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ABSTRACT

An analysis is performed to investigate the influence of radiation, thermal-diffusion and variable properties on mixed convection flow, heat and
mass transfer from a vertical plate in a porous medium saturated with a power-law fluid. The non-linear partial differential equations are reduced
to ordinary differential equations by implementing Lie scaling group transformations. These ordinary differential equations are solved numerically
by implementing a shooting technique. The numerical results for dimensionless velocity, temperature and concentration profiles for pseudo-plastic,
Newtonian and dilatant fluids are presented graphically for different values of variable viscosity, variable thermal conductivity, Soret and radiation
parameters. Heat and mass transfer results are presented in tabular form. The present numerical results are compared with previously published work
and the results are found to be in excellent agreement.
Keywords: Mixed convection, Variable viscosity, Power-law fluid, Thermal Radiation, Thermal conductivity, Soret, Lie Scaling Group Transforma-
tions.

1. INTRODUCTION

Research on convective heat and mass transfer of power-law fluids has re-
ceived much attention for several years due to its theoretical and practical
importance in industrial processing equipment, dealing with molten plas-
tics, paints, polymers, pharmaceutical formulations, cosmetics and toi-
letries, ground water flow, etc. Several researchers have presented their
work in the literature focusing on the problem of convection heat and
mass transfer in power-law fluids. Details of review of the literature on
power-law fluids and their applications may be found in the recent books
by Pop and Ingham (2001), Nield and Bejan (2006) and Vafai (2015).
On the other hand, Power-law fluid saturated porous media are a branch
of research undergoing rapid growth in fluid mechanics and heat trans-
fer characteristic of a wide range of engineering applications in several
problems areas such as nuclear reactors, foodstuffs, thermal insulations,
polymeric liquids and geothermal systems etc. Analytical and numerical
investigation of horizontal line heating sources in a power-law fluid sat-
urated porous medium has been discussed by Nakayama (1993). Kairi
et al. (2009) carried out interesting applications of non-Darcy natural con-
vective heat and mass transfer in a power-law fluid under the influence of
thermal and solutal dispersions. Soret and Dufour effects on natural con-
vection of a power-law fluid over a vertical plate embedded in a porous
medium were reported by Srinivasacharya et al. (2012).

All the above authors assumed that the thermophysical properties
of the fluid are constant. However, it is well known that these variable
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properties may change with temperature, especially for fluid viscosity
and thermal conductivity. These variable properties are very important
in several engineering and industrial applications such as volumetric so-
lar receivers, foam insulations, boilers, heat transfer in furnaces, fibrous
and porous burners etc. Hassanien et al. (2003) expressed mixed con-
vection along a wedge embedded in a fluid saturated porous medium for
the cases of uniform heat flux and uniform mass flux by using the effect
of variable viscosity and thermal conductivity. The influence of radia-
tion and variable properties of heat transfer from a moving surface in a
micropolar fluid through a porous medium was discussed Elsayed et al.
(2004). Seddeek and Salama (2007) examined unsteady hydromagnetic
heat transfer past a semi-infinite vertical porous moving plate with vari-
able suction taking variable viscosity and thermal conductivity effects
into account. Jayanthi and Kumari (2007) investigated numerically both
free and mixed convection flow on a vertical surface in a non-Newtonian
fluid saturated porous medium in the presence of temperature-dependent
viscosity. Mahanti and Gaur (2009) obtained similarity solutions for nat-
ural convection flow of an incompressible viscous fluid with influence
of a heat sink along an isothermal vertical surface using variable prop-
erties. Srinivasacharya et al. (2015) obtained a similarity solution to
explore the effects of Soret and Dufour on mixed convective flow along a
vertical wavy surface in a porous medium with variable properties. Rao
et al. (2017) investigated numerically the influence of thermal radiation
on MHD flow over a linearly stretching sheet in a porous medium with
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Fig. 1 Physical model

variable viscosity and thermal conductivity.
Thermal radiation on mixed convective boundary layer flow has re-

ceived great attention because of very important application such as solar
power technology, space technology, astrophysical flows and electrical
power generation, etc. Grosan and Pop (2006) discussed numerically the
influence of radiation free convective flow over a vertical surface in a
power-law fluid. Hayat et al. (2011) focused on two dimensional mixed
convection stagnation-point flow of power-law fluids towards a stretching
sheet with the effect of MHD and radiation. Gbadeyan et al. (2011) con-
sidered the problem of magnetic field, Soret and Dufour effects on mixed
convection flow over a stretching vertical surface in a viscoelastic fluid
saturated porous medium. Mahmoud and Megahed (2013) expressed the
influence of radiation, Dufour and Soret on mixed convective flow in a
study related to laminar flow along a vertical surface. Srinivasacharya
et al. (2014) reported mixed convection flow in a doubly stratified fluid
saturated porous medium in the presence of Dufour and Soret effects.

In this paper, we introduce the Lie group analysis, namely scaling
group transformations for mixed convection boundary layer problems.
The main advantages of these Lie group transformations is to obtain simi-
larity transformations for the system of nonlinear partial differential equa-
tions. Moreover, the Lie Group technique has been applied by many re-
searchers (see Oberlack (1999), (Kandasamy et al., 2010), (Afify et al.,
2014), (Ferdows et al., 2013) and (Uddin et al., 2015)). Recently, El-
Aziz and Afify (2016) reported Lie group analysis for a power-law fluid
over a stretching sheet with effect of magnetohydrodynamic and variable
properties. To the best of the authors’ knowledge, the study related to Lie
group analysis for a power-law fluid with variable properties has not been
explained in the literature. The main aim of this work is to express the
influence of Soret, variable properties and radiation on mixed convection
flow over a vertical surface embedded in a porous medium saturated with
a power-law fluid by using Lie scaling group transformations.

2. MATHEMATICAL FORMULATION

Consider steady, incompressible, laminar, mixed convection heat and mass
transfer boundary layer flow over a vertical surface embedded in a power-
law fluid saturated porous medium. Choose the two dimensional coordi-
nate system such that the X-axis is along the vertical plate and Y -axis

normal to the plate. The physical model and coordinate system are shown
in Fig (1). The plate is maintained at a constant temperature Tw and con-
centration Cw. The ambient temperature is T∞ and the concentration is
C∞. Applying the boundary layer assumption and Boussinesq approx-
imations, the governing equations are the mass, momentum, energy and
concentration equations which may be written as:

∂U

∂X
+
∂V

∂Y
= 0 (1)

nU
n−1 ∂U

∂Y
=

∂

∂Y

[
Kgρ∞
µ

(β∗T [T − T∞] + β∗C [C − C∞])

]
(2)

U
∂T

∂X
+ V

∂T

∂Y
=

∂

∂Y

[
α
∂T

∂Y
− 1

ρCp
qr

]
(3)

U
∂C

∂X
+ V

∂C

∂Y
= Dm

∂2C

∂Y
2 +

DmKT

Tm

∂2T

∂y2
(4)

where X and Y are the Cartesian coordinates, U and V are the ve-
locity components in the stream wise X and cross-stream Y directions,
respectively, β∗T represents the thermal expansion coefficient and β∗C rep-
resents the concentration coefficient, T indicates the temperature, C indi-
cates the concentration, K represents the permeability, KT indicates the
thermal diffusion ratio, α represents the thermal conductivity, Dm is the
mass diffusivity of the saturated porous medium, Tm is the mean fluid
temperature, Cp represents the specific heat capacity, qr is the compo-
nent of radiative heat flux, n is the index in the power-law variation of
viscosity. n < 1 for a pseudo-plastic fluid, n > 1 for a dilatant fluid and
n = 1 for a Newtonian fluid.

The boundary conditions are

V = 0, T = Tw, C = Cw at Y = 0 (5a)

U = U∞, T = T∞, C = C∞ as Y →∞ (5b)

The viscosity µ of the fluid is considered to be an inverse function
of temperature and it can be expressed as ( Lai and Kulacki (1990))

1

µ
=

1

µ∞
[1 + γ∗(T − T∞)] i.e

1

µ
= b(T − T e) (6)

where b = γ∗

µ∞
, T e − T∞ = − 1

δ
, µ∞ is the coefficient of viscosity and

both b, T e are constants and their values depend on the reference state
and the small parameter γ∗, reflecting a thermal property of the fluid.

Variable thermal conductivity α which appears in Eq.(3) in the non-
dimensional form Slattery (1972) can be written as

α = α0(1 + Tβ). (7)

where β is the thermal conductivity.
The quantity qr is the radiative heat flux which is simplified by using

the Rosseland diffusion approximation for an optically thick fluid. Thus

qr =
−4σ∗

3k∗
∂T

4

∂y
, (8)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the Rosseland
mean absorption coefficient.

Now, we introduce the following dimensionless variables:

X =
X

L
, Y =

Y

L
Pe

1
2 , U =

UL

α0Pe
, V =

V L

α0Pe
1
2

T (η) =
T − T∞
Tw − T∞

, C(η) =
C − C∞
Cw − C∞

 (9)
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In the view of the continuity Eq. (1) we introduce a stream function
ψ(X,Y ) as

U =
∂ψ

∂Y
, V = − ∂ψ

∂X
(10)

Substituting Eqs. (6) - (10) into Eqs. (2) - (4), leads to the following
momentum, energy and concentration equations

∆1 = n

(
∂ψ

∂Y

)n−1
∂2ψ

∂Y 2
− λn

(
∂T

∂Y
+B

∂C

∂Y

)(
1− T

θe

)
(11)

+
λn

θe
(T +BC)

(
∂T

∂Y

)
= 0,

∆2 =
∂ψ

∂Y

∂T

∂X
− ∂ψ

∂X

∂T

∂Y
−β

(
∂T

∂Y

)2

−
(

1 + Tβ +
4R

3

)
∂2T

∂Y 2
= 0,

(12)

∆3 =
∂ψ

∂Y

∂C

∂X
− ∂ψ

∂X

∂C

∂Y
− 1

Le

∂2C

∂Y 2
− Sr ∂

2C

∂Y 2
= 0. (13)

The prescribed boundary conditions Eq.5(a,b) become

∂ψ

∂X
= 0, T = 1, C = 1 at Y = 0

∂ψ

∂Y
= 1, T = 0, C = 0 at Y →∞,

 (14)

where the prime indicates differentiation with respect to η, Pe =

U∞L

α0
represents the Peclet number, R =

4σ∗T
3
∞

k∗k
represents thermal

radiation, B =
βc(Cw − C∞)

βT (Tw − T∞)
represents the Buoyancy ratio, Sr =

DmKT

Tmα0

(
Tw − T∞
Cw − C∞

)
represents the thermal diffusion, Le =

α0

Dm
in-

dicates the Lewis number, Ra =
L

α0

[
KgβT (Tw − T∞)

ν∞

]1/n
repre-

sents the generalized Rayleigh number, θe =
T e − T∞
Tw − T∞

indicates the

variable viscosity and λ =

(
Ra

Pe

)
indicates the mixed convection pa-

rameter.

3. APPLICATION OF LIE GROUP TRANSFORMATIONS

We introduce the one-parameter scaling group of transformations which
is a simplified form of Lie group transformation

Γ : X∗ = Xeεa1 , Y ∗ = Y eεa2 , ψ∗ = ψeεa3 , T ∗ = Teεa4 , C∗ = Ceεa5

(15)
Here ε 6= 0 is the parameter of the group and the a′is(I = 1, 2..., 5)

are arbitrary real numbers not all simultaneously zero. Equations (11)-
(13) along with the boundary conditions (14) do not alter under the group
of transformations in Eq.(15) if the ai’s satisfy the following relationship

na2 − na3 + a2 = a2 − 2a4 = a2 − a4 − a5 = a2 − a4 = a2 − a5;
a1 + a2 − a3 − a4 = 2a2 − 2a4 = 2a2 − a4;
a1 + a2 − a3 − a5 = 2a2 − a5 = 2a2 − a4;
a2 − a3 = 0; a4 = 0; a5 = 0


(16)

Solving the linear system Eq. (16), we have the following relationship
among the exponents:

a1 = 2a3; a2 = a3; a4 = 0; a5 = 0. (17)

The transformation Γ reduces to

X∗ = Xe2εa3 ; Y ∗ = Y eεa3 ; ψ∗ = ψeεa3 ; T ∗ = T ; C∗ = C.
(18)

Expanding Eq.(18) by Taylor series in powers of ε, and keeping
terms up to the first degree (neglecting higher power of ε), we obtain

X∗−X = 2εa3X; Y ∗−Y = εa3Y ; ψ∗−ψ = εa3ψ; T ∗ = T ; C∗ = C.
(19)

The characteristic equations are

dX

2Xa3
=

dY

Y a3
=

dψ

ψa3
=
dT

0
=
dC

0
. (20)

Solving the above characteristic equation, we have the following
similarity transformations,

ψ = X
1
2 S(η), η = Y X−

1
2 , T = T (η), C = C(η). (21)

Substituting Eq. (21) into Eqs. (11) - (13), we obtain the following
ordinary differential equations.

n(S′)
n−1

S′′ = λn
(
T ′ +BC′

)(θe − T
θe

)
− λn (T +BC)

T ′

θe
, (22)

β(T ′)2 +

(
1 + Tβ +

4

3
R

)
T ′′ +

1

2
ST ′ = 0, (23)

1

Le
C′′ + SrT ′′ +

1

2
SC′ = 0, (24)

The transformed boundary conditions Eq. (14) become

S(0) = 0, T (0) = 1, C(0) = 1 (25a)

S′(∞) = 1, T (∞) = 0, C(∞) = 0. (25b)

4. HEAT AND MASS TRANSFER COEFFICIENTS

The non-dimensional heat and mass transfer coefficients in terms of Nus-
selt number Nu and the Sherwood number Sh are respectively given by:

qw = −k
(
∂T

∂Y

)
Y=0

−4σ∗

3k∗

(
∂T

4

∂Y

)
Y=0

and qm = −D
(
∂C

∂Y

)
Y=0

(26)

The Nusselt number Nu =
qwX

k(Tw − T∞)
and Sherwood number

Sh =
qmX

D(Cw − C∞)
are given by

Nu

X1/2
= −

(
1 +

4R

3

)
T ′(0) and

Sh

X1/2
= −C′(0). (27)

5. RESULTS AND DISCUSSIONS

To solve the system of nonlinear Eqns. (22) - (24) along with the cor-
responding boundary conditions (25), we apply the Runge-Kutta fourth-
order method with a shooting technique, which has been implemented by
the many researchers ((Srinivasacharya et al. (2011) and Srinivasacharya
et al. (2012))) to solve boundary value problems. In order to validate
our code, we compare our obtained results with those of Chaoyang et al.
(1990) as a special case by taking Sr = R = B = β = 0, Le = 1.0,
and θe →∞ . Excellent agreement as presented in Tables.1 and Table.2
is obtained.

The results for the non-dimensional velocity, temperature and con-
centration have been computed and presented graphically in Figs.2-6 to
analyze the influence of variable viscosity (θe), thermal conductivity (β),
radiation (R) Soret parameter (Sr) and mixed convection parameter (λ).

Figure 2 displays the dimensionless velocity S′(η), temperature T (η)
and concentration C(η) distribution in the boundary layer for different
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Table 1 Comparison of Nusselt number for R = Sr = B = β = 0,
Le = 1.0, θe →∞

n = 0.5

λ (Chaoyang et al., 1990) Present results
0.0 0.5641 0.564190
0.5 0.8209 0.821704
1.0 0.9303 0.929635
4.0 1.3010 1.300685

Table 2 Comparison of Nusselt number for R = Sr = B = β = 0,
Le = 1.0, θe →∞

n = 1.5

λ (Chaoyang et al., 1990) Present results
0.0 0.5641 0.564190
0.5 0.6034 0.60339
1.0 0.6634 0.663375
4.0 1.0180 1.017582

values of the variable viscosity (θe) and power-law index n namely, shear
thinning, Newtonian and shear thickening fluids. Figure 2(a) illustrates
that velocity S′(η) enhances near the plate up to a certain value and then
reduces far away from the plate with increasing value of variable viscosity
for the three types of fluids. The reason for above behavior is that, for a
given fluid, when γ is fixed, smaller (θe) implies higher temperature dif-
ference between the wall and the ambient fluid. From Figs. 2(b) -2(c) we
observe that when the variable viscosity is increased there is a reduction
in the value of temperature and concentration for the three types of fluids.
The reason for this is enhancement in the obstruction of fluid motion to
enhance in temperature-dependent viscosity (θe).

The variation of thermal conductivity (β) and power-law index (n),
namely (n < 1, n = 1, n > 1) for fixed values of the other parameters on
dimensionless velocity S′(η), temperature T (η) and concentration C(η)
profiles in the boundary layer is displayed in Fig. 3. It is observed from
Fig. 3(a) that increase in the value of thermal conductivity reduces ve-
locity near the plate and enhances it far away from the plate for the three
types of fluids. Figure 3(b) shows that the temperature θ(η) is more pro-
nounced with increasing values of thermal conductivity for the three types
of fluids. It is observed that the rise of thermal conductivity results in an
increase in the thermal boundary layer thickness. From Fig. 3(c), it is
clear that enhancement in the value of thermal conductivity slightly de-
creases the concentration profile for the three types of fluids. The reason
is that molecular motion of the fluid reduces at a slower rate for larger
values of (β).

The effect of radiation parameter (R) and the power-law index (n)
namely, pseudo-plastic fluid, Newtonian, dilatant fluids in the boundary
layer is illustrated in Fig.4. Figure 4(a) indicates that an enhancement in
the radiation parameter, reduces the velocity S′(η) slightly near the plate
and enhances it far away from the plate for the three types of fluids. In
Fig. 4(b) temperature T (η) increases monotonically with enhancing val-
ues of the radiation parameter(R) for the three types of fluids. This is due
to fact that the slope of the temperature distribution near the surface in
the presence of (R) is always negative and thus heat is always transferred
from the surface. Moreover, Fig. 4(c) shows that for the three different
types of fluid concentration C(η) reduces slightly with increasing radia-
tion parameter (R).

Figure 5 represents the boundary layer for different values of the
Soret parameter (Sr) and power-law fluid index (n), and fixed values of
the other parameters. Figure 5(a) shows that the velocity f ′(η) enhances
with an enhancement in the Soret parameter (Sr) for the three variations

of fluids. Moreover, enhancement in the value of the Soret parameter
(Sr) results a slightly raised temperature T (η) of the fluid as shown in
Fig. 5(b). The influence of Soret parameter (Sr) on the concentration
profile C(η) is depicted in fig. 5(c). The profile enhancement with en-
hance in the value of (Sr) for the three variations of fluids. Figure 6
shows the variation of mixed convection parameter (λ) and power-law
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Fig. 2 Variation of (a) Velocity (b) Temperature and (c) Concentration
profiles with variable viscosity (θe).
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index n, respectively. From Fig. 6(a) enhancing the value of mixed con-
vection parameter (λ) continuously raises the velocity S′(η) for the three
variations of fluids. Figure 6(b) represents that the temperature T (η) in-
creases with decrease in the values of the mixed convection parameter
(λ) for three variations of fluids. Figure 6(c) depicts that the concentra-
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Fig. 3 Variation of (a) Velocity (b) Temperature and (c) Concentration
profiles with thermal conductivity (β).

tion C(η) decreases with an increase in the mixed convection parameter
(λ) for the three variations of fluids.

Table.3 shows the influence of heat and mass transfer for various
values of the power law index (n), variable viscosity (θe), thermal con-
ductivity (β), thermal radiation (R), Soret parameter (Sr) and mixed
convection parameter (λ) for fixed values of the other parameters. En-
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Fig. 4 Variation of (a) Velocity (b) Temperature and (c) Concentration
profiles with radiation parameter (R).
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hancing the value of the n reduces the heat and mass transfer rates. An
increase in the values of variable viscosity, radiation and mixed convec-
tion parameters raises both the heat and mass transfer rates. It is noticed
that an increase in the value of the thermal conductivity decreases the heat
transfer, but a reverse trend is observed in the mass transfer rate. Higher
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profiles with Soret parameter (Sr).
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Table 3 Values of heat and mass transfer rates at Le=1.0 and B=1.0 for
varying values of power-law index, temperature dependent vis-
cosity, variable thermal conductivity, radiation, Soret and mixed
convection parameters.

n θe β R Sr λ −T ′(0)

(
1 +

4R

3

)
−C′(0)

0.5 2.0 0.5 0.5 0.5 1.0 1.083878 0.898871
1.0 2.0 0.5 0.5 0.5 1.0 0.811355 0.665762
1.5 2.0 0.5 0.5 0.5 1.0 0.737721 0.603112
0.5 1.5 0.5 0.5 0.5 1.0 0.985773 0.810344
0.5 2.5 0.5 0.5 0.5 1.0 1.143469 0.952729
0.5 3.0 0.5 0.5 0.5 1.0 1.183445 0.988888
0.5 2.0 0.0 0.5 0.5 1.0 1.305338 0.849427
0.5 2.0 1.0 0.5 0.5 1.0 0.939365 0.928902
0.5 2.0 1.5 0.5 0.5 1.0 0.836542 0.948922
0.5 2.0 0.5 0.0 0.5 1.0 0.790250 0.854522
0.5 2.0 0.5 1.0 0.5 1.0 1.311348 0.925503
0.5 2.0 0.5 1.5 0.5 1.0 1.501126 0.943220
0.5 2.0 0.5 0.5 0.0 1.0 1.060429 1.028426
0.5 2.0 0.5 0.5 1.0 1.0 1.107032 0.768095
0.5 2.0 0.5 0.5 1.5 1.0 1.129908 0.636080
0.5 2.0 0.5 0.5 0.5 0.5 0.945030 0.780440
0.5 2.0 0.5 0.5 0.5 1.5 1.190563 0.989876
0.5 2.0 0.5 0.5 0.5 2.0 1.280580 1.066663

6. CONCLUSION

In the present paper, we have analyzed mixed convective flow, heat and
mass transfer over a vertical surface in a porous medium saturated with
power-law fluid. The numerical results were obtained for different values
of the power law index (n), variable viscosity (θe), variable thermal con-
ductivity (β), thermal radiation (R) and Soret parameter (Sr). The main
conclusions are as follows.

• The variable viscosity parameter (θe) affects the flow field, i.e. en-
hancement in values of the variable viscosity parameter increases
the velocity, heat and mass transfer rates, but decreases the temper-
ature and concentration profiles.

• The effect of variable thermal conductivity (β) decreases the ve-
locity, concentration and heat transfer rates, but enhances the tem-
perature and mass transfer rates.

• The effect of the radiation parameter (R) reduces the velocity and
concentration profiles, but enhances the temperature, heat and mass
transfer rates.

• An increasing value of the Soret parameter (Sr) decreases the tem-
perature and mass transfer rates, but monotonically increases the
velocity, concentration and heat transfer rates.

• The influence of the mixed convection parameter (λ) results in an
enhancement in velocity and heat transfer rates, but reduces the
temperature, concentration and mass transfer rates.
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