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ABSTRACT 

Numerical experiments involving heat transfer were performed to analyze the influence of both fin thermo-geometric parameter and cooling 
boundary conditions on the temperature distribution and the efficiency of convective cooled inhomogeneous rectangular fin. The inhomogeneity of 
the fin is due to both temperature dependent thermal conductivity and convection heat coefficients. The analysis was facilitated by the use of the 
differential transformation method, which can solve nonlinear differential equation. A specific application is first made for temperature/efficiency 
homogeneous fin predictions and the results are in excellent agreement with standard exact results. Predictions of inhomogeneous fin temperature 
and efficiency for three different convection conditions are then performed. The thermo-geometric parameter range for numerical experiments was 
from 0.0 to 1.0. The results reveal that the thermo-geometric parameter plays a great role in the amount of fin temperature distribution and efficiency. 
The temperature distribution within the fin is low for high thermo-geometric parameter value and increases rapidly for large values of this parameter. 
For geometric parameter greater than 0.3, the use of rectangular fin will be optimal for heated or cooled process having heat transfer coefficient 
increased with increased temperature as generally accounted in laminar or turbulent natural convection.  On the other hand, the efficiency of the 
inhomogeneous fin does not depend on cooling conditions when the thermo-geometric parameter is less than 0.3.  

Keywords: Conduction, cooling conditions, Differential transformation method, Heat transfer, Rectangular fins.  

 

1. INTRODUCTION 

There are *many concepts of cooling electrical motors and generators. If 
the machine can be cooled more efficiently, the amount of copper used 
can decrease and therefore the price of material needed for the machine 
may also reduce, and the machine will be more cost effective. For this 
reason, one way to meet these challenges and trade-offs is through the 
engineering of fin geometry and fin density of heat transfer devices 
such as heat exchangers and cold plates (Wen and Yeh, 2015; Pal and 
Majumder, 2016). The fins are therefore presented everywhere in 
engineering and have a major role in the refrigeration process, air 
conditioning, and aerospace applications (Kraus et al., 2001; Boonloi 
and Jedasadaratanachai, 2014). In order to predict the thermal heat 
behavior of fins, developments of accurate tools for the analysis of heat 
transfer are required. 

Several analytical and semi-analytical methods have been 
proposed to solve the heat conduction problem through inhomogeneous 
fins including power series (Díez et al., 2009), the Adomian 
decomposition (Bhowmik et al., 2013); the homotopy (Moitsheki et al., 
2015), the variation iterative and the differential transform methods 
(Joneidi et al., 2009). However, the differential transformation method 
(DTM) is well-known as an approximate analytical solution which 
provides more accurate results compared to other techniques such as the 
Adomian decomposition method and the variation iterative method 
(Salehi et al., 2012). The DTM method is based on the Taylor series 
expansion and constructs an analytical solution in a polynomial form by 
using the iterative procedure. This method can be used for solving 
analytically and numerically, linear and nonlinear system of ordinary 

                                                 
* Corresponding author Email: herve.kamdem@univ-dschang.org 

differential equation. It has been used by many authors for heat 
conduction predictions through fins with various boundary conditions 
(Joneidi et al., 2009; Kundu and Lee, 2012; Torabi and Aziz, 2012). 
These previous studies mostly investigated the ability of the DTM to 
deal with nonlinear heat conduction problems.  

In this work, the influence of both fin thermo-geometric parameter 
and cooling boundary conditions on inhomogeneous fin efficiency and 
temperature distribution is investigated using a comprehensible DTM 
formulation. In the development of the method, the heat conduction 
through inhomogeneous rectangular fin subjected to convective 
boundary conditions is written in term of fin profile. The 
inhomogeneity of the fin is due to the variable thermal conductivity. 
Three convection conditions corresponding to cooling with constant 
convection coefficient, growing and decaying convection coefficient 
with fin temperature will be considered.  

 

2. DESCRIPTION OF THE PROBLEM 

The problem consists of straight rectangular fin with the length (L), the 
height (b) and the thickness (w) as shown in Fig. 1.  The fin surface 
temperature is maintained lower than the surrounding air to be cooled. 
The system allows a fast rise of temperature and maintains it depending 
to the operation. This is done through the cooled fluid that generally can 
be water, air, oil, etc. For the mathematical formulation developed here, 
the one-dimensional heat conduction in the rectangular fin under steady 
state conditions is assumed. Moreover, the temperature at the basic 
surface is considered constant and the flux is assumed to be zero at the 
bottom. 
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Fig. 1 Sketch diagram for the longitudinal fin with rectangular profile 
 
The energy balance based on the Fourier and Newton laws for 
longitudinal fins as a function fin profile can be written as 
 
�

��
� �(�)�(�)

��(�)

��
� − ℎ(�)(�(�) − ��) = 0 ,   0 ≤ � ≤ �        (1) 

 
where the characteristic profile can be given by (Kraus et al., 2001) 
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w
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�

x

b
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(���ʋ )(��ʋ )

                                                                           (2) 

 
For rectangular profile the parameter ʋ = 1 2⁄  . In Eq. (1), the thermal 
conductivity of the fin material is a linear function of the temperature  
 

� = �� [1 + (� − ��)]                                                                           (3) 
 
where �� is the thermal conductivity at ambient temperature and  is 
the thermal expansion coefficient. The convection coefficient is also 
dependent on the temperature as (Bhowmik et al., 2013) 
 

ℎ(�) = ℎ�  �
� − ��

�� − ��
�

�

                                                                                (4) 

 
where ℎ� is the heat transfer coefficient at ambient temperature and the 
real � specifiying the type of cooling mode  may vary for practical 
applications between -3 and 3 (Kraus et al., 2001). It should be noted 
that the heat transfer coefficient is constant for n = 0, whereas this 
coefficient growth with the fin temperature for laminar natural 
convection, turbulent natural convection, nucleate boiling and 
radiation. The heat transfer coefficient decays with fin temperature for 
laminar film boiling or condensation. In order to analyse these three 
classes of convection conditions, cases with n = -1, 0 and 1, should be 
considered in this work. The boundary conditions associated to the 
problem are 
 
�⌋�� � = ��                                                                                                   (5�) 
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��
�

�� �
= 0                                                                                                   (5�) 

 
The fin efficiency can be evaluated as the ratio of the heat transfer rate, 
at the fin base to its ideal transfer rate, if the entire fin were at the same 
temperature as its base 
 

� =   
��

��
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∫ � (� − ��)��
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�

��(�� − ��)
                                                                 (6) 

 
where U is the perimeter of the convective heat transfer surface. 
Considering the following dimensionless parameters 
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The parameter � is the gradient of the thermal conductivity. The 
problem formulation in dimensionless variables is 
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with the fin characteristic profile 
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Considering the dimensionless variable, the fin efficiency becomes 
  

� = ∫ ()�                                                                                             
�

�
 (11) 

 
Table 1 One-dimensional DTM fundamental operations 
 
       Original Functions                     Transform Functions 
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3. DIFFERENTIAL TRANSFORM SOLUTION 

3.1 Basic Concept of the Differential Transform Method 
Let f(x) be the analytic function in a certain domain D and let �� be a 
point of this domain. The Taylor series representation of this function is 
given by (Kundu and Lee, 2012; Torabi and Aziz, 2012) 
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                                       (12) 

 
The differential transform of the original function f(x) can be expressed 
as follow (Arslanturk, 2005) 
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                                                                (13) 

 
where H is a constant and defined the space limit of the differential 
spectrum. Therefore the transformed function F(k) is defined for all 
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variable such that � ∈ [0, � ]. The inverse transformation of the equation 
(13) is given by the following formula (Joneidi, 2009)  
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�!
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�� �

�
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     ∀ � ∈  �                  (14) 

 
Comparing expressions (13) and (14), it is found that 
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                                                                   (15) 

    
Mathematical operations performed by the DTM are presented in table1. 
The DTM represents a Taylor series of the original function f(x). In this 
work all expansions are taken around the origin xi = 0 and the 
convergence is ensured by choosing the value H = 1 and the limit number 
of discrete coefficient equal to N (Kundu and Lee, 2012; Torabi and 
Aziz, 2012).  
 

3.2 Application of DTM to conduction heat transfer equation 
Considering the differential transformations of table1, the transformation 
of the Eq. (8) leads to 
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For a rectangular profile as described in Fig. 1, the profile function of the 
system is constant and independent to the position. The transform profile is 
 
�(�) = � �(�) 2⁄                                                                                          (17) 

  
Introducing Eq. (17) in Eq. (16) leads to 
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where  = � 2 ℎ��� �� �⁄  is the fin thermo-geometric characteristic 
parameter. The boundary conditions Eq. (9) become, respectively 
 

� (�) = 1        

�

�� �

                                                                                     (19�) 

 
(1) = 0                                                                                                     (19�) 

In fact, knowing that the solution of the problem arises in the form (15), 
the second discrete value is zero (1) can be deduced from the second 
boundary condition. Then, other values of discrete coefficients are deduced 
from the first discrete value (0). 
 

3.3 Cases Studies 
In developing the methods of solution, three cooling conditions will be 
investigated: heat transfer coefficient may decay with the temperature, 
constant or growing with the temperature. For the first problem, the heat 
transfer coefficient is assumed to decrease as temperature increases, which 
correspond to � = −1 in Eq. (4). In such case, Eq. (18) reduces to 
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Then, the following discrete coefficients are obtained  
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Therefore, the temperature distribution within the fin is approximated in 
Taylor series of dimensionless coordinate as  
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with 
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and where the constant �� is determined by using the discrete coefficients  
together with the first boundary condition, Eq. (19a), as  
 

� ��

�

�� �

      =  1                                                                                             (22) 

                                 

The nonlinear equation (22) is solved using the fsolve command under the 

Matlab environment. In Eqs. (21) and (22), the developments are limited 

the nineteen order of the powers of  since it was found that the solution is 

sufficiently accurate at this order. Considering  Eqs. (11) and (21), the fin 

efficiency expression can be written in Taylor series of the thermo-

geometric parameter as 
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with 
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The second problem consists of a rectangular fin cooling by air 

having a constant heat transfer coefficient that is � = 0 in the Eq. (4). 
Then, Eq. (18) reduces to 
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Hence, the following discrete coefficients can be deduced  
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(2� + 1) = 0    � = 0, 1, 2, 3, … . 
 
Substituting these values of the discrete coefficients in Eq. (15), the 
dimensionless temperature distribution within the fin is approximated in 
Taylor series given by Eq. (21) where  
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and the coefficient �� is calculated with the same procedure as 
previously based on Eq. (22). The efficiency is expressed in Taylor 
series of the thermo-geometric parameter given by Eq. (23) with the 
following coefficients  
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In the last problem studied, the heat transfer coefficient of the 

cooling fluid increased with increased fin temperature par setting � = 1 
in Eq. (4).  Therefore, Eq. (18) becomes  
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The following discrete coefficients can be deduced  
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(2� + 1) = 0    � = 0, 1, 2, 3, … . 
 
The dimensionless temperature distribution within the fin is expressed 
in Taylor series of Eq. (21) where 
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Before substituting in the temperature solution Eq. (21) it is convenient 
to apply the same treatment based on Eq. (22) to derive the unknown 
discrete coefficient ��. The fin efficiency for this case can also 
approximated in Taylor series given by Eq. (23), where 
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3. RESULTS AND DISCUSSION 

In the first application of the DTM, a homogeneous rectangular fin with 
constant thermal conductivity and heat transfer coefficients is 
considered. It is also assumed that a constant heat transfer coefficient or 
a heat transfer coefficient decrease as fin temperature increased. This 
test problem served as validation of the DTM solution since the exact 
solution can be obtained using classical solution of ordinary differential 
equation (Kraus et al., 2001).  
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DTM predictions

Exact results n = 0

n = -1

In Figs. 2 and 3 an excellent accuracy can be seen between DTM 
temperature and efficiency predictions and exact results for the two 
convection cooling conditions. This shows that the DTM is an efficient 
tool for the analysis of heat conduction problem through fin. Still 
referring to Figs. 2 and 3, a significant difference between cooling with 
a constant heat transfer coefficient and a heat transfer decreased with 
increased temperature is seen to be the temperature depend heat transfer 
coefficient effect on the cooling of the rectangular fin. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Comparison of DTM and exact solution for the fin temperature 

when ψ = 1 and β = 0 for two convection conditions: n = -1 and 
n = 0 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 3 Rectangular fin efficiency versus thermo-geometric 

parameter for the constant thermal conductivity and for two 
convection conditions: n = -1 and n = 0 

 
The temperature profile with convection condition using constant heat 
transfer coefficient is much higher than for the convection condition 
with heat transfer decreased with increased fin temperature. Therefore, 
rectangular fin for cooling process will be more efficient for cooling 
process having a heat transfer decreased with increased fin temperature 
as appearing in Fig. 3, which also compared rectangular efficiency for 
the two cooling conditions considered.  

The DTM is then used to investigate the effect of temperature 
dependent thermal conductivity and/or temperature depend heat transfer 
coefficient effects on the cooling of the rectangular fin. It should be 
noted, that the thermal conductivity variation with the temperature led 
to a nonlinear equation of conduction in the fin which is difficult to 
solve analytically. Also, the heat transfer coefficient increased with 
increased fin temperature yield a governing equation of conduction 
through the fin difficult to solve analytically even when for constant 

thermal conductivity. Comparisons of predicted temperature profiles for 
three gradients of the thermal conductivity and three cooling conditions 
are shown in Figs. 4 when the fin thermo-geometric characteristic 
parameter is equal to one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Temperature for variable thermal conductivity for various 

cooling conditions n = {-1, 0, 1} when the fin thermo-
geometric parameter Ψ = 1 

It is observed in Fig. 4 that the increases in values of the thermal 
conductivity result in increases of the fin temperature for the three 
cooling conditions. Moreover, it is noticed that the upper value of the 
temperature profile for cooling condition with heat transfer coefficient 
decreased as the fin temperature increased when compared with cooling 
condition with constant heat transfer coefficient for each gradient of the 
thermal conductivity considered. However, it is observed a lower value 
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of temperature profile for cooling condition with heat transfer 
coefficient increased as the fin temperature increased when compared 
with cooling condition with constant heat transfer coefficient for each 
gradient of the thermal conductivity considered. These behaviors are 
much more appreciable in Figs. 5, which illustrates the effect of 
different thermal conductivity gradient of the fin temperature subject of 
various cooling conditions when the fin thermo-geometric characteristic 
parameter is equal to one. It is noted in Figs. 5 that, for a constant 
thermal conductivity, the difference between cooling with constant heat 
transfer coefficient and heat transfer coefficient increased with 
increased fin temperature is insignificant, whereas there are 
considerable differences between the three cooling conditions when the 
thermo-geometric characteristic parameter is different from zero. 

 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig. 5 Comparison of temperature for different gradient of the thermal 

conductivity and for various cooling conditions when the 
thermo-geometric parameter Ψ = 1 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Fin temperature profile for different convective conditions and 

for the thermo geometric parameter Ψ = {0.2, 0.8, 1.0} when 
the thermal conductivity gradient β = 0.5 

Examination of Fig. 6 along with the corresponding comparisons of 
rectangular fin temperature profile for different convective conditions 
and for thermo-geometric parameter Ψ = {0.2, 0.8, 1.0} when the 
gradient of the thermal conductivity β = 0.5, reveals that the thermo-
geometric parameter plays a great role in the amount of fin temperature 
resulting from the cooling process is low for high thermo-geometric 
parameter value, but increases rapidly for the lower thermo-geometric 
parameter value. By comparing the predicted temperature for the 
different cooling conditions for rectangular fin parameter value, it is 
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Convection conditions

noted that the temperature is higher when the heat transfer coefficient 
decreased with increased temperature, whereas it is lower for the heat 
transfer coefficient increased with increased temperature.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Fin efficiency versus thermo-geometric parameter for three 

convection conditions for the constant conductivity 

Accordingly, this is well shown in Fig. 7 where the change of fin 
efficiency with thermo-geometric parameter for the thermal 
conductivity gradient is higher when the heat transfer coefficient 
increased with increased temperature whereas it is lower when the heat 
transfer coefficient decreased with increased temperature. Also, it can 
be observed in Fig. 7 that the fin efficiency decreases with increasing 
values of the thermo-geometric fin parameter. For rectangular fin 
thermo-geometric parameter less than 0.3, cooling conditions have 
identical effect on the rectangular fin, while for its value greater than 
0.3 the fin efficiency therefore depends on the nature of the heat 
convection cooling condition. The cooling condition with the heat 
transfer coefficient increased with increased temperature led to higher 
efficiency compared to the two other conditions. 

4. CONCLUSIONS 

In this study, a one-dimensional differential transformation method is 
applied to solve nonlinear differential equation arising in stationary heat 
conduction in convective straight rectangular fin with temperature-
dependent thermal conductivity. Three different cooling convection 
conditions have been considered: constant heat transfer coefficient, heat 
transfer increased and decreased with the fin temperature. The DTM 
applied to the heat conduction equation in the fin as its profile yield 
expression suitable for the numerical analysis. The results obtained are 
summarized as follows: 
o An excellent agreement is observed between DTM temperature and 

efficiency predictions and exact results for homogeneous 
rectangular fin.  

o The temperature distribution and efficiency of homogeneous and 
inhomogeneous fin can be accurately described by a Taylor series 
of order eight. 

o The temperature distribution within the fin depends on both the fin 
thermo-geometric parameter and cooling boundary condition.  

o The fin efficiency decreased with increasing thermo-geometric 
parameter.  

o The fin efficiency is lower for large value of the thermo-geometric 
parameter, whereas it is independent of cooling condition for of the 
thermo-geometric parameter less than 0.3.  

The effect of the cooling condition is prominent for the heat transfer 
coefficient increasing with increasing temperature as generally 
accounted laminar or turbulent natural convection. 

NOMENCLATURE 

b               height of the fin (m) 

h   heat convectivity coefficient (� ∙ ��� ∙ ��� ) 

K              thermal conductivity heat coefficient  (� ∙ ��� ∙ ���) 

q  heat flux (W/m2)                                                                              
T    temperature ( K )                                               
U  section perimeter (m)                                                                              
x  coordinate (m)  
p  profile function 
P  profile transform function 
W  thickness of the fin (m)   
 
Greek Symbols  
  dimensionless temperature      
  thermal expansion coefficient ( ���) 

  dimensionless temperature      
  dimensionless temperature transform function                                       
   fin efficiency  
  parameter of the profile function 
Ψ             thermo-geometric parameter 
  dimensionless coordinate  
 
Subscripts  
b fin base 
i ideal parameter 
∞ ambient environment 
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