.904× 10−11

3 1.734× 10−14 3 4.996× 10−13

4 4.270× 10−16 4 1.443× 10−14

5 1.659× 10−17 5 5.517× 10−16

6 1.720× 10−19 6 4.719× 10−17

7 2.366× 10−20 7 8.009× 10−19

8 8.425× 10−22 8 2.859× 10−20

9 4.496× 10−23 9 1.525× 10−21

20 1 2.749× 10−13 1 2.743× 10−12

2 1.169× 10−15 2 2.974× 10−13

3 8.469× 10−18 3 1.951× 10−15

4 5.213× 10−20 4 1.409× 10−17

5 5.063× 10−22 5 1.347× 10−19

6 3.868× 10−24 6 1.050× 10−21

7 4.514× 10−26 7 1.222× 10−23

8 4.017× 10−28 8 1.090× 10−25

9 5.359× 10−30 9 1.454× 10−27

Table 8 LSPM Convergence of solution maximum error for Equations (6 - 7) at different values of ξ when n = 0.5, Pr = 0.7, L = 30, and Nx = 60

ξ K ||Error F ||∞ K ||Error Θ||∞
5 1 4.776× 10−7 1 2.498× 10−6

2 2.337× 10−9 2 8.667× 10−9

3 9.531× 10−12 3 2.151× 10−11

4 2.744× 10−14 4 2.881× 10−14

5 2.772× 10−17 5 2.811× 10−16

6 3.134× 10−19 6 9.070× 10−19

7 1.372× 10−21 7 2.424× 10−21

8 2.435× 10−24 8 2.703× 10−23

9 1.457× 10−26 9 7.380× 10−26

10 1 5.830× 10−11 1 2.440× 10−9

2 8.916× 10−15 2 2.645× 10−13

3 1.136× 10−18 3 2.051× 10−17

4 1.022× 10−22 4 8.586× 10−22

5 3.227× 10−27 5 2.618× 10−25

6 1.140× 10−30 6 2.640× 10−29

7 1.559× 10−34 7 2.205× 10−33

8 8.652× 10−39 8 7.681× 10−37

9 1.617× 10−42 9 6.554× 10−41

20 1 7.116× 10−15 1 2.382× 10−12

2 3.401× 10−20 2 8.072× 10−18

3 1.354× 10−25 3 1.956× 10−23

4 3.808× 10−31 4 2.559× 10−29

5 3.757× 10−37 5 2.439× 10−34

6 4.147× 10−42 6 7.683× 10−40

7 1.773× 10−47 7 7.122× 10−37

8 3.474× 10−53 8 2.183× 10−50

9 1.795× 10−58 9 5.821× 10−56
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Table 9 LSPM Convergence of solution maximum error for Equations (10 - 11) at different values of ξ when m = 0.5, Pr = 0.7, L = 40, and
Nx = 60

ξ K ||Error F ||∞ K ||Error Φ||∞
5 1 3.145× 10−6 1 1.007× 10−5

2 4.874× 10−8 2 1.094× 10−7

3 6.410× 10−10 3 9.282× 10−10

4 6.182× 10−12 4 5.598× 10−12

5 2.671× 10−14 5 1.038× 10−13

6 6.570× 10−16 6 1.267× 10−15

7 1.019× 10−17 7 1.314× 10−17

8 7.697× 10−20 8 4.187× 10−19

9 9.140× 10−22 9 4.600× 10−21

10 1 1.536× 10−9 1 3.935× 10−8

2 1.487× 10−12 2 2.671× 10−11

3 1.223× 10−15 3 1.416× 10−14

4 7.370× 10−19 4 5.399× 10−18

5 1.990× 10−22 5 6.189× 10−21

6 3.060× 10−25 6 4.719× 10−24

7 2.965× 10−28 7 3.059× 10−27

8 1.400× 10−31 8 6.092× 10−30

9 1.039× 10−34 9 4.183× 10−33

20 1 7.499× 10−13 1 1.537× 10−10

2 4.539× 10−17 2 6.520× 10−15

3 2.332× 10−21 3 2.161× 10−19

4 8.785× 10−26 4 5.092× 10−24

5 1.483× 10−30 5 3.689× 10−28

6 1.425× 10−34 6 1.758× 10−32

7 8.629× 10−39 7 7.122× 10−37

8 2.547× 10−43 8 8.865× 10−41

9 1.181× 10−47 9 3.805× 10−45

a very small solution error. This is one of the most interesting finding
of this investigation. This further indicates that the (LSPM) is a suitable
numerical method for solving nonlinear PDEs similar to those considered
in this work.

Tables 10 - 12 displays the (LSPM) residual error for F , Θ and Φ
respectively. It can be seen from the tables that the saturation level is at
least 10−9 in the equation for F (η, ξ), 10−12 in the equation Θ(η, ξ) and
at 10−12 in the equation Φ(η, ξ). This shows that even when ξ is very
large, very accurate results can be obtained which is in contrast with the
existing (SPM) known in the literature.

5. CONCLUSIONS

In this paper, we have discussed the application of the large parameter
spectral perturbation method (LSPM) on systems of nonlinear PDEs. The
large parameter spectral perturbation method (LSPM) is used to solve the
equations describing the effect of hall current on the MHD laminar nat-
ural convection flow from a vertical permeable flat with uniform surface
temperature, free convection from a vertical permeable circular cone with
a non-uniform surface, and free convection from a vertical permeable
circular cone with non-uniform surface heat flux previously investigated
by Saha et al. (2007), Hossain and Paul (2001a) and Hossain and Paul
(2001b), respectively. The purpose of the present study is to present a
compliment of the existing spectral perturbation method that solves fluid
mechanics problems with large parameters. Also, we have been able
to show that the range of validity of the standard spectral perturbation
method (SPM) can be extended by expanding about a large physical pa-
rameter so as to make the standard (SPM) robust, efficient and extend its
application to new areas. From the numerical simulations, some conclu-
sions can be drawn as follows;

• The results become more accurate even as ξ becomes larger. This
observation contradicts the standard (SPM) which does not give
accurate results as ξ approaches 1. We remark also that very few
terms of the (LSPM) is required to obtain converged results pre-
sented in the Tables.

• Significantly few seconds was required to attain desired converged
results that are comparable with published literature. The compu-
tational speed of our approach is primarily due to the fact that with
the spectral collocation method, only few grid points are required
to yield accurate results. Hence, it is concluded from the observa-
tions made that the (LSPM) is computationally fast.

• The (LSPM) can be used as an alternative numerical approach to
get numerical solutions for higher order asymptotic series equa-
tions that are not possible to find, or very difficult to find with the
usual asymptotic perturbation schemes.

• The ease of implementation, computational speed and accuracy of
the (LSPM) suggest that this method can be used to extend the
range of validity of the standard (SPM), and improves the conver-
gence rate of the usual (SPM) even as ξ becomes larger in as much
the series expansion is about a large parameter.

For problems related to those investigated in this paper, the (LSPM) can
be used as an alternative numerical tool for obtaining numerical approxi-
mate solutions.
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Table 10 LSPM residual error for Equations (1 - 3) at different values of ξ when m = 100, Pr = 0.7, M = 0.5, L = 40, and Nx = 60

ξ ||Residual Error F ||∞ ||Residual Error Φ||∞
2 2.850× 10−4 3.865× 10−3

5 2.747× 10−9 6.110× 10−11

10 3.212× 10−9 1.472× 10−12

15 2.640× 10−9 6.168× 10−12

20 2.805× 10−9 3.240× 10−12

30 2.922× 10−9 4.349× 10−12

40 2.640× 10−9 2.899× 10−12

50 3.237× 10−9 1.727× 10−12

Table 11 LSPM residual error for Equations (6 - 7) at different values of ξ when n = 0.5, Pr = 0.7, L = 40, and Nx = 60

ξ ||Residual Error F ||∞ ||Residual Error Φ||∞
2 9.391× 10−3 9.536× 10−3

5 2.915× 10−9 3.448× 10−6

10 3.227× 10−9 1.355× 10−8

15 2.363× 10−9 5.287× 10−10

20 3.881× 10−9 5.291× 10−11

30 3.261× 10−9 3.581× 10−12

40 2.956× 10−9 2.685× 10−12

50 2.952× 10−9 4.206× 10−12

Table 12 LSPM residual error for Equations (10 - 11) at different values of ξ when m = 0.5, Pr = 0.7, L = 40, and Nx = 60

ξ ||Residual Error F ||∞ ||Residual Error Φ||∞
2 3.619× 10−5 3.950× 10−3

5 5.434× 10−9 5.069× 10−7

10 3.571× 10−9 4.960× 10−10

15 3.797× 10−9 8.561× 10−12

20 4.415× 10−9 2.430× 10−12

30 5.113× 10−9 2.449× 10−12

40 4.021× 10−9 7.191× 10−12

50 5.054× 10−9 2.216× 10−12
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