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ABSTRACT 

In this article, the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid from an isothermal sphere surface 

is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle 

mass transfer. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial 

differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These 

transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the 

implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (β), Buoyancy ratio parameter (N), Brownian motion parameter 

(Nb) and thermophoresis parameter (Nt), Lewis number (Le) and Prandtl number (Pr) on velocity, temperature and nano-particle concentration 

distributions are illustrated graphically and interpreted at length. Validation of solutions with a Nakamura tridiagonal method has been included.   

Keywords: Nanoparticles; Species diffusion; Steady flow; Casson viscoplastic model; Keller-box numerical method; Heat transfer.

1. INTRUDUCTION 
 

The word “nanotechnology” was probably used for the first time by 

the Japanese scientist Norio Taniguchi in 1974. K. Eric Drexler is 

credited with initial theoretical work in the field of nanotechnology. 

The term nanotechnology was used by Drexler in his 1986 book 

“Engines of creation: The coming era of nanotechnology”. Drexler’s 

idea of nanotechnology is referred to as molecular nanotechnology 

(2011). Earlier the great theoretical physicist Richard Feynman 

predicted nanotechnology in 1959. In the 1980s and 1990s new nano-

materials were discovered and nanofluids emerged as a result of the 

experiments intended to increase the thermal conductivity of liquids. 

The birth of nanofluids is attributed to the revolutionary idea of adding 

solid particles into fluids to increase the thermal conductivity. This 

innovative idea was put forth by the Scottish physicist J.C. Maxwell as 

early as 1873. 

Nanofluids have evolved into a very exciting and rich frontier in 

modern nano-technology. The excitement can be attributed to the 

robustness of the concept of nanofluids and the plethora of different 

applications of this technology (2010). The properties of nanofluids 

need a lot of fine tuning, many seemingly contradicting studies need 

clarity and validation. Nanofluids have potential applications in micro-

electronics, fuel cells, rocket propulsion, environmental de-

toxification, spray coating of aircraft wings, pharmaceutical 

suspensions, medical sprays etc. These applications of nanofluids are 

largely attributable to the enhanced thermal conductivity and 

Brownian motion dynamics which can be exploited to immense 

benefit. Nanomaterials work efficiently as new energy materials since 

they incorporate suspended particles with size as the same as or smaller 

than the size of de Broglie wave (2009). The use of nanoparticles is 

now a subject of abundant studies, and aspects of particular interest are 

Brownian motion and thermophoretic transport. Nanofluids constitute  
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a new class of heat transfer fluids comprising a conventional base fluid 

and nano-particles. The nanoparticles are utilized to enhance the heat 

transfer performance of the base fluids (1995). The cooling rate 

requirements cannot be obtained by the ordinary heat transfer fluids 

because their thermal conductivity is not adequate. Brownian motion 

of the nanoparticles enhances the thermal conductivity of base fluids, 

although there may be many more mechanisms at work which exert a 

contribution. The concept of nanofluids was introduced by Choi (1995) 

wherein he proposed the suspension of nanoparticles in a base fluid 

such as water, oil, and ethylene glycol. Buongiorno (2006) attempted 

to explain the increase in the thermal conductivity of such fluids and 

developed a model that emphasized the key mechanisms in laminar 

flow as being particle Brownian motion and thermophoresis. 

In recent years with the development of hydrophobic surfaces, 

slip flows have garnered some attention in nanofluid dynamics. 

Furthermore, the non-Newtonian properties of different nanofluid 

suspensions have also attracted interest in simulating rheological 

behavior with different models. Mahatha et al. (2016) investigated 

dissipative effects in hydromagnetic boundary layer nanofluid flow 

past a stretching sheet with Newtonian heating. They found that an 

increase in the Biot number brings an increase in the nanofluids 

temperature and nanoparticle volume fraction. Due to convective heat 

transfer from the hot fluid to the surface of the sheet, the sheet gets 

heated which in turn increases the heat transfer rate from the sheet to 

the fluid. Subba Rao and Nagendra (2015) investigated thermal 

radiation effects on Oldroyd-B viscoelastic nanofluid flow from a 

stretching sheet in a non-Darcy porous medium. They analyzed the 

behavior of nano particles on temperature and concentration 

distributions in detail. Uddin et al. (2016) analyzed anisotropic slip 

effects on nanofluid bioconvection boundary layers from a translating 
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sheet using MAPLE symbolic quadrature and Lie group methods. 

Rana et al. (2016) used a high-penalty finite element method to 

simulate two-dimensional flow dissipative viscoelastic nanofluid 

polymeric boundary layer stretching sheet flow, employing the Reiner-

Rivlin second grade non-Newtonian model. They showed that greater 

polymer fluid viscoelasticity accelerates the flow and increasing 

Brownian motion and thermophoresis enhances temperatures and 

reduces heat transfer rates (local Nusselt numbers. Malik et al. (2014) 

used the Runge–Kutta Fehlberg method to obtain numerical solutions 

for steady thermal boundary layer flow of a Casson nanofluid flowing 

over a vertical radially exponentially-stretching cylinder. Many such 

studies have been communicated and have usually adopted the so-

called “active control” boundary condition, based on the Kuznetsov-

Nield formulation (2010) for natural convective boundary layer flow 

of a nanofluid over a vertical surface featuring Brownian motion and 

thermophoresis. However, Kuznetsov and Nield (2014) re-visited their 

original model, refining this formulation with passive control of 

nanofluid particle fraction at the boundary rather than active control to 

be more physically realistic. This recent boundary condition provides 

one of the motivations for the present research. 

The above studies were generally confined to internal transport. 

However external boundary layer convection flows also find 

applications in many technological systems including enrobing 

polymer coating processes, heat exchanger design, solar collector 

architecture etc. Prasad et al. (2015) studied two-dimensional 

nanofluid boundary layer flow from a spherical geometry embedded in 

porous media with a finite difference scheme. Mahesh and Reddy 

(2015) studied natural convection flow of a non-Newtonian nanofluid 

past a sphere. They also found that the friction factor and heat transfer 

rates decrease as the cross viscosity parameter increases. Chamkha et 

al. (2010) analyzed the natural convection past a sphere embedded in 

a non-Darcy porous medium saturated by a nanofluid.  Bég et al. 

(2015) derived both homotopy and Adomian decomposition numerical 

solutions for transient stagnation-point heat and mass transfer from a 

rotating sphere. 

The present work, motivated by applications in enrobing 

dynamics of magnetic nanomaterials (2011), examines theoretically 

and computationally the steady-state transport phenomena in Casson 

nanofluid flow past an Isothermal sphere. Mathematical modelling is 

developed to derive the equations of continuity, momentum, energy 

and species conservation, based on the Buonjiornio nanofluid model 

(2006). The partial differential boundary layer equations are then 

transformed into a system of dimensionless non-linear coupled 

differential boundary layer equations, which is solved with the robust 

second order accurate Keller box implicit finite difference method. The 

present work extends significantly earlier simulations of Hussain et al. 

(2015) (who consider an exponentially stretching surface) to the case 

of a isothermal sphere. An extensive parametric analysis of the 

influence of a number of parameters (Brownian motion, 

thermophoresis, Casson non-Newtonian, stream wise coordinate) on 

thermo-diffusive characteristics is conducted. The simulations are also 

relevant to calendaring in pseudo-plastic materials fabrication (2006). 

2. MATHEMATICAL MODEL 

We examine steady buoyancy-driven convection heat transfer flow of 

Casson nanofluid from an Isothermal Sphere. Figure 1 shows the flow 

model and associated coordinate system. The nanofluid fluid is taken 

to be incompressible and a homogenous dilute solution. The x-axis 

taken along the isothermal sphere surface measured from the origin 

and the y-axis is measured normal to the surface, sin
x

r a
a

 
  

 
 with ‘a’ 

denoting the radius of the sphere. The gravitational acceleration, g acts 

downwards. Both the sphere and the fluid are maintained initially at 

the same temperature. Instantaneously they are raised to a temperature 

wT T  i.e. the ambient temperature of the fluid which remains 

unchanged. 

The appropriate constitutive equations for the Casson non-

Newtonian model are:  
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Fig. 1 Physical model and coordinate system 

 
        In which ij ije e   and ije  is the (i, j)th component of 

deformation rate, π denotes the product of the component of 

deformation rate with itself, πc shows a critical value of this product 

based on the non-Newtonian model, B the plastic dynamic viscosity 

of non-Newtonian fluid and yp  the yield stress of fluid. 

         The Casson model, although relatively simple, is a robust 

viscoplastic model and describes accurately the shear stress-strain 

behavior of certain industrial polymers in which flow is not possible 

prior to the attainment of a critical shear stress. Unlike the Bingham 

viscoplastic model which has a linear shear rate, the Casson model has 

a non-linear shear rate. Casson fluid theory was originally propounded 

to simulate shear thinning (viscosity is reduced with greater shear 

rates) liquids containing rod-like solids and is equally popular in 

analysing inks, emulsions, food stuffs (chocolate melts), certain gels 

and paints (1959). More recently it has been embraced in advanced 

polymeric flow processing (1994). Incorporating the Casson terms and 

applying the Buonjiorni nanofluid model, the governing conservation 

equations, in primitive form, for the regime under investigation i.e. 

mass continuity, momentum, energy and species, can be written as 

follows: 
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The boundary conditions imposed at the sphere surface and in the free 

stream are:  
 

At 0, 0, 0, ,w wy u v T T C C      

As , 0, 0, ,y u v T T C C                                  (6) 
 

 

        The stream function   is defined by the Cauchy-Riemann 

equations, ( )ru r y    and ( )rv r x   , and therefore, the 

continuity equation is automatically satisfied. In order to write the 

governing equations and the boundary conditions in dimensionless 

form, the following non-dimensional quantities are introduced.  
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The transformed boundary layer equations for momentum, energy and 

concentration emerge as: 
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The corresponding transformed dimensionless boundary conditions 

are: 
 
 

At 0, 0, 0, 1, 1f f        

As   , 0, 0, 0f                                           (11) 
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         All other parameters are defined in the nomenclature. The skin-

friction coefficient (sphere surface shear stress function), the local 

Nusselt number (heat transfer rate) and Sherwood number (mass 

transfer rate) can be defined using the transformations described above 

with the following expressions: 
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3. NUMERICAL SOLUTION WITH KELLER 

BOX IMPLICT METHOD 

The strongly coupled, nonlinear conservation equations do not admit 

analytical (closed-form) solutions. An elegant, implicit difference 

finite difference numerical method developed by Keller (1970) is 

therefore adopted to solve the general flow model defined by equations 

(8) - (10) with boundary conditions (11). This method is especially 

appropriate for boundary layer flow equations which are parabolic in 

nature. It remains one of the most widely applied computational 

methods in viscous fluid dynamics. Recent problems which have used 

Keller’s method include radiative magnetic forced convection flow 

(2006), stretching sheet hydromagnetic flow (2013), Cylindrical 

hydromagnetic flow (2017), magnetohydrodynamic Falkner-Skan 

“wedge” flows (2014), magneto-rheological flow from an extending 

cylinder (2015), Hall magneto-gas dynamic generator slip flows 

(2016) and radiative-convective Casson slip boundary layer flows 

(2016, 2017). Keller’s method provides unconditional stability and 

rapid convergence for strongly non-linear flows. It involves four key 

stages, summarized below. 

 

1) Reduction of the Nth order partial differential equation system to N   

first order equations 

2) Finite difference discretization of reduced equations 

3) Quasilinearization of non-linear Keller algebraic equations 

4) Block-tridiagonal elimination of linearized Keller algebraic 

equations  

 

Stage 1: Reduction of the Nth order partial differential 

equation system to N first order equations 
 

Equations (8) – (10) and (11) subject to the boundary conditions are 

first written as a system of first-order equations. For this purpose, we 

reset Equations (6) – (7) as a set of simultaneous equations by 

introducing the new variables 
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where primes denote differentiation with respect to . In terms of the 

dependent variables, the boundary conditions become: 
 

0 : 0, 0, 1, 1

: 0, 0, 0, 0

At u f s g

As u v s g
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Stage 2: Finite difference discretization of reduced 

boundary layer equations 
 

A two-dimensional computational grid (mesh) is imposed on the -η 

plane as sketched in Fig.2. The stepping process is defined by: 
 

0 10, , 1,2,..., ,j j j Jh j J                                           (24) 
 

0 10, , 1,2,...,n n
nk n N                                                     (25) 

 

where kn and hj denote the step distances in the ξ (stream wise) and η 

(span wise) directions respectively 

 

 
 

Fig. 2 Keller Box element and boundary layer mesh 

 

If n

jg denotes the value of any variable at  , n
j  , then the variables 

and derivatives of Eqns. (15) – (22) at  1/2
1/2 , n

j  
  are replaced 

by: 
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The finite-difference approximation of equations (15) – (22) for the 

mid-point  1/2 , n
j  , below: 
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The boundary conditions are 

 

0 0 0 00, 1, 0, 0, 0, 1, 0n n n n n n n n
J J J Jf u u v                 (40) 
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Stage 3: Quasilinearization of non-linear Keller algebraic 

equations 
 

If we assume 
1 1 1 1 1 1

1 1 1 1 1 1, , , , , ,n n n n n n
j j j j j jf u v p s t     
      to be known for

, Equations (30) – (36) comprise a system of 6J+6 

equations for the solution of 6J+6 unknowns , , , , , ,n n n n n n
j j j j j jf u v p s t , 

j = 0, 1, 2 …, J. This non-linear system of algebraic equations is 

linearized by means of Newton’s method as elaborated by Keller 

(1970). 

 

Stage 4: Block-tridiagonal elimination of linear Keller 

algebraic equations 
 

The linearized version of eqns. (30) – (36) can now be solved by the 

block-elimination method, since they possess a block-tridiagonal 

structure since it consists of block matrices. The complete linearized 

system is formulated as a block matrix system, where each element in 

the coefficient matrix is a matrix itself. Then, this system is solved 

using the efficient Keller-box method. The numerical results are 

affected by the number of mesh points in both directions. After some 

trials in the η-direction (radial coordinate) a larger number of mesh 

points are selected whereas in the ξ direction (tangential coordinate) 

significantly less mesh points are utilized. ηmax has been set at 10 and 

this defines an adequately large value at which the prescribed boundary 

conditions are satisfied. ξmax is set at 3.0 for this flow domain. Mesh 

independence testing is also performed to ensure that the converged 

solutions are correct. The computer program of the algorithm is 

executed in MATLAB running on a PC.  
 
4. VALIDATION WITH NAKAMURA DIFFERENCE 

SCHEME 
 

The present Keller box method (KBM) algorithm has been tested 

rigorously and benchmarked in numerous studies by the authors. 

However to further increase confidence in the present solutions, we 

have validated the general model with an alternative finite difference 

procedure due to Nakamura (1994). The Nakamura tridiagonal method 

(NTM) generally achieves fast convergence for nonlinear viscous 

flows which may be described by either parabolic (boundary layer) or 

elliptic (Navier-Stokes) equations. The coupled 7th order system of 

nonlinear, multi-degree, ordinary differential equations defined by 

(8)–(10) with boundary conditions (11) is solved using the 

NANONAK code in double precision arithmetic in Fortran 90, as 

elaborated by Bég (2013). Computations are performed on an SGI 

Octane Desk workstation with dual processors and take seconds for 

compilation. As with other difference schemes, a reduction in the 

higher order differential equations, is also fundamental to Nakamura’s 

method. The method has been employed successfully to simulate many 

sophisticated nonlinear transport phenomena problems e.g. 

magnetized bio-polymer enrobing coating flows (Bég et al. (2014)). 

Intrinsic to this method is the discretization of the flow regime using 

an equi-spaced finite difference mesh in the transformed coordinate  

 () and the central difference scheme is applied on the -variable. A 

backward difference scheme is applied on the -variable. Two iteration 

loops are used and once the solution for  has converged, the code 

progresses to the next  station. The partial derivatives for f,,  with 

respect to  are as explained evaluated by central difference 

approximations. An iteration loop based on the method of successive 

substitution is utilized to advance the solution i.e. march along. The 

finite difference discretized equations are solved in a step-by-step 

fashion on the -domain in the inner loop and thereafter on the -

domain in the outer loop. For the energy and nano-particle species 

conservation Eqns. (9) - (10) which are second order multi-degree 

ordinary differential equations, only a direct substitution is needed. 

However a reduction is required for the third order momentum 

(velocity) boundary layer eqn. (8). We apply the following 

substitutions:  

 

P = f                                                                                         (41) 
 

Q =                                                                                           (42) 
 

R =                                                                           (43) 
 

The eqns. (8) - (10) then retract to: 
 

Nakamura momentum equation: 
 

                                      
(44) 

 

Nakamura energy equation: 
 

                                         (45) 

 

Nakamura nano-particle species equation: 
 

                                           
(46) 

 

         Here Ai=1,2,3, Bi=1,2,3, Ci=1,2,3, are the Nakamura matrix 

coefficients, Ti=1,2,3, are the Nakamura source terms containing a 

mixture of variables and derivatives associated with the respective lead 

variable (P, Q, R). The Nakamura Eqns. (27) – (30) are transformed to 

finite difference equations and these are orchestrated to form a 

tridiagonal system which due to the high nonlinearity of the numerous 

coupled, multi-degree terms in the momentum, energy, nano-particle 

species and motile micro-organism density conservation equations, is 

solved iteratively. Householder’s technique is ideal for this iteration. 

The boundary conditions (11) are also easily transformed. Further 

details of the NTM approach are provided in Nakamura (1994). 

Comparisons are documented in Table 1 for skin friction and very good 

correlation is attained.  Table 1 further indicates that increase in Casson 

viscoplastic parameter (β) induces a strong retardation in the flow i.e. 

suppresses skin friction magnitudes. In both cases however positive 

magnitudes indicate flow reversal is not generated.  

 

Table 1 Numerical values of skin-friction coefficient 

 1 1 / (0)f  of  with 

Pr 7.0, 5.0, 0.02 , 1.0Le Nb Nt       

   1 1 / (0)f   

(KBM) 

 1 1 / (0)f   

(NTM) 

0.7 0.8412 0.8411 

1.2 0.7605 0.7607 

1.6 0.7277 0.7261 

2.0 0.7065 0.7061 

1.0 0.9070 0.9073 

 

5. KELLER BOX METHOD (KBM) NUMERICAL 

RESULTS AND DISCUSSION 
 

Comprehensive solutions have been obtained with KBM and are 

presented in Tables 1–3 and Figs. 3 to 9. The numerical problem 

comprises three dependent thermo-fluid dynamic variables  , ,f    

and seven multi-physical control parameters, Pr, Le, β, N, Nb, Nt. The 

influence of stream wise space variable  is also investigated. In the 

present computations, the following default parameters are prescribed 

(unless otherwise stated): 

Pr =7.0, Le=5.0, =1.5, N=0.1, Nb=0.02=Nt, =1.0. 

0 j J 

11
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(a) 

 

 
(b)  

 
(c) 

Fig. 3 Effect of β on (a) velocity profiles, (b) temperature profiles, 

and (c) concentration profiles 

 

Figs. 3a – 3c illustrate the effect of the Casson 

viscoplastic parameter,   on velocity  f  , temperature    and 

concentration    profiles. With increasing, β values, initially close to 

the sphere surface, fig. 3a shows that the flow is strongly decelerated. 

However, further from the surface, the converse response is induced in 

the flow. This may be related to the necessity for a yield stress to be 

attained prior to viscous flow initiation in viscoplastic shear-thinning 

nanofluids. Within a short distance of the sphere surface, however a 

strong acceleration   is generated with greater Casson parameter. This 

serves to decrease momentum boundary layer thickness effectively. A 

similar observation has been reported by for example, Mustafa and 

Khan (2015). The viscoplastic parameter modifies the shear term f /// 

in the momentum boundary layer equation (8) with an inverse factor, 

1/β, and effectively assists momentum diffusion for β >1. This leads 

to a thinning in the hydrodynamic boundary layer and associated 

deceleration. The case β = 0 which corresponds to a Newtonian fluid 

is not considered. An increase in viscoplastic parameter however 

decreases both temperature and nano-particle concentration 

magnitudes throughout the boundary layer, although the reduction is 

relatively weak. Thermal and nanoparticle concentration boundary 

layer thickness are both suppressed with greater viscoplasticity of the 

nanofluid. 

Figs. 4a-4c depicts the effect of Prandtl number (Pr) on the 

velocity  f  , temperature   and nanoparticle concentration  

distributions with transverse coordinate (). Fig. 4a shows that with 

increasing Prandtl number there is a strong deceleration in the flow. 

The Prandtl number expresses the ratio of momentum diffusion rate to 

thermal diffusion rate. When Pr is unity both momentum and heat 

diffuse at the same rate and the velocity and thermal boundary layer 

thicknesses are the same. With Pr > 1 there is a progressive decrease 

in thermal diffusivity relative to momentum diffusivity and this serves 

to retard the boundary layer flow. Momentum boundary layer 

thickness therefore grows with Prandtl number on the surface of the 

sphere. It is also noteworthy that the peak velocity which is achieved 

close to the sphere surface is systematically displaced closer to the 

surface with greater Prandtl number. The asymptotically smooth 

profiles of velocity which decays to zero in the free stream, also 

confirm the imposition of an adequately large infinity boundary 

condition Fig. 4b indicates that increasing Prandtl number also 

suppresses temperatures in the boundary layer and therefore reduces 

thermal boundary layer thickness. Prandtl number is inversely 

proportional to thermal conductivity of the viscoplastic nanofluid. 

Higher thermal conductivity implies lower Prandtl number and vice 

versa. With greater Prandtl number, thermal conductivity is reduces 

and this inhibits thermal conduction heat transfer which cools the 

boundary layer. 

Figs. 5a – 5c illustrate the evolution of velocity, temperature and 

concentration functions with a variation in the Lewis number, is 

depicted. Lewis number is the ratio of thermal diffusivity to mass 

(nano-particle) species diffusivity. Le =1 which physically implies that 

thermal diffusivity of the nanofluid and species diffusivity of the nano-

particles are the same and both boundary layer thicknesses are 

equivalent. For Le < 1, mass diffusivity exceeds thermal diffusivity 

and vice versa for Le > 1. Both cases are examined in figs 5a-5c. In fig 

5a, a consistently weak decrease in velocity accompanies an increase 

in Lewis number. Momentum boundary layer thickness is therefore 

increased with greater Lewis number. This is sustained throughout the 

boundary layer. Fig. 5b shows that increasing Lewis number also 

depresses the temperature magnitudes and therefore reduces thermal 

boundary layer thickness. Therefore, judicious selection of nano-

particles during doping of polymers has a pronounced influence on 

velocity (momentum) and thermal characteristics in enrobing flow, 

since mass diffusivity is dependent on the nature of nano-particle 

species in the base fluid. Fig 5c demonstrates that a more dramatic 

depression in nano-particle concentration results from an increase in 

Lewis number over the same range as figs. 5a, b. The concentration 

profile evolves from approximately linear decay to strongly parabolic 

decay with increment in Lewis number. 
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(a) 

 

 
 

(b) 
 

 
(c) 

 

Fig. 4 Effect of Pr (a) velocity profiles, (b) temperature profiles, and 

(c) concentration profiles 

    

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5 Effect of Le (a) velocity profiles, (b) temperature profiles, and 

(c) concentration profiles 
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(a) 

 
(b) 

 
(c) 

Fig. 6 Effect of N on (a) velocity profiles, (b) temperature profiles, 

and (c) concentration profiles 
 
 

Figs. 6a – 6c present the effects of the buoyancy ratio N on the 

velocity, temperature and nano-particle concentration profiles. In 

general, increases in the value of N have the prevalent to cause more 

induced flow along the sphere surface. This behavior in the flow 

velocity increases in the fluid temperature and volume fraction species 

as well as slight decreased in the thermal and species boundary layers 

thickness as N increases. 

 
(a)

 
(b) 

 
(a) 

 

Fig. 7 Effect of Nt on (a) velocity profiles, (b) temperature profiles, 

and (c) concentration profiles 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 8 Effect of Nb on (a) velocity profiles, (b) temperature profiles, 

and (c) concentration profiles 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 9 Effect of    on (a) velocity profiles, (b) temperature profiles, 

and (c) concentration profiles 
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Figs. 7a – 7c illustrates the effect of the thermophoresis parameter 

(Nt) on the velocity  f  , temperature   and concentration    

distributions, respectively. Thermophoretic migration of nano-

particles results in exacerbated transfer of heat from the nanofluid 

regime to the sphere surface. This de-energizes the boundary layer and 

inhibits simultaneously the diffusion of momentum, manifesting in a 

reduction in velocity i.e. retardation in the boundary layer flow and 

increasing momentum (hydrodynamic) boundary layer thickness, as 

computed in fig. 7a. Temperature is similarly decreased with greater 

thermophoresis parameter (fig. 7b). Conversely there is a substantial 

enhancement in nano-particle concentration (and species boundary 

layer thickness) with greater Nt values. Similar observations have been 

made by Kunetsov and Nield (2014) and Ferdows et al. (2014) for 

respectively, both non-conducting Newtonian and electrically-

conducting Newtonian flows. 

Figs. 8a – 8c depict the response in velocity  f  , temperature 

   and concentration   functions to a variation in the Brownian 

motion parameter (Nb). Increasing Brownian motion parameter 

physically correlates with smaller nanoparticle diameters, as 

elaborated in Rana et al. (2016). Smaller values of Nb  corresponding 

to larger nanoparticles, and imply that surface area is reduced which in 

turn decreases thermal conduction heat transfer to the sphere surface. 

This coupled with enhanced macro-convection within the nanofluid 

energizes the boundary layer and accelerates the flow as observed in 

fig. 8a. Similarly the energization of the boundary layer elevates 

thermal energy which increases temperature in the viscoplastic 

nanofluid. Fig 8c however indicates that the contrary response is 

computed in the nano-particle concentration field. With greater 

Brownian motion number species diffusion is suppressed. Effectively 

therefore momentum and nanoparticle concentration boundary layer 

thickness is decreased whereas thermal boundary layer thickness is 

increased with higher Brownian motion parameter values. 

Figs. 9a – 9c present the distributions for velocity, temperature 

and concentration fields with stream wise coordinate  , for the 

viscoplastic nanofluid flow. Increasing  values correspond to 

progression around the periphery of the sphere, from the leading edge 

(=0). As  increases, there is a weak deceleration in the flow (fig. 9a), 

which is strongest nearer the sphere surface and decays with distance 

into the free stream. Conversely there is a weak elevation in 

temperatures (fig. 9b) and nano-particle concentration magnitudes (fig. 

9c) with increasing stream wise coordinate. 

 

Table. 2 Values of skin friction (Cf ) for different 

β,Pr,Le and   

 

β  Pr  Le  

Cf  

00   
045   

090   

1.0 

7.0 

5.0 

 

0 0.6090 0.7963 

2.0 0 0.5602 0.7336 

 3.0 0 0.5412 0.7086 

4.0 0 0.5306 0.6953 

5.0 0 0.5245 0.6870 

1.5 

10 0 0.5431 0.7107 

25 0 0.4646 0.6094 

50 0 0.4147 0.5446 

75 0 0.3889 0.5112 

100 0 0.3721 0.4892 

 

10 0 0.5656 0.7401 

20 0 0.5561 0.7278 

30 0 0.5516 0.7219 

40 0 0.5488 0.7182 

50 0 0.5468 0.7156 

Table. 3 Values of Nusselt number (Nu) for different 

β,Pr,Le and  

β  Pr  Le  
Nu  

00   
045   

090   

1.0 

7.0 

5.0 

 

0.6907 0.7872 0.7026 

2.0 0.7345 0.8381 0.7476 

3.0 0.7528 0.8655 0.7620 

4.0 0.7630 0.8788 0.7726 

5.0 0.7695 0.8843 0.7799 

1.5 

10 0.8011 0.9077 0.8119 

25 1.0901 1.2083 1.0319 

50 1.4885 1.4908 1.1908 

75 1.9317 1.7054 1.2147 

100 2.4835 1.9114 1.5825 

 

10 0.6946 0.8068 0.7225 

20 0.6756 0.7984 0.7159 

30 0.6665 0.7949 0.7130 

40 0.6610 0.7929 0.7111 

50 0.6571` 0.7917 0.7099 

 
Table. 4 Values of  Sherwood number (Sh) for different 

β,Pr,Le and  

β  Pr  Le  
Sh  

00   
045   

090   

1.0 

7.0 

5.0 

 

0.3176 0.3281 0.2935 

2.0 0.3329 0.3451 0.3080 

3.0 0.3389 0.3479 0.3169 

4.0 0.3422 0.3485 0.3196 

5.0 0.3442 0.3525 0.3215 

1.5 

10 0.2305 0.2326 0.2086 

25 -0.0992 -0.1117 -0.0587 

50 -0.5282 -0.4267 -0.2493 

75 -0.9882 -0.6574 -0.2894 

100 -1.5510 -0.8731 -0.2085 

 

10 0.6187 0.6457 0.5748 

20 0.9519 0.9997 0.8923 

30 1.1704 1.2342 1.1023 

40 1.3379 1.4151 1.2641 

50 1.4761 1.5648 1.3979 

 
Table. 5 Values of skin friction (Cf) for different 

, ,Nb Nt N and  
 

Nb  Nt  N  

Cf  

00 

 

045   
090   

0.1 

0.02 

0.1 

0 0.5665 0.7420 

0.2 0 0.5643 0.7395 

0.3 0 0.5637 0.7386 

0.4 0 0.5618  0.7366 

0.02 

0.03 0 0.5837 0.7648 

0.05 0 0.5975 0.7820 

0.1 0 0.6289 0.8226 

0.2 0 0.6904 0.9010 

 

0 0 0.5219 0.6834 

0.2 0 0.6310 0.8268 

0.4 0 0.7349 0.9618 

0.6 0 0.8333 1.0906 
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Tables 2-4 presents the influence of increasing non-Newtonian 

Casson parameter β, Prandtl number (Pr) and Lewis number (Le) on 

skin friction, heat transfer rate and mass transfer rate, along with a 

variation in the traverse coordinate (ξ). Where heat transfer rate and 

mass transfer rate both are accelerate with increasing Casson 

parameter β, but skin friction is decreased. With increasing Prandtl 

number, the skin friction is generally decreased, whereas heat transfer 

rate is enhanced. Mass transfer rate is however decreased with 

increasing Prandtl number. Whereas increasing  , decreases the Skin 

friction but increases the Nusselt number and Sherwood number. With 

increasing Lewis number, skin friction and Nusselt number both are 

reduces, but mass transfer rate is enhanced. 

Tables 5-7 presents the influence of increasing Brownian motion 

parameter Nb, thermophoretic parameter Nt and buoyancy ratio N on 

skin friction, heat transfer rate and mass transfer rate, along with a 

variation in the traverse coordinate (ξ). With increasing Brownian 

motion parameter Nb, the skin friction is generally increased, whereas 

heat transfer rate and Mass transfer rate are however increased with 

increasing Brownian motion parameter Nb. With increasing buoyancy 

ratio N, the skin friction, heat transfer rate and Mass transfer rate are 

increased with increasing buoyancy ratio N. With increasing 

thermophoretic parameter Nt, the skin friction is slightly increased, 

whereas heat transfer rate is increased. Mass transfer rate is however 

decreased with increasing thermophoretic parameter Nt.  
 

Table. 6 Values of Nusselt number (Nu) for different 

, ,Nb Nt N and   
 

Nb  Nt  N  

Nu  

00   
045   

090   

0.1 

0.02 

0.1 

0.1770 0.8189 0.7212 

0.2 0.2692 0.8313 0.7247 

0.3 0.3939  0.8390 0.7366 

0.4 0.5555 0.8454 0.7586 

0.02 

0.03 0.7311 0.8245 0.7323 

0.05 0.7573 0.8223 0.7393 

0.1 0.8256 0.8277 0.7472 

0.2 0.9782 0.9182 0.7629 

 

0 0.6895 0.7847 0.7003 

0.2 0.7437 0.8502 0.7580 

0.4 0.7877 0.9083 0.7984 

0.6 0.8252 0.9454 0.8415 
 

Table. 7 Values of  Sherwood number (Sh) for different 

, ,Nb Nt N and  
 

Nb

 
Nt  N  

Sh  

00   
045   

090   

0.1 

0.02 

0.1 

0.6236 0.6293 0.5625 

0.2 0.6759 0.6645 0.5937 

0.3 0.7029 0.6756 0.6043 

0.4 0.7222 0.6853 0.6084 

0.02 

0.03 0.1576 0.1526 0.1433 

0.05 -0.2103 -0.1945 -0.1761 

0.1 -1.3137 -1.0594 -0.9285 

0.2 -4.4868 -3.3212 -2.3400 

 

0 0.3103 0.3205 0.2859 

0.2 0.3419 0.3534 0.3166 

0.4 0.3663 0.3769 0.3443 

0.6 0.3865 0.4034 0.3607 
 

6. CONCLUSIONS 
 

A theoretical study has been conducted to simulate the non-Newtonian 

viscoplastic nanofluid boundary layer flow in enrobing processes from 

an isothermal sphere using the Buonjiornio formulation. The 

transformed momentum, heat and species boundary layer equations 

have been solved computationally with Keller’s finite difference 

method. Computations have been verified with Nakamura’s 

tridiagonal method. The present study has shown that: 

 

(i) Increasing viscoplastic (Casson) parameter accelerates the flow 

and also decreases thermal and nano-particle concentration 

boundary layer thickness. 

(ii) Increasing Prandtl number retards the flow and also decreases 

temperatures and nano-particle concentration values. 

(iii) Increasing stream wise coordinate decelerates the flow whereas it 

enhances temperatures and species (nano-particle) 

concentrations. 

(iv) Increasing Brownian motion accelerates the flow and enhances 

temperatures whereas it reduces nanoparticle concentration 

boundary layer thickness. 

(v) Increasing thermophoretic parameter increasing momentum 

boundary layer thickness and nanoparticle boundary layer 

thickness whereas it reduces thermal boundary layer thickness.  

(vi) Increasing Buoyancy ratio parameter enhances the flow whereas 

it reduces temperature and nano-particle (species) concentrations. 
 

The current study has explored an interesting viscoplastic model 

for nanomaterials which are currently of interest in aerospace coating 

applications. Time-dependent effects have been neglected. Future 

studies will therefore address transient enrobing viscoplastic nanofluid 

transport phenomena for alternative geometries (cylinder, wedges, 

Cone, Plates), also of interest in aerospace materials fabrication and 

will be communicated imminently. 
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NOMENCLATURE 
 

A Radius of the sphere (m) 

C dimensional concentration 

Cf skin friction coefficient 

cp specific heat at constant pressure (kJ/kg.oC) 

DB Brownian diffusion coefficient 

DT  thermophoretic diffusion coefficient 

f          non-dimensional stream function 

Gr      Grashof number 

g         acceleration due to gravity (m/s2) 

k         thermal conductivity of fluid (W/m K) 

T         temperature (C) 

Nu      Local Nusselt Number 

Sh       Sherwood number 

u, v     non-dimensional velocity components   

           along the x- and y- directions, respectively 

x         stream wise coordinate (m) 

y         transverse coordinate (m) 

 

Greek Symbols  

  thermal diffusivity (m2 / s) 

  non-Newtonian Casson parameter 

  the ratio of nanoparticle heat capacity and the base fluid 

heat capacity 

  dimensionless transverse coordinate  

 ν kinematic viscosity (m2 / s) 

  non-dimensional temperature 
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  density of nanofluid (kg m-3) 

  dimensionless steam wise coordinate 

  dimensionless stream function 

 

Subscripts  

 w conditions on the wall 

  free stream conditions 
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