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ABSTRACT 

We examine the behavior of Cattaneo-Christov heat flux model for two-dimensional incompressible flow of Eyring Powell fluid passed over an 
exponentially stretching sheet. Mathematical formulation is performed by assuming boundary layer approximation. Cattaneo Christov heat flux 
model is applied to analyze the heat transport phenomenon. Thermal relaxation time is envisaged on the layer induced due to boundary. The 
governing Partial Differential equations are converted into Ordinary differential equations by the appropriate use of similarity transformation. 
Shooting approach is used to tackle the obtained boundary layer equations. The effects of obtained similarity parameters are plotted and discussed. 
Computation results reveal that fluid temperature is directly related with thermal relaxation. The comparison of results, in present situation, between 
Fourier's law of heat conduction and Cattaneo Christov heat flux model show that the temperature and the boundary layer (thermal) thickness are 
smaller in Cattaneo Christov model. 

Keywords: Cattaneo-Christov heat flux model, Exponentially stretching sheet, Eyring Powell fluid, Shooting method.  

 

                                                 
*Corresponding author. Email: bilalahmadgondal@yahoo.com 

1. INTRODUCTION 

In engineering and manufacturing point of view the Rheological fluids 
have got much importance due to its tremendous applications. Stress 
and deformation rate for such fluids are not related linearly. Examples 
involving Rheological fluids are aerodynamic extrusion of plastic 
sheets, the boundary layer along a liquid film and condensation process 
of metallic plate in a cooling bath and glass, pulps and also in polymer 
industries. 

Due to their miscellaneous major derivation from the Newtonian 
fluids, Rheological fluids cannot be studied by employing a single 
constitutive equation. Therefore the models of Rheological fluids 
studied by Wang and Tan (2008), Fetecau et al. (2010), Sajid and 
Hayat, (2008), Hayat et al. (2012) split into three groups that is 
differential, integral and rate types. The Eyring-Powell fluid model 
analyzed by Powell and Eyring (1944) has gained much importance due 
to its convinced rewards over the power law model and additionally due 
to this model the conduct of Newtonian fluid for less and high shear 
rates. It describes that the shear of non-Newtonian fluid can be obtained 
from rate procedure hypothesis. It portraits the conduct of polymer 
solutions and viscoelastic suspensions on a broad range of shear rates 
discussed by Eldabe et al. (2003). Hayat et al. (2012) investigated the 
behavior of Eyring-Powell fluid for two-dimensional flow when the 

surface is moving continuously. Islam et al. (2009) applies Homotopy 
perturbation technique on Eyring-Powell model with slider bearing 
lubricated. Patel and Timol (2009) analyze numerically the flow of 
Eyring-Powell model when it passes on a wedge. Crane (1822) in his 
research article started the work for obtaining exact solution of viscous 
flow over a sheet which is stretched linearly. After this milestone 
achievement by crane a lot of research has been done by considering 
different natures of fluid with different imposed conditions like 
blowing/suction, heat as well as mass transfer, magnetohydrodynamics, 
different stretching velocities of surface. 

The Fourier's (1822) heat conduction law is the main successfully 
implemented model for the depiction of heat transfer methods in a 
variety of applicable conditions. In spite of this reality it has a chief 
drawback that it gives a parabolic energy equation for the temperature 
field and for this reason it disagrees with the law of causality. Cattaneo 
(1948) in his well-known paper recommended a successful 
modification of Fourier's model by including an important aspect of 
thermal relaxation time. This special aspect for temperature field gives 
hyperbolic energy equation and it permits for the shipping of heat 
through the circulation of thermal waves which have finite speed. 
Christov (2009) replaced the time derivative in Maxwell-Cattaneo's 
model with the Oldroyd's upper-convected derivative in order to 
preserve the material-invariant formulation and this model is known as 

 
Frontiers in Heat and Mass Transfer 

 
Available at www.ThermalFluidsCentral.org  

*Corresponding author Email: bilalahmadgondal@yahoo.com 



Frontiers in Heat and Mass Transfer (FHMT), 8, 22 (2017)
DOI: 10.5098/hmt.8.22

Global Digital Central
ISSN: 2151-8629

  2

Cattaneo-Christov heat flux model. Ciarletta and Straughan (2010) 
established the uniqueness of the solutions for the Cattaneo-Christov 
equations. Straughan (2010) studied the Structural solidity and 
individuality of the Cattaneo-Christov. Recently Han et al. (2014) 
studied the behavior of slip flow and heat transfer in Maxwell fluid by 
considering Cattaneo-Christov model. The governing equations are 
solved analytically by means of HAM. They compare their result 
numerically by using finite difference method. 

The present paper is concerned with the analysis of Cattaneo 
Christov heat flux model on Eyring Powell fluid when it is passed on 
sheet which is stretched exponentially. The Rheological fluid flows on 
the sheets, which are stretched have been noticed and analyzed by many 
researchers. Aksoy et.al (2007) studies the stretching sheet solution of 
boundary layer equation of second grade fluid. Rashidi in (2010) 
applies differential transform method and Pade approximation method 
for MHD flow of thin elastic liquid films on horizontal stretching sheet. 
Wubshet Ibrahim (2016) studied MHD stagnation point flow of UCM 
fluid in the presence of nanofluid. Mahapatra et al. (2014) discussed the 
effect of MHD on indirect natural convection flow above a horizontal 
hot flat plate. In addition to stretching sheet an important feature of 
exponentially stretching sheets is useful in different fields like 
industries and engineering methods such as filament from a die, 
blowing of glass, continuous casting, cooling of an infinite metallic in 
cooling bath etc. Bidin and Nazar (2009) considered the exponential 
stretching surface to study the thermal radiation on laminar flow and 
heat transfer. Later on Sajid and Hayat (2010) derived the analytic 
solution of this problem. Mukhopadhyay and Gorla (2012) discussed 
the impact of partial slip on the over an exponentially stretching sheet. 
Bhattacharyya (2012) studied the mass transfer on boundary layer flow 
past on a sheet which is stretched exponentially. In (2013) Swati 
Mukhopadhyay discussed the exponentially stretching sheet which is 
embedded in thermal startified medium with MHD on boundary layer 
flow. In (2013) Jat and Gopi Chand analyzed the Viscous Dissipation 
and Radiation Effects of exponentially stretching sheet on MHD flow 
and heat transfer. Recently, Junaid et al. (2015) examined the effect of 
exponentially stretching sheet for viscoelastic flows by considering 
Cattaneo Christov heat flux model. The rare information about Eyring 
Powell fluid model leads us for this work. The considered model has 
upper hand on the other Rheological fluids because it is figured out 
from kinetic theory instead of the empirical relation. Additionally it 
shrinks the Newtonian conduct at low and high shear rate. Here we 
apply give the numerical technique for obtaining the solutions. Involved 
parameters are plotted and discussed. 
 

2. PROBLEM FORMULATION 

Let us suppose a time independent two dimensional incompressible 
flow of Eyring Powell fluid on a flexible surface placed at 0y . The 
surface is stretched exponentially with velocity Lx

w eUxU /
0)(  . A heat 

source LAx
w eTTT 2/

0  which is non uniform in nature is applied. 

0T denotes the heating/cooling reference temperature. The stress tensor 
in an Eyring-Powell fluid model is 
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where     is the viscosity coefficient,  and C are the 
characteristics of Eyring-Powell model. By using  
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And refer to the boundary layer approximation, the governing equations 
for the two dimensional flow and heat exchange phenomenon of 
Eyring-Powell fluid by keeping density as constant are 

0







y

v

x

u
                                                                                    (2) 

2

22

32

2

2

11

y

u

y

u

Cy

u

Cy

u
v

x

u
u





































                 (3) 

q
y

T
v

x

T
uc p 















)(                           (4) 

where u and v  represents components of velocity along  
x and y directions respectively,  / denotes the kinematic 

viscosity. T and T   represents fluid temperature and temperature at 
infinity. pc is the specific heat q represents fluid temperature heat flux 
respectively, which obeys the given relationship. 
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where the parameter     denotes the relaxation time for heat flux,  k   
and V represents the thermal conductivity and velocity vector 
respectively. Simplifying Eqs (4) and (5) to get rid of q  we get  
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where )/( pck     is the thermal diffusivity and     is relaxation time 
for heat flux. The boundary conditions will be 
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where A  is the temperature exponent. Using the similarity 
transformations  
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equation )2( is satisfied and eqs. )7()3(  take the following forms 
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where     and     are the characteristic parameters of Eyring Powell 
fluid model,     is the relaxation time and  Pr   is the Prandtl number 
and is defined as  
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Expression for skin friction and coefficient  fC   and local Nusselt 
number  xNu   are 
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where  /Re /
0 LeU Lx

x    is the local Reynolds number. 
 

3. NUMERICAL SOLUTION 

In this section we present the numerical procedure to solve the coupled 
nonlinear ordinary differential equations (9) and (10) together with the 
boundary conditions (11) by incorporating shooting 
algorithm ( RK ).4 For this reason we transform higher order nonlinear 

ordinary differential equation into system of first order ordinary 
differential equation by means of the transformation   
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Additionally, appropriate values of unknown initial conditions are 
predicted iteratively by Newton method such that solution satisfy 
boundary conditions at infinity with error less than  .10 6   
 

4. RESULTS AND DISCUSSION 

Physical behaviors of embedded parameters are discussed in this 
section. Fig1 depicts the effect of   (fluid material parameter) on the 
hydrodynamic boundary layer. It is clear from fig1 that an increase in 
 results decrease in fluid viscosity. Hence the velocity of fluid 
increases due to decreasing viscosity. As the velocity profiles are 
moving away from the stretching wall when     increases which clears 
that the boundary layer thickness decreases and hence it is inversely 
related to . Fig 2 shows the effect of  on velocity profile. It is clear 
from the fig that increase in delta results an increase in viscosity and 
hence velocity decreases. Fig 3 shows the behavior of Pr (Prandtl 
number) on thermal boundary layer is studied in the presence and 
absence of    . It can be easily justified from fig 2 that the temperature 
as well as boundary layer thickness decreases in both the situations with 
increasing  Pr  . Importantly the deviation in     is equal in amount in 

Fourier and the considered Cattaneo Christov heat flux models. Also 
the thermal boundary layer seems to be thinner when Pr   increases. 
This thinner boundary layer (thermal) gives temperature profile to be 
steeper which point toward the bigger wall slope of temperature 
function. The visualization of Fig  4  indicates the action of  A   on the 
temperature profile. A nice-looking fact that the temperature   after 
considering negative A moves first towards the highest range and then 
falls down exponentially to zero when     is augmented which results 
reverse heat flux adjacent to the surface. When A increases in 
positive/negative direction we observe a spiky increase in wall slope of 
temperature function. In Fig 5 the effect of epsilon on thermal boundary 
layer is viewed with and without the consideration of thermal relaxation 
time. Stronger viscous forces associated with larger epsilon. Fig 6 
shows the effects of  on the temperature distribution. We get the 
result that temperature     is related inversely with .  Moreover 
temperature     moves toward the free stream condition at shorter 
distance above the surface for larger . Fig 7 and 9 represents the 
contour plot for the flow pattern for 5.0 and 0.1 respectively. 
Fig 8 and 10 represents the 3D plot of streams lines for 5.0 and 

0.1 respectively. 
Table 1 depicts the numerical values of skin friction coefficient 

and wall temperature gradient for different values of parameters. It is 
noticed from the table that skin friction and wall temperature increases 
as the values of characteristic parameter     increase and there is no 
change in both the while increasing .  Moreover there is no change in 
skin friction coefficient while the wall temperature coefficient 
decreases when thermal relaxation time     is increased. The wall 
temperature coefficient decreases when Parndtl number and 
temperature exponent  A   is incremented where as slight/no change is 
observed against ).0(f   
 

 
Fig. 1 Effect of   on ).(' f  

 
 

 
Fig. 2 Effect of   on ).(' f  
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Fig. 3 Effect of Pr on )(  

 

 
Fig. 4 Effect of A on )(  

 

 
Fig. 5 Effect of  on )(  

 
Fig. 6 Effect of  on )(  

 
Fig. 7 Contour plot of Stream lines for 5.0  

 

 
Fig. 8 3D plot of Stream lines for 5.0  

 

 
Fig. 9 Contour plot of Stream lines for 0.1  
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Fig. 10 3D plot of Stream lines for 0.1  

 
Table 1 Depicts results of skin friction )0(f   and wall temperature 
gradient )0(  for different values of parameters. 

1.36642-1.733241.5

1.04976-1.733240.5

0.324314-1.733240.5-

0.7434061.733231.5-0.51.00.50.5

0.743406-1.733230.8

0.743406-1.733230.6

0.743406-1.733230.4

0.743406-1.733231.5-0.51.00.50.2

1.25819-1.733230.2

1.02065-1.733235.1

0.743406-1.733230.1

0.363801-1.733241.5-5.00.55.00.5

0.934266-1.733248.0

0.805835-1.733240.6

0.682238-1.733244.0

0.563859-1.733241.5-2.00.10.50.5

0.735613-1.707578.0

0.74094-1.725146.0

0.745766-1.740984.0 

0.750218-1.755601.5-5.01.00.20.5

)0()0(Pr   fA

 
 

5. CONCLUDING REMARKS 

We have investigated the characteristics of boundary layer flow of 
Eyring Powell fluid on the surface which is stretching exponentially. 
Cattaneo Christov model for heat flux is imposed to disclose the heat 
transfer characteristics of variable thermal conductivity of viscoelastic 
fluid. The main observations are summarized as follows: 
 Hydrodynamic boundary layer shows opposite behavior for both 

fluid parameters     and    . 
 Temperature and thermal boundary layer thickness are increasing 

functions of relaxation time    . 
 For negative temperature exponent an attractive phenomenon 

named as Sparrow Gregg Hills is observed for temperature 

division. 
 Parameters behavior shows that temperature distribution is lower 

in Cattaneo Christov heat flux model as compared to Fourier law 
of heat conduction. 

 

NOMENCLATURE 

   Kinematic viscosity )/(   
  Thermal diffusivity
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