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ABSTRACT

In this paper we study the effects of thermal radiation, heat and mass transfer on the unsteady magnetohydrodynamic(MHD) flow of a three
dimensional Casson nanofluid. The flow is subject to partial slip and convective conditions. The traditional model which includes the effects of
Brownian motion and thermophoresis is revised so that the nanofluid particle volume fraction on the boundary is not actively controlled. In this
respect the problem is more realistic. The dimensionless governing equations were solved using the spectral quasi-linearisation method. This work
aims to fill the gap in existing literature by showing the effects of porosity, magnetic field and stretching ratio parameter on the flow of the Casson
Nanofluid model over a porous linearly stretching sheet with the incorporation of the nanoparticles on the concentration boundary condition. It is
observed that increase in the unsteadiness of the flow tends to decrease the momentum, thermal and nanoparticles volume fraction profiles. The
results are benchmarked with previously published results.

Keywords: 3D-Casson Nanofluid; MHD; Porous linear stretching sheet; Spectral quasi-linearisation method.

1. INTRODUCTION

The flow of fluid over a stretching surface occurs in a variety of engineer-
ing processes with practical applications in areas like copper spiralling,
glass blowing, paper production, cord depiction, etc. Crane (1970) stud-
ied the convection boundary layer viscous flow over a linear stretching
sheet and presented a closed form exponential solution of the model equa-
tions. The problem has since been extended to other aspects of non-
Newtonian fluid, for instance, to include MHD effects and media porosity.
Bhattacharyya (2013) focused on boundary layer stagnation-point flow
of Casson fluid and heat transfer towards a shrinking/stretching sheet.
Again, Kumar et al. (2015) examined thermal diffusion and radiation ef-
fects on unsteady free convection flow In the presence of magnetic field
fixed relative to the fluid or the plate.

Khan and Pop (2010) investigated the problem of laminar fluid flow
which results from the stretching of a flat surface in a nanofluid by analyz-
ing the development of the steady boundary layer flow, heat transfer and
nanoparticle fraction over a stretching surface in a nanofluid. Makinde
and Aziz (2011) studied the boundary layer flow induced in a nanofluid
due to a linearly stretching sheet by investigating the effect of a convec-
tive boundary condition on the boundary layer flow, heat transfer and
nanoparticle fraction over a stretching surface. In the study, a convective
boundary condition was employed instead of the usual thermal conditions
of constant temperature or constant heat flux. Noghrehabadi et al. (2012a)

∗Corresponding author’s email id:sabya.mondal.2007@gmail.com

examined the combined effects of Brownian motion, thermophoresis and
magnetic field on the steady boundary-layer flow and heat transfer of
nanofluids over a linear isothermal stretching sheet. In most studies, it
is assumed that at a solid boundary, the fluid will have zero velocity rel-
ative to the boundary, but by considering Navier’s condition, the velocity
slip is assumed to be proportional to the local shear stress and this implies
there is a linear relationship between the slip velocity and the shear stress
at the wall. Slip effects analisis on the boundary layer flow and heat trans-
fer over a stretching surface in the presence of nanoparticle fraction, by
considering the boundary-layer heat transfer of nanofluids in the presence
of Brownian motion and thermophoresis forces over a stretching sheet
has been studied by Noghrehabadi et al. (2012b). Furthermore, Noghre-
habadi et al. (2013) studied effect of the slip boundary condition on heat
transfer characteristics of nanofluid flow over stretching sheet prescribed
convective boundary conditions using a model that took into account the
dynamic effects of nanoparticles. Their work showed that increasing the
slip factor and the Biot number strongly influenced the reduced Nusselt
and Sherwood numbers.

Casson fluid is a non-Newtonian fluid that behaves like an elastic
solid at low shear strain and like a Newtonian fluid above a critical yield
stress. Common examples of Casson fluids include tomato sauce and
blood. Mustafa et al. (2011) reported on the flow and heat transfer of a
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Table 1 Comparison of values for skin friction coefficients for various values of β and M with those of Nadeem et al. (2014)

β M a = 0 a = 0.5 a = 1

(1 + 1
β
)f ′′(0) (1 + 1

β
)f ′′(0) (1 + 1

β
)g′′(0) (1 + 1

β
)g′′(0)

Present Nadeem et al. (2014) Present Nadeem et al. (2014) Present Nadeem et al. (2014) Present Nadeem et al. (2014)
∞ 0 1.00000 1.0042 1.09310 1.0932 0.46520 0.4653 1.17372 1.1748
5 1.09545 1.0954 1.19743 1.1974 0.50961 0.5096 1.28575 1.2857
1 1.41421 1.4142 1.54587 1.5459 0.65790 0.6579 1.65989 1.6599
∞ 10 3.31662 3.3165 3.34204 3.3420 1.64590 1.6459 3.36724 3.667
5 3.63318 3.6331 3.66102 3.6610 1.80299 1.8030 3.68863 3.6886
1 4.69042 4.6904 4.72635 4.7263 2.32765 2.3276 4.76200 4.7620
∞ 100 10.04988 10.049 10.05818 10.058 5.02080 5.0208 10.06648 10.066
5 11.00909 11.0091 11.01818 11.0182 5.50001 5.5000 11.02727 11.0272
1 14.21267 14.2127 14.22441 14.2244 7.10048 7.1004 14.23614 14.2361

Casson fluid in the region of stagnation-point towards a stretching sheet
with effects of viscous dissipation. Bhattacharyya (2013) considered the
two-dimensional magnetohydrodynamic stagnation-point flow and heat
transfer of an electrically conducting non-Newtonian Casson fluid to-
wards a stretching sheet in the presence of thermal radiation. Mukhopad-
hyay et al. (2013) investigated the unsteady two dimensional flow of a
non-Newtonian fluid over a stretching surface with a prescribed surface
temperature. Nandy (2013) investigated the hydromagnetic boundary
layer flow and heat transfer of a non-Newtonian Casson fluid in the neigh-
borhood of a stagnation point over a stretching sheet in the presence of
velocity and thermal slip at the boundary. Nadeem et al. (2013) exam-
ined magnetohydrodynamic Casson fluid flow in two lateral dimensions
past a porous linear stretching sheet. Again, Nadeem et al. (2014) stud-
ied the steady flow of a Casson fluid in the presence of nanoparticles.
In the work, they considered the fact that the sheet was stretched in the
xy-plane and formulated a three-dimensional MHD boundary layer flow
model for a Casson nanofluid past a linearly stretching sheet with a con-
vective boundary condition. Kunetsov and Nield (2014) revisited their
model on natural convective boundary layer flow over a vertical plate by
incorporating the effects of Brownian and thermophoretic diffusion co-
efficients on the nanoparticle concentration at the boundary condition to
make the nanoparticle fraction at the boundary passive instead of actively
controlled by assuming that the nanoparticle flux at the wall is zero.

Fig. 1 Schematic flow diagram for the three dimensional problem

In this work, the fluid flow, heat and mass transfer in a Casson fluid
containing suspensions of nanoparticles is studied with combined effects
of various parameters entering the flow problem. The combined effects of
velocity slip with thermal convection condition on unsteady three dimen-
sional magnetohydrodynamic flow of a Casson nanofluid together with
an assumption of a zero nanoparticle flux at the concentration boundary

has not been studied to the best knowledge of the authors. The prob-
lem is formulated for a three dimensional magnetohydrodynamic bound-
ary layer flow of an unsteady Casson nanofluid past a linearly stretching
porous sheet with partial slip and convective boundary conditions, respec-
tively with the revised nanofluid model. The aim of this work is to study
the effects of thermal radiation, heat generation, porosity and some other
parameters discussed in the problem on the unsteady Casson nanofluid
model with respect to effects of partial slip, convective and Brownian
and thermophoresis diffusion coefficients on the momentum, thermal and
nanoparticle concentration boundary conditions respectively. Much em-
phasis is laid on the nanoparticles concentration boundary conditions
which is made to be more realistic due to the incorporation of the Brow-
nian and thermophoresis diffusion coefficients and its effect on the fluid
model studied. The partial differential equations of the fluid model are
transformed into a system of non-linear ordinary differential equations
using the similarity transformation and the non-dimensional governing
equations are solved using spectral quasilinearisation method(SQLM). A
valid comparison of the obtained solution with existing literature is given
and the effect of the dimensionless parameters on the flow, heat and mass
transfer of the fluid model is varied and discussed in tabular and graphical
forms.

2. MATHEMATICAL MODEL
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Fig. 2 Effect of the unsteadiness parameter A on the velocity profiles f ′(η)
and g′(η) when a = 0.5, He = 0.3, Nb = 0.3, Nt = 0.1, Ec =
0.1, Bi = NR = M = Λ = β = 0.5, δ = 0.1, P r = 10 and Le = 1.

Consider an unsteady three-dimensional laminar, incompressible Cas-
son nanofluid flow over linearly stretching porous sheet. The unsteady
fluid flow starts at t=0 with linear stretching velocities u =

cx

1− λt and

v =
by

1− λt along the x, y-plane respectively, where b, c are positive
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(a) δ = 0 No-Slip boundary condition
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Fig. 3 Effect of the Casson parameter β on the velocity profiles f ′(η) and g′(η)
for (a) No slip and (b) Navier velocity slip boundary condition when
A = 0.8, a = 0.5, He = 0.3, Ec = 0.1,M = Bi = NR = Λ =
0.5, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

constants and λ ≥ 0. The fluid is placed along the z-axis and a constant
magnetic field of strength B0 is applied in a direction normal to the sur-
face of the flow as shown in Figure 1. The rheological equation of state
for an isotropic and incompressible flow of a Casson fluid is expressed as
(Mukhopadhyay et al. (2013)):

τij =

2
(
µB +

py√
2π

)
eij if π > πc

2
(
µB +

py√
2πc

)
eij if π < πc,

(1)

where eij is the (i, j)th component of the rate of strain tensor, τij is the
(i, j)th component of the stress tensor, µB is the Casson coefficient of
viscosity, π = eijeij is the product of the rate of strain tensor with itself,
πc is the critical value of the product of the rate of strain tensor with itself
and py is the yield stress of the fluid. It is assumed that both the tem-
perature and the concentration at the surface vary with distance and time,
respectively from the origin. The temperature Tw and the concentration
Cw at the surface are given by:

Tw = T∞ +
b1x

2

(1− λt)2 , Cw = C∞ +
b2x

2

(1− λt)2 (2)

where b1 and b2 are constants. It should be noted that the expressions uw,
vw, Tw, and Cw are valid only for t ≤ 1/λ, but not when λ = 0. The
boundary layer equations for the three-dimensional incompressible Cas-
son nanofluid are given as (Nadeem et al. (2014); Ibrahim and Makinde
(2015); Sulochana et al. (2016)):

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

(
1 +

1

β

)
∂2u

∂z2
− σB2

o

ρf
u

−
(

1 +
1

β

)
ν

K
u, (4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

(
1 +

1

β

)
∂2v

∂z2
− σB2

o

ρf
v

−
(

1 +
1

β

)
ν

K
v, (5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

kT
ρcp

∂2T

∂z2
+
ν

cp

(
1 +

1

β

)(
∂u

∂z

)2

− 1

ρcp

∂qr
∂z

+
Qo
ρcp

(T − T∞) + τ

[
DB

∂C

∂z

∂T

∂z
+
DT
T∞

(
∂T

∂z

)2
]

(6)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT
T∞

∂2T

∂z2
, (7)

where u, v and w are the velocities in the x-, y- and z- directions respec-
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Fig. 4 Effect of the Magnetic field parameter M on the velocity profiles f ′(η) and
g′(η) when A = 0.8, a = 0.5, He = 0.3, Ec = 0.1, Bi = NR =
Λ = β = 0.5, δ = 0.1, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

tively, β = µB
√

2πc
py

is the Casson fluid parameter, ν is the kinematic
viscosity, Bo is the magnetic induction, K is the porous medium per-
meability, σ is the electrical conductivity, kT is the thermal diffusivity,
qr = − 4σ∗

3K∗
∂T4

∂z
is the radiation heat flux, Qo is the heat generation

constant, τ =
(ρc)p
(ρc)f

is the ratio of the heat capacity of the nanoparticle
material and the heat capacity of the fluid, DB is the Brownian diffusion
coefficient, DT is the thermophoretic diffusion coefficient. The associ-
ated boundary conditions are;

u = uw + uslip, v = vw, w = 0, −kf
(
∂T

∂z

)
= hf (Tw − T ) ,

DB
∂C

∂z
+
DT
T∞

∂T

∂z
= 0, at z = 0 (8)

u→ 0, v → 0, T → T∞, C → C∞, as z →∞. (9)
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Here,

uw =
cx

1− λt
, uslip = L

(
µB +

py√
2πc

)
∂u

∂z
,

L = N (1− λt)
1
2 and vw =

by

1− λt
(10)

where b and c are positive constants, uw and vw are stretching velocities
in the x- and y-directions respectively, L is the velocity slip factor, Tw is
the temperature at the wall, Cw is the concentration at the wall, the con-
stant values T∞ and C∞ are the temperature and concentration far away
from the wall respectively, kf is the thermal conductivity of the fluid and
hf is the convective heat transfer coefficient. Introducing the following
similarity transformations(see Mukhopadhyay et al. (2013); Mukhopad-
hyay (2013a)):

u =
cxf ′(η)

1− λt
, v =

cyg′(η)

1− λt
, w = −

√
cν

1− λt
(f(η) + g(η)) ,

a = b/c, η = z

√
c

ν(1− λt)
, Tw = T∞ +

b1x2

(1− λt)2
θ(η),

Cw = C∞ +
b2x2

(1− λt)2
φ(η) (11)

where a = b
c

is the ratio of the velocities in y- and x-directions, and the
prime denotes differentiation with respect to η. Using Eq. (11), continuity
is easily satisfied and Eqs. (4)-(7) together with the boundary conditions
(8) and (9), lead to the non-dimensional equations;(

1 +
1

β

)
f ′′′ −A

(
f ′ +

η

2
f ′′
)
− f ′2 + (f + g) f ′′

−
(
M +

(
1 +

1

β

)
Λ

)
f ′ = 0, (12)(

1 +
1

β

)
g′′′ −A

(
g′ +

η

2
g′′
)
− g′2 + (f + g) g′′

−
(
M +

(
1 +

1

β

)
Λ

)
g′ = 0, (13)

1

Pr
(1 +NR) θ′′ −A

(
2θ +

η

2
θ′
)
− 2f ′θ + (f + g) θ′

+

(
1 +

1

β

)
Ecf ′′2 +Nbθ′φ′ +Ntθ′2 +Heθ = 0, (14)

φ′′ −APrLe
(

2φ+
η

2
φ′
)
− 2PrLef ′φ+ PrLe (f + g)φ′

+
Nt

Nb
θ′′ = 0, (15)

subject to the boundary conditions

f(0) = 0, f ′(0) = 1 + δ

(
1 +

1

β

)
f ′′(0), g(0) = 0,

g′(0) = a, f ′(∞) = 0, g′(∞) = 0, (16)

θ′(0) = −Bi(1− θ(0)), Nbφ′(0) +Ntθ′(0) = 0,

θ(∞) = 0, φ(∞) = 0, (17)

where f(η), θ(η) and φ(η) are the velocity, temperature and concen-

tration respectively. The dimensionless parameters are; A =
λ

c
is the

unsteadiness parameter, M =
σB2

0

c ρ
is the magnetic parameter, Λ =

ν(1− λt)
Kc

is the porosity parameter, Pr =
νρcp
kT

is the Prandtl number,

He =
Q0

c ρcp
is the heat generation parameter, Nb =

τDB(Cw − C∞)

ν

is the Brownian motion parameter, Nt =
τDT (Tw − T∞)

νT∞
is the ther-

mophoresis parameter,Ec =
c2

b1cp
is the Eckert number,NR =

16σ∗T 3
∞

3k∗kT

is the radiation parameter, Le =
kT

DBρcp
is the Lewis number, δ =

NµB

√
c

ν
is the dimensionless velocity slip parameter, Bi =

hf
k0

√
ν

c
is

the Biot number.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

 

 
f’(η)
g’(η)

Λ = 0.0, 1.0, 2.0

Fig. 5 Effect of the Porosity parameter Λ on the velocity profiles f ′(η) and g′(η)
when A = 0.8, a = 0.5, He = 0.3, Ec = 0.1,M = Bi = NR =
β = 0.5, Nb = 0.3, Nt = 0.1, δ = 0.1, P r = 10 and Le = 1.

3. SKIN FRICTION, RATE OF HEAT TRANSFER

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

 

 
f’(η)
g’(η)

1.1 1.2 1.3

0.3

0.31

0.32

 

 

a = 0.2, 0.4, 0.6

Fig. 6 Effect of the Stretching ratio parameter a on the velocity profiles f ′(η) and
g′(η) when A = 0.8, He = 0.3, Ec = 0.1,M = Bi = NR = Λ =
β = 0.5, δ = 0.1, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

For the physical quantities of engineering primary interests, the local wall
shear stresses along the x- and y-directions, denoted by τwx and τwy
respectively and local surface heat flux qw are evaluated respectively from
the following definitions:

τwx =

(
µB +

py√
2πc

)(
∂u

∂z

)
z=0

,

τwy =

(
µB +

py√
2πc

)(
∂v

∂z

)
z=0

, qw = −k
(
∂T

∂z

)
z=0

. (18)

The dimensionless skin friction coefficient Cf on the surface along the
x and y directions denoted by Cfx and Cfy , respectively and the local
Nusselt number Nux are defined as:

Cfx =
τwx
ρu2

w

, Cfy =
τwy
ρu2

w

, Nux =
xqw

k(Tw − T∞)
, (19)

Hence using the similarity variables given in 11, we obtain

Re
1
2
x Cfx =

(
1 +

1

β

)
f ′′(0),(

x

y

)
Re

1
2
x Cfy = a

(
1 +

1

β

)
g′′(0), Re

− 1
2

x Nux = −θ′(0), (20)

where Rex = xuw(x)
ν

is the local Reynolds number.

4



Frontiers in Heat and Mass Transfer (FHMT), 8, 37 (2017)
DOI: 10.5098/hmt.8.37

Global Digital Central
ISSN: 2151-8629

4. NUMERICAL SOLUTION

The ordinary differential equations presented in Eqs. (12 - 15) are solved
numerically using the Spectral Quasi-linearisation method (SQLM). The
SQLM is a numerical technique in which the governing nonlinear equa-
tions are linearised using the Newton-Raphson based quasilinearization
method (QLM) which was first developed by Bellman and Kalaba (1965),
then integrated using Chebyshev spectral collocation method. Some of
the characteristics of the method are the fact that it is efficient in terms
of computational accuracy and exhibits fast convergence (Motsa et al.
(2014a); Motsa et al. (2014b)). The QLM technique uses the ideas of
Newton-Rapson method to linearise nonlinear ordinary differential equa-
tions (ODEs) or partial differential equations (PDEs) and the scheme is
derived by linearising the nonlinear components of the governing equa-
tions using Taylor series expansion with the assumption that the differ-
ence between the value of the unknown function at the current iteration
level denoted by r + 1 and the value of the previous iteration level de-
noted by r is small. For a detailed description of the method, see Motsa
(2013).

Method Description

The four system of nonlinear ordinary differential equations in four un-
knowns (f(η), g(η), θ(η) and φ(η)) given in Eqs. (12 - 15), are written
as a sum of its linear and nonlinear components and the nonlinear com-
ponents linearised using one term Taylor series for multiple variables to
give the following:

a0,rf
′′′
r+1 + a1,rf

′′
r+1 + a2,rf

′
r+1 + a3,rfr+1

+a4,rgr+1 = R1, (21)

b0,rg
′′′
r+1 + b1,rg

′′
r+1 + b2,rg

′
r+1 + b3,rgr+1

+b4,rfr+1 = R2, (22)

c0,rθ
′′
r+1 + c1,rθ

′
r+1 + c2,rθr+1 + c3,rf

′′
r+1 + c4,rf

′
r+1

+c5,rfr+1 + c6,rgr+1 + c7,rφ
′
r+1 = R3, (23)

φ
′′
r+1 + d1,rφ

′
r+1 + d2,rφr+1 + d3,rf

′
r+1 + d4,rfr+1

+d5,rgr+1 + d6,rθ
′′
r+1 = R4, (24)

where ai,r, bi,r, ci,r and di,r(i = 1, 2, 3, . . .) are known from previous
calculations and are given by:

a0,r = 1 +
1

β
, a1,r = fr −A

η

2
+ gr, a2,r = −A− 2f

′
r −M

−
(

1 +
1

β

)
Λ, a3,r = a4,r = f

′′
r ,

b0,r = 1 +
1

β
, b1,r = fr −A

η

2
+ gr, b2,r = −A− 2g

′
r −M

−
(

1 +
1

β

)
Λ, b3,r = b4,r = g

′′
r ,

c0,r =
1

Pr
(1 +NR), c1,r = fr −A

η

2
+ gr +Nbφ

′
r + 2Ntθ

′
r,

c2,r = He− 2A− 2f
′
r, c3,r = 2

(
1 +

1

β

)
Ecf

′′
r , c4,r = −2θr,

c5,r = c6,r = θ
′
r, c7,r = Nbθ

′
r,

d1,r = PrLe(fr −A
η

2
+ gr), d2,r = −2PrLe(A+ f

′
r),

d3,r = −2PrLeφr, d4,r = d5,r = PrLeφ
′
r, d6,r =

Nt

Nb
(25)

and the right hand side is given as:

R1 = f
′′
r fr − f ′2r + f

′′
r gr, R2 = g

′′
r gr − g′2r + frg

′′
r ,

R3 = frθ
′
r − 2f ′rθr + grθ

′
r +Nbθ

′
rφ
′
r +Ntθ

′2
r +

(
1 +

1

β

)
Ecf

′′2
r ,

R4 = PrLefrφ
′
r − 2PrLef ′rφr + Pr Legrφ

′
r. (26)

Equations (21 - 24) form the iterative scheme for the spectral quasi-
linearisation method and it is then solved using the Chebyshev spectral
collocation method. Starting with suitable initial approximations, the iter-
ation schemes (21) - (24) are then solved iteratively for fr+1, gr+1, θr+1,
and φr+1 when r = 0, 1, 2, . . .

In solving (21) - (24), the equations are discretised using the Cheby-
shev spectral collocation method which is implemented on the interval
[−1, 1]. Thus, for convenience of the numerical computations, before ap-
plying the spectral method, it is necessary to transform the semi-infinite
domain of the problem to an approximated truncated domain [0, L] where
L is a finite number selected to be large enough to represent the be-
havior of the flow properties when η is very large. The transformation

η =
1

2
L(ξ+ 1) is used to transform the interval [0, L] to [−1, 1]. We in-

troduce the differentiation matrix D which is used to estimate the deriva-
tives of the unknown variables f(η), g(η), θ(η) and φ(η) at the colloca-
tion points as a matrix vector product, that is:
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Fig. 7 Effect of the Casson parameter β on the temperature profile θ(η) when
A = 0.8, a = 0.5, He = 0.3, Ec = 0.1,M = Bi = NR = Λ =
0.5, δ = 0.1, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

df

dη
=

N∑
j=0

Djkf(ξj) = DF, k = 1, 2, . . . , N, (27)

where N + 1 is the number of collocation points, D = 2D/L and
F = [f(ξ0), f(ξ1), . . . , f(ξN )]T is a vector function at the collocation
points. Higher order derivatives are obtained as powers of D, that is

F s(η) = DsF, (28)

where s is the order of the derivative and matrix D is of size (N + 1)×
(N + 1). The Guass-Lobatto points are chosen to define the nodes in
[−1, 1] as

ξi = cos
πi

N
, i = 0, 1, . . . , N ; −1 ≤ ξ ≤ 1. (29)

Applying the spectral method to the scheme given in equations (21 - 24)
and expressing it in matrix form, we have:

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



Fr+1

Gr+1

Θr+1

Φr+1

 =


R1,r

R2,r

R3,r

R4,r

 , (30)
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where Aij and Ri,r (i, j = 1, 2, 3, 4) are (N + 1) × (N + 1) matrices
and (N + 1)× 1 vectors respectively, defined as:

A11 = a0,rD
3 + [a1,r]dD

2 + [a2,r]dD + [a3,r]dI,

A12 = [a4,r]dI, A13 = O, A14 = O, (31)

A21 = [b4,r]dI, A22 = b0,rD
3 + [b1,r]dD

2 + [b2,r]dD

+ [b3,r]dI, A23 = O, A24 = O, (32)

A31 = [c3,r]dD
2 + [c4,r]dD + [c5,r]dI, A32 = [c6,r]dI,

A33 = c0,rD
2 + [c1,r]dD + [c2,r]dI, A34 = [c7,r]dD, (33)

A41 = [d3,r]dD + [d4,r]dI, A42 = [d5,r]dI,

A43 = d6,rD
2, A44 = D2 + [d1,r]dD + [d2,r]dI. (34)

and [· · · ]d denotes diagonal matrix.
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Fig. 8 Effect of the Magnetic field parameter M on the temperature profile θ(η)
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5. RESULTS AND DISCUSSION
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Fig. 9 Effect of the unsteadiness parameter A on the temperature profile θ(η)
when a = 0.5, He = 0.3, Nb = 0.3, Nt = 0.1, Ec = 0.1, Bi =
NR = M = Λ = β = 0.5, δ = 0.1, P r = 10 and Le = 1.

In this work, we studied partial slip and convective condition im-
posed on the velocity and thermal boundary conditions respectively with
an assumption of a zero nanoparticle flux on the concentration boundary
condition for boundary layer flow of a three dimensional magnetohydro-
dynamic Casson nanofluid over an unsteady stretching sheet. The fluid
model was studied using the Spectral quasi-linearisation method and a
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Fig. 10 Effect of the Thermal radiation parameter NR on the temperature profile
θ(η) when A = 0.8, a = 0.5, He = 0.3, Ec = 0.1,M = Bi = Λ =
β = 0.5, δ = 0.1, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

comparision of results with previously published literature is provided
for validation of results in the present study. It is noteworthy here that
we have assumed a constant prandtl number of Pr = 10 due to the fact
that we are considering a casson nanofluid model for a realistic fluid flow
properties.

Table 1 shows a comparison of the skin friction coefficient when
varying the stretching ratio a with the results given in Nadeem et al.
(2014) when the porosity parameter is zero. We note that a good agree-
ment was achieved between the two set of results.

Figure 2 shows the effect of the unsteadiness parameter on the veloc-
ity profiles f ′(η) and g′(η). It is observed that increasing the unsteady
parameter reduces the velocity profiles and this effect is accompanied by
a reduction in the momentum boundary layer thickness in both profiles
which indicates that the unsteadiness parameter reduces the flowrate due
to the stretching sheet.

Figures 3(a) and 3(b) shows the effect of the Casson parameter on
the velocity profiles f ′(η) and g′(η). Due to the Navier velocity slip
condition, two scenarios are observed in the figures. The slip bound-
ary condition leads to a transition from non-Newtonian fluid regime to
Newtonian, and the physical explanation for this observation is explained
viz: It is a known fact that increasing the Casson parameter decreases the
yield stress of the Casson fluid, and increasing it indefinitely will make
the fluid behave as a Newtonian fluid. It is evident that fluid motion is
slowed down in both direction due to increase in the value of the Casson
parameter in 3(a) for no-slip boundary condition, which means decrease
in the velocity profiles and leads to a decrease in the momentum boundary
layer thickness. This behavior is also observed in Nadeem et al. (2014)
and Mukhopadhyay (2013a). Additionally, in 3(b), the slip condition has
been taken into consideration and we note an increase in the velocity pro-
file f ′(η) close to the wall. Far away from the wall, the fluid tends to
behave as a Newtonian fluid as the parameter increases. The velocity slip
parameter on the velocity profile g′(η) remains unchanged with the slip
condition and it was not displayed due to this reason.
Figure 4 depicts the effect of the magnetic field parameter on the velocity
profiles f ′(η) and g′(η). It is perceived that increase in the value of the
magnetic field parameter leads to a decrease in the velocity profiles. Re-
duction in the fluid velocity occurs due to the dual interaction of magnetic
and electrical forces in the electrically conducting fluid and the applied
magnetic field then causes an opposing force called the Lorentz force to
the motion of the fluid which in turn leads to a decrease in the momentum
boundary layer.

Figure 5 displays the effect of the porosity parameter on the velocity
profiles f ′(η) and g′(η). The porosity parameter tends to oppose flow
and then leads to a restriction of fluid flow, thus the speed of the motion
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Fig. 11 Effect of the Heat generation parameter He on the temperature profile
θ(η) when A = 0.8, a = 0.5, Ec = 0.1,M = Bi = NR = Λ = β =
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Fig. 12 Effect of the stretching ratio parameter a on the temperature profile θ(η)
when A = 0.8, He = 0.3, Ec = 0.1,M = Bi = NR = Λ = β =
0.5, δ = 0.1, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

of the fluid is reduced. This flow attribute is noticed from the figure, since
the velocity profiles decrease with increase in the values of the porous pa-
rameter. We observe that the velocity profiles decrease with the increas-
ing the values of the porous parameter. This in turn leads to a decrease in
the velocity boundary layer thickness in both directions.

Figure 6 shows the effect of varying the stretching ratio parameter
on the velocity profiles f ′(η) and g′(η). It is seen that increasing the
values of the stretching ratio parameter reduces the velocity profile f ′(η)
while it enhances the velocity profile g′(η). From this parameter, three
scenarios are observed: The first is when a = 0, the flow reduces to two
dimensional on the velocity profile f ′(η) only, while for a = 1, both the
velocity profiles f ′(η) and g′(η) behave the same and have the same so-
lution, a phenomena for axisymmetric flows. In the third scenario, when
0 ≤ a ≤ 1, the behavior is shown in Figure 6 and Table 1.

Figure 7 depicts the effect of the Casson parameter on the temper-
ature profile θ(η). It is seen that an increase in the Casson parameter
results in a decrease in the temperature profile. This means suppressing
the yield stress while increasing the Casson parameter has a decreasing
effect on the thermal boundary layer thickness. This flow pattern is ob-
served in Bhattacharyya (2013) in the case of lower values of the velocity
ratio parameter.

Figure 8 shows the effect of the magnetic field parameter on the tem-
perature profile θ(η). It is shown that increasing the magnetic field pa-
rameter leads to an increase in the temperature profile since the essence of
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Fig. 13 Effect of the Biot number a on the temperature profile θ(η) when A =
0.8, a = 0.5, He = 0.3, Ec = 0.1,M = NR = Λ = β = 0.5, δ =
0.1, Nb = 0.3, Nt = 0.1, P r = 10 and Le = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

η

φ
(η
)

 

 
A = 0
A = 1
A = 2

Fig. 14 Effect of the Unsteadiness parameter A on the concentration profile φ(η)
when a = 0.5, He = 0.3, Nb = 0.3, Nt = 0.1, Ec = 0.1, Bi =
NR = M = Λ = β = 0.5, δ = 0.1, P r = 10 and Le = 1

the magnetic field parameter is to enhance the temperature profile of the
flow which leads to an increase in the thermal boundary layer thickness
as observed in Bhattacharyya (2013).

Figure 9 displays the effect of the unsteadiness parameter on the tem-
perature profile θ(η) and it is observed that the temperature profiles de-
crease significantly as the unsteady parameter is increased. This is phys-
ically so because increasing the unsteadiness enhances heat loss due to
the stretching of the sheet, thus resulting in a decrease in the temperature
profile. This implies that the rate of cooling is much faster compared to
rate of cooling for the steady flow because of the decrease in the rate of
heat transfer from the sheet to the fluid for higher values of the unsteady
parameter. Similar behavior can be found in Mukhopadhyay et al. (2013).

Figure 10 depicts the effect of the thermal radiation parameter on the
temperature profile θ(η). It is seen that increase in the value of thermal
radiation parameter enhances the heat transfer which leads to an increase
in the thermal boundary layer thickness.

The effect of the heat generation parameter on the temperature pro-
file θ(η) is shown in Figure 11. Heat generation parameter has the char-
acteristic of releasing heat energy to fluid flow for enhancement of the
temperature profile and this is as seen from the figure that increase in the
Heat generation parameter leads to an increase in the temperature profile,
thereby increasing the thermal boundary layer thickness.
The effect of the stretching ratio parameter on the temperature profile
θ(η) is shown in Figure 12. It is seen that increasing value the stretching
ratio parameter decreases the temperature profile.The fluid temperature
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Fig. 15 Effect of the Brownian motion parameter Nb on the concentration profile
φ(η) when A = 0.8, a = 0.5, He = 0.3, Ec = 0.1,M = Bi =
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0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

η

φ
(η
)

 

 
Nt = 0.3
Nt = 0.5
Nt = 0.7
Nt = 0.9

Fig. 16 Effect of the thermophoresis parameter Nt on the concentration profile
φ(η) when A = 0.8, a = 0.5, He = 0.3, Ec = 0.1,M = Bi =
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is reduced due to the fact that there is an increment in the movement
of cooler fluid from the surrounding fluid towards the stretching surface
which leads to an increased entrainment process. The thermal boundary
layer thickness is also decreased due to this effect.

The effect of the Biot number Bi on the temperature profile θ(η) is
shown in Figure 13. It is noticed that increasing value of the Biot num-
ber increases the temperature profile. Increase in the Biot number causes
a stronger convection and this results in higher surface temperature and
increase in wall temperature values thereby leading to the temperature
profile and thermal boundary layer thickness being increased. Also it
was observed that increasing the Biot number indefinitely tends to reduce
the convective boundary condition to the normal constant surface temper-
ature.

The effect of the unsteadiness, Brownian motion and thermophoresis
parameters on the concentration profile are displayed in Figures 14 - 16.
The effect of these parameters is varied based on the incorporation of the
thermophoresis and Brownian motion diffusion coefficients on the con-
centration boundary condition and the significance is hereby discussed
below:

Figures 14 and 15 show the effect of the unsteadiness and Brown-
ian motion parameters on the concentration profiles φ(η). It is noticed
from these figures that increase in the values of the parameters causes a
decrease in the concentration profile. Since the Brownian motion tends
to intensify particle displacement away from the fluid flow regime into

the surface, this effect accounts for a decrease in concentration of the
nanoparticles, thus resulting in a decrease in the nanoparticle concentra-
tion boundary layer thickness.
Figure 16 depicts the effect of the thermophoresis parameter on the con-
centration profiles φ(η). Thermophoresis effect is associated with move-
ment of nanoparticles from a hot wall to a cold wall, and since it is gener-
ated by temperature gradients, it creates a fast flow away from the moving
plate, thus more fluid is heated away from the surface and this leads to an
increase in the temperature within the thermal boundary layer. It is no-
ticed that an opposite trend of the previous observations were recorded,
i.e, increase in the values of the thermophoresis parameter increases the
concentration profile. In addition, thermophoresis force is a phenom-
ena which tends to create a diffusion under the effect of a temperature
gradient. This increase in diffusion of the nanoparticles into the Cas-
son nanofluid flow region leads to an increase in the concentration profile
thereby increasing the nanoparticles concentration boundary layer thick-
ness.

6. CONCLUSION

The effect of partial slip, convective condition and Brownian and ther-
mophoresis diffusion coefficients, imposed on the velocity, thermal and
concentration boundary conditions respectively, on the boundary layer
flow of a three dimensional magnetohydrodynamic Casson nanofluid over
an unsteady stretching sheet has been considered. The boundary layer
equations of the fluid model are reduced to a set of nonlinear ordinary
differential equations using the similarity transformation and the obtained
differential equation were solved numerically for different parameters of
the Casson nanofluid model. Effect of the nanofluid parameters (Lewis
number, Brownian motion and thermophoresis), the Casson parameter,
Biot number on the velocities, thermal and concentration boundary lay-
ers are discussed in details.
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