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ABSTRACT 

In this paper, the effects of suction/blowing and thermal radiation on a hydromagnetic viscous fluid over a non-linear stretching and shrinking sheet 
are investigated. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The system 
of equations is solved analytically employing homotopy analysis method (HAM). Convergence of the HAM solution is checked. The resulting similarity 
equations are solved numerically using Matlab bvp4c numerical routine. It is found that dual solutions exist for this particular problem. The comparison 
of analytical solution and numerical solution for the velocity profile is an excellent agreement. 
Keywords: Heat transfer; Homotopy analysis method; viscous fluid; Non-linear shrinking sheet; Thermal radiation 

 
1. INTRODUCTION 
 
Investigations of heat transfer and boundary layer flow on a continuously 
moving or stretching surface have important applications in many 
manufacturing processes and polymer industry, for examples, a 
continuous stretching of plastic films, artificial fibers, metal spinning, 
metal extrusion, continuous casting, glass blowing and many more. The 
pioneering work on the continuously stretching sheet was first initiated 
by Sakiadis (1961). The problem in Sakiadis (1961) is extended to 
discuss the various aspects of flow and heat transfer characteristics by 
many researchers like Dutta et al.(1985), Chen et al.(1988), Ali (1995), 
Liao (2005), Hayat et al.(2010), Makinde et al.(2013), Madhu et 
al.(2015) and Yasin et al.(2016).  

The problem of the shrinking sheet where the velocity on the 
boundary is towards the origin or a fixed point, and the unsteady 
shrinking film solution was first investigated by Wang (1990). Again, 
Miklavcic and Wang (2006) studied the viscous hydrodynamic flow over 
a shrinking sheet for both two-dimensional and axisymmetric flows. It is 
also noted that the mass suction at the wall is required generally to 
maintain (or smooth) the flow over a shrinking sheet. They discussed the 
proof of existence and (non) uniqueness of both exact numerical and 
closed form solutions. The analysis of Miklavcic et al. (2006) was also 
extended in various directions for different fluids by many researchers 
such as Hayat  et al.(2007), Kandasamy et al.(2008), Sajid et al. (2009), 
Fang et al.(2009), Noor et al.(2010) and Patil et al.(2016). Fang (2008) 
investigated the boundary layer flow over a shrinking sheet with surface 
moving with power-law velocity. Javed et al. (2011)  investigated the 
boundary layer flow and heat transfer analysis of electrically conducting 
viscous fluid over a nonlinearly shrinking sheet. Recently, Bhattacharyya 
(2013) studied the heat transfer in unsteady boundary layer stagnation-
point flow over a shrinking/stretching sheet. 

The homotopy analysis method (HAM) is one of the well-known 
methods to solve non-linear equations that does not need to any small 
parameter. This method has been introduced by Liao (1992), (1995), 
(1997), (2003), Liao et al. (2003) and (2004). The method has been used 
by many authors like Hayat et al. (2004), Hayat et al.(2004), (2007) and 
(2008). Also, Mehmood et al. (2006) and (2008). Then, Liao (2009), 
Fakhari et al. (2007) and Domairry et al. (2008), Domairry et al. (2009).  
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Then, Tan et al. (2008), Ali et al. (2008) and Ziabakhsh et al. (2009) in a 
wide variety of scientific and engineering applications to solve different 
types of governing differential equations: linear and non-linear, 
homogeneous and non-homogeneous, and coupled and decoupled as 
well. This method offers highly accurate successive approximations of 
the solution. Also, Abdelmeguid et al. (2007) studied the effect of 
chemical reaction, variable viscosity and radition. In this paper, we will 
study the effects of suction/blowing, power index parameter, Magnetic 
field, Prandtl number and thermal radiation on a hydromagnetic viscous 
fluid over a non-linear stretching and shrinking sheet. The system of 
nonlinear coupled ordinary differential equations is solved using 
homotopy analysis method (HAM). 

 
2. PROBLEM FORMULATION 
 
Consider a two-dimensional flow of an incompressible viscous fluid past 
a porous shrinking sheet at y = 0. It is assumed that the velocity of the 
stretching /shrinking sheet is U ∝ c	 , where  ∝ 1, 1 is 
respectively for stretching and shrinking sheet. It is also assumed that 
constant mass transfer velocity is v v  with v 0 for suction 
and v 0 for injection, respectively. The -axis is taken along the 
stretching/shrinking sheet and the -axis perpendicular to it into the fluid. 
The fluid is electrically conducting and the magnetic field B(x) is 
assumed to be applied in the -direction. The magnetic Reynolds number 
is taken to be small so that the induced magnetic field can be neglected. 
The temperature of the surface maintained at a constant temperature T  
and far away from the sheet temperature is T , where T T . Under 
boundary layer approximation, the continuity, momentum, and energy 
equations are 
 

v
0	,																																																																																																		 1  

 

	 	 	v	 	 	–	
	

	 	,																																																					 2  
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   where  and v are the velocity components in the x- and y-directions, 
respectively,  is the fluid density,  is the dynamic viscosity,   is 

the kinematic viscosity,  is the electrical conductivity of the fluid, T is 
the temperature, c  is the specific heat at constant pressure, and  is the 
thermal diffusivity. In Eq. (2), the external electric field and the 

polarization effects are neglected and Chaim (1995)  B B 	  .   
q  is the radiative heat flux. Using Rosseland’s approximation for 

radiation Brewster (1972), we obtain q 	
	 	

	
		  , where  is the 

Stefan–Boltzmann constant, α  is the absorption  coefficient. We 
presume that the temperature variation within the flow is such that T  
may be expanded in a Taylor’s series. Expanding T  about T  and 
neglecting higher order terms we get, T 4	T 	T	– 	3	T 	. 
The appropriate boundary conditions for the velocity components and 
temperature are given by 

α	U 	α	c	 ,					v v ,  
 
	T T 					at			 0																																																																																						 4 	 
 
→ 0	,					T → T 					as		 → ∞																																																																				 5  

 
where m is a power index and c is a constant rate stretching/shrinking 
which has a dimension of time . 
We are interested in obtaining a similarity solution of the form 

	
	 1
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and the wall mass transfer velocity becomes Fang (2008) 

v
	 	 1

2
	 		f 0 		∝ 			 	.																																	 7  

 
Using Eq. (6), the continuity Eq. (1) is identically satisfied and Eqs.(2) 
and (3) reduce to the following ordinary differential equations 

f ``` f	f `` β	 f ` M	f ` 0	,																																																																		 8  
 

1 	 θ`` Pr	 	f	θ` Ec	 f `` 	 0	.																																																 9   

 
subject to the boundary conditions 
 
f ` 0 α			,					f 0 s					,					θ 0 1	,                                            10  
 
f ` ∞ 0			,					θ ∞ 0	.																																																																									 11  
 
where primes denote differentiation with respect to η. The control 
parameter β, the magnetic field or Hartman number M, the thermal 
radiation parameter R, the Prandtl number Pr, the Eckert number Ec and 
the wall mass transfer at the sheet s are given by 
 

β
2	m
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c	ν	 m 1
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The physical quantities of interest in this problem are the skin-friction 
parameter c  and local Nusselt number Nu which are defined by 
 

c 	
	

	 	
	

		 Re 		f `` 0 		,                                                13  

 
where the wall shear stress   and the local Reynolds number Re are 
given by 
 

	 	 	 		 c	 	
c	 1

2	
				

	

		f `` 0  

 

and												Re
U 		

	.																																																																															 14  

 
The local rate of heat transfer of the surface is 
 

q k	 	
T
	 	 k	 T T

c	 1
2	

				 		θ` 0 	, 

15  
 
which can be used to compute the local Nusselt number 
 

Nu
		q

k	 T T
	 	 Re 			

	 1
2

			θ` 0 	.																														 16  

 

 
3. HOMOTOPY ANALYSIS SOLUTION 

 
3.1. ZERO-ORDER DEFORMATION EQUATIONS 
 
Solving Eqs. (8)–(11) using HAM (Hayat (2007), Hang (2007), Zhu 
(2009), Ali (2008) and Ziabakhsh (2009)). From the boundary conditions 
(10) and (11), it is obvious to choose: 
 
f η 	 s 1 	e 	 	 	,																																																																													 17  
 
θ η 	 e 	 	,																																																																																															 18  
 
as the initial approximations of  f η  and θ η , respectively, and to 
choose: 
 

L 	f η	; q 	
Φ η	; q	
η

Φ η	; q	
η

		,																																										 19 	 

 
 

L 	ϕ η	; q 	
Θ η	; q	
η

∂Θ η	; q	
η

		,																																											 20 	 



Frontiers in Heat and Mass Transfer (FHMT), 8, 28 (2017)
DOI: 10.5098/hmt.8.28

Global Digital Central
ISSN: 2151-8629

 

 
as the auxiliary linear operators, which have the following properties: 
 
L 	 	c c 	η c 	e 	 	 0	,								 
 
L 	 	c c 	e 	 	 0.																																																																																 21  
 
where  	 1 5  are arbitrary constants. Based on (8) and (9), This 
paper is led to define the non-linear operators: 
 

N Φ ;
Φ ;

		Φ ; 	
Φ ;

 

 

	 	
Φ ;

	
Φ ;

		,												 22  

 
 

N Θ ; 	 1
1
R

Θ ;
 

 

Pr Φ ; 	
Θ ; Φ ;

	 . 

23  
 
Let h denote the non-zero auxiliary parameter. Then construct the 
zeroth-order deformation equations: 
 
1 	L Φ ; f 	 		H η 	N Φ ; 																				 24  

 
1 	L Θ ; θ 	 		H η 	N Θ ; 																				 25  

 
Subject to the boundary conditions: 
 

Φ 0; s		,			
Φ ;

	
	

α	, 

 
Φ ;

	
	 	 	

0	,																																																																																	 26 	 

 
Θ 0; 1		,						Θ ∞; 0	.																																																																	 27  
 
where ∈ 	0	, 1	  is an embedding parameter. When 0 , it is 
straightforward that: 
 
Φ ; 0 f 	,				Θ ; 0 θ 	.		                                            	 28  
 
When 1 the zeroth-order deformation equations (24)–(27) are 
equivalent to the original equations (8)–(11), so that we have: 
 
Φ ; f 		,					Θ ; θ 	,                                                 29  
 
respectively. Thus as  increases from 0 to 1, Φ ;  and Θ ;  vary 
from the initial guess f  and θ  to the solutions f  and θ  of 
the problem, respectively. So expanding Φ ;  and Θ ;  in 
Taylor’s series about the embedding parameter , we have: 
	Φ ; Φ ; 0 ∑ f 	q 		,                                          	 30  
 
Θ ; Θ ; 0 ∑ θ 	q 		,		                                          31  
 
where: 
 

f
1
!
	

Φ ;
q

	
	 	 	

	,															 32  

 

θ
1
!
	

Θ ;
q

	
	 	 	

	.														 33  

 
If h is properly chosen, the series (30) and (31) are convergent at 1, 
we have, using (28) and (29), the solution series: 
 

f f f 			,																																																																						 34  

 

θ θ θ 		.																																																																			 35  

 
 
3.2. HIGHER ORDER DEFORMATION EQUATIONS 
 
Differentiating the zero-order deformation equations (24) and (25) m 
times about q, then setting 0, and finally dividing them by ! , we 
obtain the mth-order deformation  equations: 
 
L 	f 	f 	 		H 		R 	,																																				 36  
 
L 	θ 	θ 	 		H 		S 	,																																		 37  
 
subject to the boundary conditions: 
 
	f 0 f ` 0 f ` ∞ 0	,																																																																	 38  
 
	θ 0 	θ ∞ 0	,																																																																														 39  
 
where 

																	
	0		; 					m 1
1		; 				m 2 																																																																		 40  

and 
 

R η f ``` η f η f `` η  

 

β	 f ` η f ` η M 		f ` η ,		 

41  
 
 

S η 1
1
R
	θ``` η  

 

Pr 	 f η θ` η Ec	 f `` η f `` η 	 	. 

42  
 
 
According to initial approximations and the auxiliary linear operators, 
we set: 
 
	H 	 	, 					H 	 	.																																																													 43  
 
The first order deformation equations: 
 
L 	 f 		H 		R 	,																																																																		 44 	 
 
L 	θ 	 		H 		S 	,																																																																	 45  
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and the boundary conditions: 
f 0 	 	 f ` 0 	 f ` ∞ 0	,																																																																			 46  
 
θ 0 	 	 θ ∞ 0	,																																																																																	 47  
 
so that we have: 
 
f 	 	 	 ∝ 	 	 	 	 	∝ 	 	 	 	 	 	,																	 48  
 
θ 	b 	 	 	 	b 	 	 ∝ 	 	 	b 	 ∝ 	 b 	 	 ,		 

49  
 
where 

∝ 1
	 	∝ 1 ∝ M 	 	, 

 
	 1 β 	α

2	 2	α 1
		, 

 
	 ∝ 1 	 2	α 1 	 	 		, 

 
∝ 	 2	 	, 

 

b
2
	 	 1

1
R
	 Pr s 1 	 		, 

 

b
	 Pr

α 1 	 α 2
			, 

 

b
	 Pr 	 Ec 	α
2α 	 2α 1

		, 

 
b b b b 	. 
 
Similarly, we obtain: 
 
f 	 	 ∝ 	 	 	 	∝ 	 	 
 

	 	 	 	 	 	∝ 	 	 	 ∝ 	  
 

	 	 	, 
50  

θ 	d 	 	 	 d 	 	 	  
 

	d 	 	 ∝ 	 	 	d 	 ∝ 	  
 

	d 	 ∝ 	 	d 	 ∝ 	  
 

	d 	 ∝ 	 d 	 	 	.									 
51  

where 
 

	
α 1 	 α 2

	 	 α 1 α 1 	 α M 	

α 1 	 	 	, 
  

	
2α 1 	 2α 2

	 2α 1 2α 1 	 2α M 	

	 α 1 α 2βα α 1 	 	 	, 
 

	
4
	 	M 	 	, 

	
3α 1 	 3α 2

	 2α 1 α 2βα 2α 1 	 	, 

	
α	 α 1

	 α 	 	, 

 
	 	 α 2 	 2α 2 	 2 3α 2 	

α 1 	 	 	, 

α 1 	
1

2α 2
		, 

 

d
6
	 	4	b 1

1
R
	 2b s 1 	Pr 	 	, 

 

d
2
	 	b 1

1
R
	 b s 1 	Pr 	 	, 

 

d
α 3 α 2

	 	b 1
1
R
	 α 2 2b 	Pr

b α 2 s 1 	Pr 	 	, 
 

d
2	α 2 2	α 1

	 	b 1
1
R
	 2α 1

b 2α 1 s 1 	Pr 2	Ec	 	α 	 α 1 		, 
 

d
α 2 α 1

	 	b 	Pr 2	Ec	 	α 	 	, 

 

d
2α 3 2α 2

	 	b 	 α 2 	Pr 	 	, 

 

d
3α 2 3α 1

	 	b 	 2α 1 	Pr 2	Ec	 	α 	 2	α 1 	 	, 

 

d 	 	d d d d d d d 	 	. 
 

Since the solutions f  and θ  are too long, so they are shown 
graphically. 
 
4. CONVERGENCE OF THE HAM SOLUTION 
 
For an analytic solution obtained by the homotopy analysis method, its 
convergent depends on the auxiliary parameter . If this parameter is 
properly chosen, the given solution is valid, as verified in previous works 
Hayat et al. (2007), Hang et al. (2007), Zhu (2009), Ali et al (2008) and 
Ziabakhsh (2009). Since the interval for the admissible values of  
corresponds to the line segments nearly parallel to the horizontal axis. 
Then, by plotting the curves of f `` 0  and θ` 0  versus h (which is called 
the h-curves of f `` 0  and θ` 0 ), we can obtain a valid region 1.4	
	 	 	 0.6 from Figs. 1 and 2. Then h can be chosen in the 
region 1.4, 0.6 . In this paper we choose 	 	 1.2	.  
 
 
5. RESULTS AND DISCUSSION 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The h-curves of f `` 0  obtained by the fifth-order approximation 
of the HAM 
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Fig. 2 The h-curves of θ` 0  obtained by the fifth-order approximation 
of the HAM 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Comparison of the velocity f ` η  between numerical and 
analytical solution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The effects of power-index m of the surface velocity on the 
velocity f ` η . In case of shrinking sheet α 1. (Upper solution) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The effects of power-index m of the surface velocity on the 
velocity f ` η . In case of shrinking sheet α 1. (Lower solution) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The effects of the magnetic field M on the velocity f ` η . In case 
of shrinking sheet α 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 The effects of mass suction s on the velocity f ` η . In case of 
shrinking sheet α 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 The effects of mass suction s on the temperature field θ η . In 
case of shrinking sheet α 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 The effects of the Prandtl parameter Pr on the temperature field 
θ η . In case of shrinking sheet α 1 
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Fig. 10 The effects of the Prandtl parameter Pr on the temperature field 
θ η . In case of shrinking sheet α 1 (Upper and Lower solution) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 The effects of the Radiation parameter R on the temperature 
field θ η . In case of shrinking sheet α 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 The effects of the Radiation parameter R on the temperature 
field θ η . In case of shrinking sheet α 1 (Upper and Lower 

solution) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 The effects of Magnetic field M on the temperature field θ η . 
In case of shrinking sheet α 1 (Upper and Lower solution) 

 
In Fig. 3 the velocity f	` η 	 is plotted both for numerical and analytical 
solutions in case of linear stretching sheet. It is apparent that numerical 

solution is in a good agreement with analytical solution. Fig. 4 and 5 
illustrate the change in the velocity component f	` η 	  in case of shrinking 
sheet for different values of power index m. Fig. 4 uses the upper solution 
while lower solution is used in Fig. 5. Fig. 4 reveals that the velocity 
f	` η 	  decreases as we increase the values of m. However, this decrement 
in the velocity is smaller in case of hydromagnetic fluid when compared 
with hydrodynamic fluid. This is because the magnetic force acts as a 
resistance to the flow. It is also seen that the boundary layer thickness 
decreases for a smaller values of m. It is observed from Fig. 5 that near 
the sheet the magnitude of velocity f	` η 	  increases for large values of 
m, while the boundary layer thickness decreases by increasing the values 
of m. Fig. 6 depicts the effects of the magnetic filed M on the velocity  
f	` η 	 in case of shrinking sheet. As expected, the magnitude of velocity 
and boundary layer thickness decrease by increasing the values of M. 
Here it is found that the dual solutions occur when M = 0.1, 0.5 and 1 at 
β 1.5 and s = 3.5.  

Fig. 7 elucidates the change in the velocity f	` η 	 for different values 
of mass suction parameter s. As the mass suction parameter s increases 
the velocity f	` η 	 overshot near the shrinking sheet. Fig. 8 presents the 
influences of mass suction parameter s on the temperature field θ η  in 
case of shrinking sheet. The temperature θ η  decreases by increasing 
mass suction parameter s. The thermal boundary layer thickness also 
decreases as the mass suction parameter s increases.  

Fig. 9 shows the change in temperature θ η  for different values of 
Prandtl number Pr. It is evident from this figure that both the temperature 
and thermal boundary layer thickness decrease by increasing the values 
of Pr. Figs. 10 show the existence of dual solutions for the thermal 
boundary layer θ η  in case of shrinking sheet.  

Fig. 11 shows the effect of the thermal radiation on the temperature 
θ η  of the fluid flow. It is observed that the temperature of the fluid flow 
increases as the thermal radiation parameter increases. It is found from 
Fig. 12 that the dual solutions occur when R = 0, 1, 3 and 5 at β 5/3 
and Pr = 0.7. It is further noted from Fig. 13 that the thermal boundary 
layer increases by increasing the values of magnetic field M. 
 
 
6. CONCLUSIONS 
 
An investigation is performed for the effects of suction/blowing and 
thermal radiation on a hydromagnetic viscous fluid over a non-linear 
stretching and shrinking sheet. The Homotopy analysis method and the 
numerical solution used to solve the governing equations. The following 
conclusions are obtained:  
 The velocity increases as the power index m (Lower solution 

case) and mass suction parameter s increase. 

 The velocity decreases as the power index m (Upper solution 
case) and magnetic field M increase. 

 The temperature increases as the thermal radiation R and 
magnetic field M increase. 

 The temperature decreases as the mass suction s and Prandtl 
number Pr increase. 
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