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ABSTRACT 

In the present study, consider an influence of chemical reaction on an unsteady MHD free convective, viscous dissipative Casson fluid flow over a 
vertically inclined plate in presence of magnetic field, heat and mass transfer.  The modeling equations are converted to dimensionless equations, 
then solved through finite element technique.  Computations were performed to analyze the behavior of fluid velocity, temperature, concentration and 
induced magnetic field on the inclined vertical plate with the variation of emerging physical parameters. Compared the present results with earlier 
reported studies for correctness and applicability of finite element technique. This model may be useful in view of lab experimental results for 
correctness and applicability and useful to analyze the fluid behavior in thermal engineering industries with the influence of the thermal, magnetic 
and chemical reaction effects etc. 
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1. INTRODUCTION 

Non-Newtonian fluid theory is a part of fluid mechanics based on the 
continuum theory that a fluid particle may be considered as continuous 
in a structure. One of the non-newtonian fluids is a Pseudo plastic time 
independent fluid whose behaviour is that Viscosity decreases with 
increasing velocity gradient e.g. blood, polymer solutions, etc. Casson 
fluid is one of the pseudoplastic fluids that means shear thinning fluids 
(Casson, 1959). At low shear rates the shear thinning fluid is more 
viscous than the Newtonian fluid, and at high shear rates it is less 
viscous. So, MHD flow with Casson fluid is recently well-known. 
Harinath Reddy et al. (2016) studied the influence of radiation 
absorption and chemical reaction on unsteady magnetohydrodynamic 
free convective heat and mass transfer Casson fluid past an oscillating 
vertical plate embedded in a porous medium in the presence of constant 
wall temperature and concentration flow using finite difference method. 
Venkateswarlu and Satya Narayana (2016) studied the combined effect 
of Soret and Dufour on MHD flow of a Casson fluid past a stretching 
sheet in the presence of viscous dissipation, chemical reaction and 
variable thermal conductivity using shooting method. Rammohan 
Reddy et al. (2016) found the analytical solutions of MHD convective 
flow of a incompressible, viscoelastic, radiative, chemically reactive, 
electrically conducting and rotating fluid through a porous medium 
filled in a vertical channel in the presence of thermal diffusion using 
perturbation technique. Bhattacharyya (2013) found the numerical 
solutions of steady boundary layer stagnation-point flow of Casson 
fluid and heat transfer towards a shrinking/stretching sheet using very 
efficient shooting method. Mustafa and Khan (2015) investigated 
magnetic field effects on Casson nanofluid over nonlinearly stretching 
sheet. Nadeem et al. (2014) analyzed the steady stagnation point flow 

of a non-Newtonian fluid (Casson model) towards a stretching surface 
with heat transfer and Nano particles. Nadeem et al. (2013) explored 
three dimensional electrically conducting boundary layer flow of 
Casson fluid over stretching sheet saturated in a porous medium. Khalid 
et al. (2015) investigated the effects of magnetic field on free 
convection flow of Casson fluid over oscillating plate embedded in 
porous medium. Sharadha and Shankar (2015) studied boundary layer 
flow of Casson fluid over exponentially stretching sheet.  

In the boundary layer, the influence of thermal radiation is relevant 
in many engineering problems because of its applications especially in 
high temperature engineering processes. The effect of heat radiation is 
important in controlling the quality of the final product as it affects the 
rate cooling. Due to the above fact, some of the authors have studied the 
effect of thermal radiation in their works, viz., Pal et al. (2013), 
Mukhopadhyay et al. (2011), Akbar et al. (2013), Bhattacharyya and 
his co-workers (2013) and (2012), Rashidi et al. (2014), Su et al. 
(2012). Ahmed and Mahdy (2016) deliberated the 
magnetohydrodynamic rotating flow of a laminar incompressible 
viscous electrically conducting fluid in the stagnation region of an 
impulsively rotating sphere in the presence of thermal radiation, heat 
and mass transfer effects. Prakash et al. (2014) studied the combined 
effects of induced magnetic field and radiation on MHD heat and mass 
transfer flow of viscous, incompressible, Newtonian fluid over a porous 
vertical plate in the presence of viscous and magnetic dissipation using 
perturbation technique. Raptis et al. (2003) studied the effect of 
radiation in an optically thin gray gas flowing past a vertical infinite 
plate in the presence of a magnetic field. Ahmed (2010) found the 
analytical solutions of induced magnetic field with radiating fluid over 
a porous vertical plate using Perturbation technique.  

Therefore this work can be considered as extension of Prakash et 
al. (2014). So Novelty of this paper is discussion of numerical solutions 
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using finite element technique of the unsteady natural convective 
Casson fluid flow past over an vertically inclined plate in the presence 
of a thermal radiation, chemical reaction, magnetic and viscous 
dissipations with induced magnetic field. Also, the study of grid 
independence of finite element technique is discussed through tabular 
form. The behaviors of different pertinent parameters on velocity, 
induced magnetic field, temperature and concentration profiles as well 
as Skin-friction, Rate of heat and mass transfer coefficients is discussed 
in detail. 

 
Fig. 1 Coordinate system and physical configuration 

2. MATHEMATICAL FORMULATION 

In this problem, we consider the effects of magnetic and viscous 
dissipation on steady two-dimensional magnetohydrodynamic mixed 
convective Casson fluid flow of a non-Newtonian and viscous 
incompressible radiative fluid over a vertical plate with induced 
magnetic field and heat and mass transfer. The coordinate system and 
the physical model of the problem are shown in Fig. 1.  
For this present research work, we made the following assumptions: 

i). In the fluid region, the plate is taken along x axis in 

vertically upward direction and y axis is normal to it.  

ii). It is assumed that the wall is preserved at an unvarying 

temperature wT   and concentration wC  higher than the 

ambient temperature T  and concentration C  respectively.  

iii). A uniform magnetic field of strength oB  is assumed to be 

applied normal to the direction of flow. 
iv). The magnetic Reynolds number of the flow is not taken to be 

small and hence the induced magnetic field is not 
insignificant. 

v). The thermal diffusion and diffusion thermo effects are 
neglected due to the concentration of the diffusing species is 
assumed to be very small in comparison with the other 
chemical species. 

vi). All the fluid properties are assumed to be constant except the 
effect of the pressure gradient in the body force term. 

vii). There is a first order chemical reaction between the diffusing 
species and the fluid. 

viii). Since the flow is assumed to be in the direction of x axis, 
therefore all the physical quantities are functions of space 

coordinates in y only. 

ix). Consider viscous dissipation in the energy equation. 
The rheological equation of state for the Cauchy stress tensor of Casson 
fluid (Dash et al. (1996)) is written as  

*
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where  is shear stress, 0 is Casson yield stress,   is dynamic 

viscosity, *  is shear rate, ijijee and ije  is the   thji,  component 

of deformation rate,   is the product based on the non-Newtonian 

fluid, c  is a critical value of this product, B  is plastic dynamic 

viscosity of the non-Newtonian fluid, 

 

 2B

yp                                                                (3) 

denote the yield stress of fluid.  
Some fluids require a gradually increasing shear stress to maintain a 
constant strain rate and are called Rheopectic, in the case of Casson 
fluid  (Non-Newtonian) flow where c   
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Substituting Eq. (3) into Eq. (4), then, the kinematic viscosity can be 
written as 
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Finally   is the Casson fluid parameter and as  , the governing 
equations of the Casson fluid model (  ) given by Eqs. (8)-(11) 
become the governing equations of the Newtonian fluid model 
(  ).  
Then under usual Boussinesq’s approximation along with the 
assumptions considered to the flow, the fundamental governing partial 
differential equations that illustrate the physical situation are given by 
Equation of Conservation of Electric Charge: 

0 J  where  zyx JJJJ ,,                                          (6) 

Gauss Law of Magnetism: 
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Equation of Conservation of Energy: 
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Equation of Conservation of Magnetic Induction: 
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Species Diffusion Equation: 
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subject to the appropriate boundary conditions (Prakash et al. 2014) 
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In case of an optically thin gray gas, the expression for local radiant 
(Prakash et al. 2014) is given by 
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It is assumed that the temperature differences within the flow are 

sufficiently small and that 4T   may be expressed as a linear function of 

the temperature. This is obtained by expanding 4T   in a Taylor series 
about T and neglecting the higher order terms, thus we get (Prakash et 

al. 2014) 
434 34   TTTT                                                                           (14) 

Using the following non-dimensional quantities (15)  

   

e
op

oo

w

oo

w

o

oe

wwo

xo

o

m
xU

D
Sc

C

VU

CCg
Gm

VU

TTg
Gr

V

B
M

CC

CC

TT

TT

U

H
B

Vy
y

U

u
u























































Pr,Re,,Pr

,,,

,,,,,

22
        (15) 

and with the help of Eqs. (13) and (14), the governing Eqs. (8)-(11) 
reduce to  
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with associated initial and boundary conditions 
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All the symbols are defined in nomenclature. The mathematical 
statement of the problem is now complete and embodies the solution of 
Eqs. (16), (17), (18) and (19) subject to boundary conditions (20). For 
practical engineering applications and the design of chemical 
engineering systems, the local skin-friction, Nusselt number and 
Sherwood number are important physical parameters for this type of 
boundary layer flow. The Skin-friction at the plate, which in the non-
dimensional form is given by  
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The  rate  of  heat  transfer  coefficient,  which  in  the  non-dimensional  
form  in  terms  of  the Nusselt number is given by 
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The  rate  of  mass  transfer  coefficient,  which  in  the  non-
dimensional  form  in  terms  of  the Sherwood number, is given by 
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3. NUMERICAL SOLUTIONS BY FEM 

3. 1. Finite Element Method (FEM): The finite element method 
(FEM) is a numerical and computer based technique of solving a 
variety of practical engineering problems that arise in different fields 
such as, in heat transfer, fluid mechanics (Srinivasa Raju et al. 2015; 
Bhargava and Rana, 2011; Sheri and Raju, 2015, Sheri and Raju , 2016, 
Sivaiah and Raju, 2013; Srinivasa Raju et al. 2016), chemical 
processing (Lin and Lo, 2003)), rigid body dynamics (Dettmer and 
Peric, 2006), solid mechanics (Hansbo and Hansbo, 2003), and many 
other fields. It is recognized by developers and users as one of the most 
powerful numerical analysis tools ever devised to analyze complex 
problems of engineering. The sophistication of the method, its 
accuracy, simplicity, and computability all make it a widely used tool in 
the engineering modeling and design process. It has been applied to a 
number of physical problems, where the governing differential 
equations are solved by transforming them into a matrix equation. The 
primary feature of FEM is its ability to describe the geometry or the 
media of the problem being analyzed with great flexibility. This is 
because the discretization of the domain of the problem is performed 
using highly flexible uniform or non uniform patches or elements that 
can easily describe complex shapes. The method essentially consists,  
assuming the piecewise continuous function for the solution and 
obtaining the parameters of the functions in a manner that reduces the 
error in the solution. An excellent description of finite element 
formulations is available in Bathe (1996) and Reddy (1985). The steps 
involved in the finite element analysis areas follows. 

 

3. 1. 1. Discretization of the Domain: The basic concept of the FEM is 
to divide the domain or region of the problem into small connected 
patches, called finite elements. The collection of elements is called the 
finite element mesh. These finite elements are connected in a non 
overlapping manner, such that they completely cover the entire space of 
the problem. 

 

3. 1. 2. Generation of the Element Equations: 
 A typical element is isolated from the mesh and the 

variational formulation of the given problem is constructed 
over the typical element. 

 Over an element, an approximate solution of the variational 
problem is supposed, and by substituting this in the system, 
the element equations are generated. 

 The element matrix, which is also known as stiffness 
matrix, is constructed by using the element interpolation 
functions. 

These steps result in a matrix equation of the form     eee FuK   
which defines the finite element model of the original equation. 
 

3. 1. 3. Assembly of the Element Equations: The algebraic equations 
so obtained are assembled by imposing the inter element continuity 
conditions. This yields a large number of algebraic equations known as 
the global finite element model, which governs the whole domain. 
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3. 1. 4. Imposition of the Boundary Conditions: On the assembled 
equations, the Dirichlet's and Neumann boundary conditions (20) are 
imposed. 
 3. 1. 5. Solution of Assembled Equations: The assembled equations 
so obtained can be solved by any of the numerical techniques, namely, 
Gauss elimination method, LU decomposition method, and the final 
matrix equation can be solved by a direct or indirect (iterative) method. 
For computational purposes, the coordinate y is varied from 0 to                      
ymax = 9, where ymax represents infinity .,.ei external to the momentum, 

energy and concentration boundary layers. The whole domain is 
divided into a set of 90 line segments of equal width 0.1, each element 
being two-noded. 
 
3.2 Variational formulation: 
The variational formulation associated with Eqs. (16)-(19) over a 
typical two-noded linear element  1, ee yy  is given by 
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Where ,1w ,2w 43, ww  are arbitrary test functions and may be 

viewed as the variation in  and ,, Bu  respectively. After reducing 

the order of integration and non-linearity, we arrive at the following 
system of equations  
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3.3 Finite Element formulation: 
The finite element model may be obtained from Eqs. (28)-(31) by 
substituting finite element approximations of the form: 

e
j

j

e
juu 




2

1

  , ,
2

1

e
j

j

e
j 


  ,

2

1

e
j

j

e
jBB 


 ,

2

1

e
j

j

e
j 




       

  (32) 

With )2,1(4321  iwwww e
i  where e

ju , e
j , e

jB and 

e
j are the Velocity, temperature, induced magnetic field and 

concentration respectively at the thj  node of typical the  element 

 1, ee yy  and e
i are the shape functions for this element 

 1, ee yy  and are taken as: 

ee

ee

yy

yy









1

1
1  and ,

1
2

ee

ee

yy

yy







 1 ee yyy                      (33) 

The finite element model of the equations for the  element thus formed 
is given by  
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In one - dimensional space, linear element, quadratic element, or 
element of higher order can be taken. The whole domain is divided into 
a set of 90 intervals of equal length 0.1. At each node 4 functions are to 
be evaluated. Hence after assembly of the elements we obtain a set of 
364 equations which are nonlinear. Therefore, an iterative scheme must 
be utilized in the solution. After imposing the boundary conditions, a 
system of equations has been obtained which is solved by the Gauss 
elimination method while maintaining an accuracy of 0.00005. A 
convergence criterion based on the relative difference between the 
current and previous iterations is employed. When these differences 
satisfy the desired accuracy, the solution is assumed to have been 
converged and iterative process is terminated. The Gaussian quadrature 
is implemented for solving the integrations. The code of the algorithm 
has been executed in MATLAB running on a PC. Excellent 
convergence was achieved for all the results. 
 

4. STUDY OF GRID INDEPENDENCE OF FINITE 
ELEMENT METHOD 

In general, to study the grid independency/dependency, the mesh size 
should be varied in order to check the solution at different mesh (grid) 

sizes and get a range at which there is no variation in the solution. The 
numerical values of velocity (u), Induced magnetic field (B), 
temperature (θ) and concentration (ϕ) for different values of mesh (grid) 
size are shown in table 1. From this table, the authors observed that, 
there is no variation in the values of velocity (u), Induced magnetic 
field (B), temperature (θ) and concentration (ϕ) for different values of 
mesh (grid) size. Hence, it is concluded that the results are independent 
of mesh (grid) size. 
 

Table-1. The numerical values of u, B, θ and ϕ  
for variation of mesh sizes  

 

Mesh (Grid) Size  = 0.0001 
u B θ ϕ 

0.0000000 0.0000000 1.0000000 1.0000000 
8.4460812 - 0.2041255 0.5721116 0.4081449 
5.9442046 - 0.1491618 0.2910177 0.1737355 
3.5963027 - 0.0830346 0.1394854 0.0760272 
2.2666039 - 0.0416294 0.0645083 0.0337616 
1.5977422 - 0.0197623 0.0290949 0.0150684 
1.2759373 - 0.0090444 0.0128627 0.0067062 
1.1238416 - 0.0039951 0.0055456 0.0029605 
1.0519732 - 0.0016569 0.0022434 0.0012739 

Mesh (Grid) Size  = 0.001 
u B θ ϕ 

0.0000000 0.0000000 1.0000000 1.0000000 
8.4462466 - 0.2040831 0.5722164 0.4081766 
5.9444105 - 0.1491182 0.2911392 0.1737549 
3.5965049 - 0.0829936 0.1395977 0.0760351 
2.2667601 - 0.0415915 0.0645761 0.0337687 
1.5978651 - 0.0197309 0.0291499 0.0150639 
1.2760032 - 0.0090361 0.0128930 0.0067006 
1.1238863 - 0.0039974 0.0055546 0.0029542 
1.0519907 - 0.0016433 0.0022529 0.0012715 

Mesh (Grid) Size  = 0.01 
u B θ ϕ 

0.0000000 0.0000000 1.0000000 1.00000000 
8.4464122 - 0.2040415 0.5723041 0.4081969 
5.9446244 - 0.1490713 0.2912565 0.1737774 
3.5966984 - 0.0829564 0.1396849 0.0760499 
2.2669106 - 0.0415682 0.0646439 0.0337636 
1.5979718 - 0.0197191 0.0291948 0.0150650 
1.2760849 - 0.0090278 0.0129119 0.0067019 
1.1239364 - 0.0039836 0.0055744 0.0029546 
1.0520188 - 0.0016424 0.0022639 0.0012772 

 

5. CODE VALIDATION 

For program code validation, the author compared the present 
numerical results with analytical results of Prakash et al. (2014), Raptis 
et al. (2003) and Ahmed (2010) in tables 2, 3 and 4 respectively which 
are available in literature. From these tables, the author observed that 
the results are in good agreement with their study. 
 

Table-2: Comparison between the present Velocity, Induced magnetic 
field and Temperature results with the results of 

Prakash et al. (2014) for Prm << M. 
 

y 
Results of Prakash et al. (2014) Present numerical results 

u B θ u B θ 
M = 0.5 M = 0.5 R = 0.5 M = 0.5 M = 0.5 R = 0.5 

0 0.0000 0.0000 1.0000 0.00000 0.00000 1.00000 
2 3.4360 - 0.2078 0.1961 3.43596 - 0.20782 0.19613 
4 1.8516 - 0.3093 0.0384 1.85163 - 0.30933 0.03841 
6 1.2335 - 0.2961 0.0075 1.23354 - 0.29610 0.00756 
8 1.0591 - 0.2537 0.0015 1.05917 - 0.25377 0.00150 
10 1.0146 - 0.2105 0.0003 1.01460 - 0.21059 0.00033 
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Table-3: Comparison between the present velocity results with the 
velocity results of Prakash et al. (2014), Raptis et al. (2003) and  

Ahmed (2010) for Prm = 0.1 < M = 0.25, Gr = 5.0, 
 γ = 0.0, ψ = 0.0 and Gc = 0.0. 

 

y 

Results of 
Raptis et al. 

(2003) 

Results of 
Prakash et 
al. (2014) 

Results of 
Ahmed (2010) 

Present velocity 
results 

R = 0.1 R = 0.1 R = 0.1 R = 0.1 
0 0.00000 0.0000 0.00000 0.00000000 
2 3.39344 3.2584 3.35839 3.40218974 
4 1.88766 1.8523 1.85232 1.88624982 
6 1.24757 1.2406 1.24063 1.25430981 
8 1.06255 1.0613 1.06134 1.07639412 
10 1.01511 1.0149 1.01492 1.01569247 
 
 

Table-4: Comparison between the present Induced magnetic field 
results with the results of Prakash et al. (2014), Raptis et al. (2003) and 

Ahmed (2010) for Prm = 0.1 < M = 0.25, Gr = 5.0, γ = 0.0, ψ = 0.0 
and Gc = 0.0. 

 

y 

Results of 
Raptis et al. 

(2003) 

Results of 
Prakash et 
al. (2014) 

Results of 
Ahmed (2010) 

Present Induced 
Magnetic field 

results 
R = 0.1 R = 0.1 R = 0.1 R = 0.1 

0 0.00000 0.00000 0.00000 0.00000000 
2 - 0.09437 - 0.0875 - 0.08750 - 0.08842195 
4 - 0.14786 - 0.1388 - 0.13880 - 0.13995418 
6 - 0.14358 - 0.1354 - 0.13538 - 0.13695178 
8 - 0.12354 - 0.1167 - 0.11669 - 0.12615484 
10 - 0.10263 - 0.0970 - 0.09699 - 0.01245862 

 

6. RESULTS AND DISCUSSION 

 
Fig. 2 Influence of Gr on velocity profiles 

 
     Numerical solutions of non-linear coupled partial differential 
equations (16)-(19) under boundary conditions (20) are obtained 
through finite element Galerkin technique for fluid velocity, 
temperature, concentration and induced magnetic field. The behaviour 
of the fluid  (i. e., fluid velocity, temperature, induced magnetic field 
and concentration) was analyzed and also Skin-friction, Nusselt number 
and Sherwood number with various physical parameters at y = 1.0 
through the Figs. (2)-(20). In this study the boundary condition for                       
y → ∞ is replaced by ymax = 9 is a sufficiently large value of y, where 

the velocity, induced magnetic field, temperature and concentration 
profiles can be approached to the relevant free stream velocity. The 
variation of numerical values of thermal Grashof number or Grashof 
number for heat transfer (Gr) on velocity profiles at the boundary layer 
is as shown in the Fig. 2. It is observed that an increase in Gr leads to 
increase in the fluid velocity due to enhancement in buoyancy force. 
Here, the positive values of Gr correspond to cooling of the plate. In 
addition, it is observed that the velocity increases sharply near the wall 
as Gr increases and then decays to the free stream value.  

 

 
Fig. 3 Influence of Gc on velocity profiles 

 

 
Fig. 4 Influence of M on velocity profiles 

 

Fig. 3 shows the influence of Grashof number for mass transfer (Gc) on 
the velocity profile at the boundary layer. The velocity distribution 
attains a distinctive maximum value in the vicinity of the plate and then 
decreases properly to approach a free stream value. As expected, the 
fluid velocity increases and the peak value becomes more distinctive 
due to increase in the buoyancy force represented by Gc. The effect of 
the Hartmann number (or) Magnetic field parameter is shown in Fig. 4. 
It is observed that the velocity of the fluid decreases with the increase 
of the magnetic field parameter values. The decrease in the velocity as 
the Magnetic field parameter increases is because the presence of a 
magnetic field in an electrically conducting fluid introduces a force 
called the Lorentz force, which acts against the flow if the magnetic 
field is applied in the normal direction, as in the present study. This 
resistive force slows down the fluid velocity component.  Figs. 5 and 6 
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show the behaviour of fluid velocity and fluid temperature respectively 
with an influence of Prandtl number. Fluid velocity and temperature 
decreases as increasing of Prandtl number due to enhancement of the 
thermal conductivity. Since Prandtl number is the ratio of momentum 
diffusivity to thermal conductivity. For small Prandtl number, thermal 
conductivity is high and momentum diffusivity is low, because of that 
fluid viscosity is low. Therefore reduce the heat transfer for small 
Prandtl number. 

 
Fig. 5 Influence of Pr on velocity profiles 

 
Fig. 6 Influence of Pr on temperature profiles 

 
Figures 7 and 8 show that, influence of Schmidt number (Sc) on 

velocity profile and temperature profile. It is observed that, Schmidt 
number (Sc) is in the concentration and it is coupled in the momentum 
equation. Increasing of Schmidt number (Sc) the momentum boundary 
layer thickness is increasing as well as fluid velocity and fluid 
concentration is decreasing in the entire boundary of the region. The 
effect of the viscous dissipation parameter i.e., the Eckert number Ec on 
the velocity and temperature are shown in Figs. 9 and 10 respectively. 
The Eckert number Ec expresses the relationship between the kinetic 
energy in the flow and the enthalpy. It embodies the conversion of 
kinetic energy into internal energy by work done against the viscous 
fluid stresses. Greater viscous dissipative heat causes a rise in the 
temperature, as well as the velocity and cross flow velocity. This 
behaviour is evident from Figs. 9 and 10. 

 
Fig. 7 Influence of Sc on velocity profiles 

 
Fig. 8 Influence of Sc on concentration profiles 

 
Fig. 9 Influence of Ec on velocity profiles 

 

Figs. 11 and 12 show the influence of magnetic Prandtl number 
Prm on the velocity of fluid and temperature of fluid. Both fluid 
velocity and temperature decrease as increasing of magnetic Prandtl 
number Prm. The effects of the thermal radiation parameter R on the 
velocity and temperature profiles in the boundary layer are illustrated in 
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Figs. 13 and 14 respectively. Increasing the thermal radiation parameter 
produces significant increase in the thermal condition of the fluid and 
its thermal boundary layer. This increase in the fluid temperature 
induces more flow in the boundary layer causing the velocity of the 
fluid there to increase. As expected, the presence of the chemical 
reaction significantly affects the concentration profiles as well as the 
velocity profiles from Figs. 15 and 16. It should be mentioned that the 
studied case is both for destructive and generative chemical reaction. In 
fact, as chemical reaction increases, the considerable reduction in the 
velocity profiles is predicted, and the presence of the peak indicates that 
the maximum value of the velocity occurs in the body of the fluid close 
to the surface but not at the surface. Also, with an increase in the 
chemical reaction parameter, the concentration decreases. It is evident 
that the increase in the chemical reaction significantly alters the 
concentration boundary layer thickness but does not alter the 
momentum boundary layers. 

 
Fig. 10 Influence of Ec on temperature profiles 

 
Fig. 11 Influence of Prm on velocity profiles 

 

Fig. 17 shows the fluid velocity with an influence of Casson fluid 
parameter. With an increasing Casson parameter, the fluid velocity 
decreases in the entire boundary region. Since fluid viscosity will be 
high with increase of Casson parameter, momentum boundary layer 
thickness decreases. An influence of angle of inclination of the plate on 
the velocity profile is shown in the Fig. 18. It is observed that fluid 
velocity decreases with increasing inclination parameter (ψ). The 
response of induced magnetic field to Hartmann number is shown in the 

Fig. 19 for weak buoyancy and airflow. Clearly, as Hartmann number 
increases, the induced magnetic field reduces. The effect of magnetic 
Prandtl number Prm on the induced magnetic field is presented in the 
Fig. 20. In this figure magnetic Prandtl number Prm is set as less than 
unity, which implies that the magnetic diffusion rate exceeds the 
viscous diffusion rate. As such Prm increases, momentum diffusivity 
will increase. Therefore, Prm increases from 0.2 to 1.5, the induced 
magnetic field is found to increase absolutely in the boundary 
layer 60  y , but this trend is opposite for the region 96  y . 

Greater flux reversal arises in the boundary layer region  6,0y and 

for Prm = 0.2 (magnetic diffusion rate exceeds the viscous diffusion 
rate); but this trend is reversed for the region  9,6y .  

 
Fig. 12 Influence of Prm on temperature profiles 

 

 
Fig. 13 Influence of R on velocity profiles 

 

Tables 5 and 6 represent the variations of Ec, R, γ and Prm, Kr, ψ 
on skin-friction coefficient respectively. The skin-friction coefficient is 
increasing with increasing values of Ec and decreasing with increasing 
values of R and γ. The influences of R, Pr and Ec on rate of heat transfer 
coefficient or Nusselt number are discussed in table 7 with the help of 
numerical values. The rate of heat transfer coefficient is increasing with 
increasing values of Ec and the reverse effect is observed with 
increasing values of R and Pr. The combined influence of Sc and Kr on 
rate of mass transfer coefficient or Sherwood number is discussed in 
table 8. From this table, the authors observed that the rate of mass 
transfer coefficient is decreasing with increasing values of Sc and Kr. 
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Fig. 14 Influence of R on temperature profiles 

 

 
Fig. 15 Influence of Kr on velocity profiles 

 
 
 

Table-5: Skin-friction values for variation of Ec, R and γ 
 

Ec R γ Cf 

0.001 0.1 0.5 3.26154832 
1.000 0.1 0.5 3.28015548 
0.001 0.5 0.5 3.27336541 
0.001 0.1 1.0 3.20667124 

 

 
Table-6: Skin-friction values for variation of Prm, Kr and ψ 

 

Prm Kr ψ Cf 

0.2 1.0 30o 3.26154832 
0.6 1.0 30o 3.19224862 
0.2 2.0 30o 3.21448012 
0.2 1.0 45o 3.22466215 

 

 
Fig. 16 Influence of Kr on concentration profiles 

 
Fig. 17 Influence of γ on velocity profiles 

 
Fig. 18 Influence of ψ on velocity profiles 



Frontiers in Heat and Mass Transfer (FHMT), 8, 27 (2017)
DOI: 10.5098/hmt.8.27

Global Digital Central
ISSN: 2151-8629

10 
 

 
Fig. 19 Influence of M on induced magnetic field 

 

 
Fig. 20 Influence of Prm on induced magnetic field 

 
Table-7: Nusselt number values for variation of Ec, R and Pr 

 

Ec R Pr Nu 

0.001 0.1 0.71 0.62334821 
1.000 0.1 0.71 0.63955478 
0.001 0.5 0.71 0.64388721 
0.001 0.1 7.00 0.57661548 

 
Table-8: Sherwood number values for variation of Sc and Kr 

 

Sc Kr Sh 

0.2 1.0 0.59348752 
0.6 1.0 0.56177823 
0.2 2.0 0.55395842 

 

 
7. CONCLUSIONS 

 

The present study addressed the characteristics of heat and mass 
transfer on unsteady magnetohydrodynamic free convective Casson 
fluid flow of an optically thick fluid over an inclined vertical plate with 
magnetic and viscous dissipations. The set of fundamental governing 
equations have been solved numerically using finite element method. 

The numerical solutions have been developed for velocity, induced 
magnetic field, temperature, concentration, Skin-friction, Rate of heat 
and mass transfer coefficients. The features of the flow characteristics 
were analyzed by plotting graphs and discussed in detail. 
 The influence of Grashof number for heat and mass transfer 

stabilizes the momentum boundary layer growth. 
 Increasing the values of Casson fluid parameter, Hartmann 

number and Angle of inclination of the plate retards the velocity 
of the flow field at all points. 

 A growing Prandtl number decreases temperature of the flow field 
at all points and increases with increasing thermal radiation and 
viscous dissipation parameters. 

 Induced Magnetic field decreases with the increasing Hartmann 
number. 

 Magnetic Prandtl number deeply influence on the induced 
magnetic field in the thermal boundary layer i.e. induced magnetic 
field decreases with the increase in the Magnetic Prandtl number.  

 The concentration reduces with rising of Schmidt number. 
 The velocity as well as concentration reduces with an enlargement 

in the chemical reaction parameter.  
 The numerical results are obtained and compared with formerly 

reported cases available in the open literature and they are found 
to be in very good concurrence. 

The present study has been confined to non-newtonian viscous model. 
Future investigations will consider viscoelastic and power-law 
rheological fluid models and will be communicated in the near future. 
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NOMENCLATURE 
 

C    Concentration of the fluid far away from the plate 

  ( 3mKg ) 

wC    Concentration of the plate  ( 3mKg ) 

y   Dimensionless displacement ( m ) 

T   Fluid temperature away from the plate  K  

Gc   Grashof number for mass transfer 

u   Non-dimensional fluid velocity (
1sm ) 

Sh   The local Sherwood number 

v  Velocity component (
1sm ) 

u   Velocity component in x  direction (
1sm ) 

g  Acceleration of gravity, 9.81 ( 2sm ) 

a  A Constant   
Kr  Chemical reaction parameter 
x  Coordinate axis along the plate ( m )  

y  Co-ordinate axis normal to the plate ( m ) 

J  Current density vector )..( 2msA  

rk   Dimensional Chemical reaction parameter 

Ec  Eckert number (Viscous Dissipation parameter) 

C   Fluid Concentration ( 3mKg ) 

T   Fluid Temperature )(K  

wT   Fluid temperature at the wall  K  
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Gr  Grashof number for heat transfer 
B  Induced Magnetic field (Tesla) 

xH 
 

Induced Magnetic field along x  direction 

  (Tesla) 

yH 
 

Induced Magnetic field along y  direction 

  (Tesla) 
M  Magnetic field parameter (or) Hartmann number 

mPr  Magnetic Prandtl number  
Pr  Prandtl number  

rq  Radiative heat transfer coefficient 

oU  Reference velocity at the plate (
1sm ) 

Re  Reynolds number 

),,( zyx JJJ
 

Scalar Components of J  

Sc  Schmidt number   

D  Solute mass diffusivity ( 12 sm ) 

pC  Specific heat at constant pressure  KKgJ 1  

Nu  The local Nusselt number 

fC  The local skin-friction )( 2mN  

0B  Uniform magnetic field (Tesla) 

Greek Symbols: 

    Thermal conductivity of the fluid (
11  KmW ) 

   Non dimensional fluid temperature  K  

w     Shear stress )( 2mN  

*   Volumetric Coefficient of thermal expansion with 

  concentration ( 13 Kgm ) 

  Angle of inclination of plate ( reesdeg ) 

  Casson fluid parameter 

  Electric conductivity of the fluid )( 1ms  

  Kinematic viscosity ( 12 sm ) 

e  
Magnetic Permeability ( 2. AN ) 

  Species concentration ( 3mKg ) 

*  Stefan Boltzmann Constant )...( 4KmW  

  The constant density ( 3mKg ) 

  Volumetric coefficient of thermal expansion 

  )( 1K  

Superscripts: 
/

  Dimensionless Properties 
Subscripts: 
    Free stream conditions 
p   Plate  

w   Conditions on the wall  
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