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ABSTRACT

The present study numerically investigates the �ow and heat transfer of porous Williamson hybrid nano�uid on

an exponentially shrinking sheet with magnetohydrodynamic (MHD) e�ects. The nonlinear partial di�erential

equations which governed the model are �rst reduced to a set of an ordinary di�erential equations by using the

similarity transformation. Next, the BVP4C solver is applied to solving the equations by considering the pertinent

�uid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the

nanoparticle volume fractions and thewallmass transfer parameter. The single (SWCNTs) andmulti-walled carbon

nanotubes (MWCNTs) nanoparticles are taken as the hybrid nanoparticles. It is found that the increase inmagnetic

parameter in SWCNT + MCWNT hybrid nano�uid results to the increase of 72.2% on skin friction compared to

SWCNT nano�uid while maintaining reducing a small number of Nusselt number. This shows the potential of the

Williamson hybrid nano�uid as a friction application purposes especially in transportation like braking system,

�ushing �uid and mechanical engineering.
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Nomenclature

B0 Magnetic field strength,Wb

Cf Local skin friction coefficient

cp Specific heat capacity, Jkg−1K−1

K Permeability parameter, tma−1

K Variable permeability of porous medium

ℓ Length of sheet,M

M Magnetic parameter

Nu Nusselt number

Pr Prandtl number

q Heat flux,Wm−2
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Re Local reynolds number

S Wall mass transfer parameter

T Temperature, K

To Reference temperature, K

uw Variable shrinking velocity,Ms−1

Vw Variable velocity of suction/injection,Ms−1

v1 Velocity component along x-axis,Ms−1

v2 Velocity component along Y -axis,Ms−1

We Williamson parameter

µ Dynamic viscosity, Kgm−1s−1

v Kinematic viscosity,M2s−1

P Density, Kgm−3

Σ Electrical conductivity, A2s3kg−1m−3

9 Stream function, Kgm−1s−1

τ x Wall shear stress, Kgm−1s−2

χ Nanoparticle volume fraction

Subscripts

f Base fluid

SW SWCNTs

MW MWCNTs

hnf Hybrid Nanofluid

w Wall/Surface

∞ Ambient Environment

1 Introduction

Nanofluid played a vital role in industrial and automotive applications. It is widely used as the

radiator coolant, brake fluid and as a smart fluid in battery devices. Nanofluid is also applied as a

coolant medium at a nuclear reactors, geothermal power, tire plant as well as in very small electronic

applications such as microchip coolers [1].

Historically, the term nanofluid has first been coined by Choi et al. [2] to express the term

nanofluid (nanoparticles fluid suspension). The nano size (<100 nm) solid particles in the fluid later

known as the nanoparticles are usually made from metal or oxide. Metal nanoparticles such as zinc

Zn, copper Cu and silver Ag are popular because of their high in thermal conductivities [3–5]. On the

other side, these metal nanoparticles are high in density and thus promoted high friction between fluid

and surface which cause corrosion. Furthermore, it is expensive. Meanwhile, the oxide nanoparticles

are cheap and economical to be produced in mass production, but the oxide nanoparticles have low

thermal conductivities. Increasing the percentage of nanoparticles in the fluidmay increase the thermal

behavior performance, but too many nanoparticles in the fluid will promote clogging.

Hybrid nanofluids can be considered as a new generation of Nanofluids. It is a very new

idea. This is the composition of two variant types of dispersed nanoparticles in base fluids. This

phenomenon have tale features that might make them helpful in many heat transfer organizations,

like microelectronics, components of energy, pharmaceutical equipment, half breed powdered engines,

engine cooling, car warming Administration, home cooler, chiller, thermal exchanger, atomic reactor

coolant, grinding machinery, space innovation [6]. Sundar et al. [7] have proposed a thorough process
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for generating hybrid nanofluids, including their advantages and disadvantages. Waini et al. [8] have

investigated the stretching and contracting of a sheet-induced hybrid nanofluid created by adding

copper nanoparticles to an Al2O3/water nanofluid. To explore the impact of thermal radiation,

chemical reaction, suction, and slip condition on the heat andmass transfer of an unsteadyMHD flow

across a stretched surface, researchers Sreedevi et al. [9] have combined both carbon nanotubes and

silver nanoparticles in the base fluid (water). The influence of radiation and suction on the dynamics of

anMHD hybrid nanofluid moving through a stretching sheet has been studied by Yashkun et al. [10].

With the rising era of graphene, the carbon nanotube (CNT) seems to be the alternative for

the high-density issue of metal nanoparticles while providing better thermal conductivity than oxide

nanoparticles. Anuar et al. [11] studied the stability analysis of flow and heat transfer of carbon

nanotubes over a moving plate. The heat transfer capabilities between the single (SWCNTs) and

multi-walled carbon nanotubes (MWCNTs) nanoparticles in water as a based fluid are numerically

examined. Next, Hayat et al. [12] investigated the carbon nanotube effects represented by SWCNTs

and MWCNTs nanoparticles in the melting heat transfer over an impermeable stretchable surface in

a nanofluid. Zaki et al. [13] concluded that the presence of SWCNTs nanoparticles in the Cu/water

nanofluid so-called SWCNTs-Cu/water hybrid nanofluid dramatically raised the surface temperature

and the heat transfer coefficient. Recently, Idrees et al. [14] studied the 3D rotational flow and heat

transfer dynamics of a hybrid (SWCNT-MWCNT) nanofluid.

Considering the stretching/shrinking sheet in industrial processes, the heat transfer rate on the

stretching/shrinking components plays an important factor in the quality of the product produces.

Since half a century ago, the investigation of convection flow past a stretching/shrinking sheet has

attracted the researcher’s attention [15]. The investigation evolved by including various physical

external forces on a fluid flow such as the magnetic effects, the thermal radiation effects, the chemical

reaction, the viscous dissipation, the heat generation/absorption and the permeability effects [16–20].

Recently, the bio-convection and activation energy across of Prandtl nanofluid flow on a stretching

cylinder has been investigated by Shah et al. [21].

The study flows on a stretching sheet then are extended by considering the industrial fluid such

as the Maxwell fluid, the Williamson hybrid ferrofluid, the micropolar nanofluid, the second-grade

nanofluid, the Casson nanofluid and the viscoelastic nanofluid as recently studied by [22–28].

Motivated by the above literature, the present study investigates the carbon nanotube Williamson

hybrid nanofluid flow on an exponentially stretching sheet with MHD effects. The SWCNTs and

MWCNTs nanoparticles are taken as the hybrid particles. Such investigation has never been done

before, so the reported result in this study is new. This research will be answering whether the blended

carbon nanotube performs better than the single carbon nanotube nanofluid and the effects of

the magnetic, shrinking surface, and the porosity in the fluid on the fluid flow and heat transfer

performance.

2 Mathematical Formulations

Consider a steady 2-dimensional Williamson hybrid nanofluid boundary layer flow with single

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles with water H2O as a based-

fluid on an exponentially shrinking sheet. The porous surface is considered, with variable wall mass

suction/injection applied through it. Fig. 1 shows a physical representation of this situation. Physical

model of the fluid flow can be modelled to a basic equation for motion and energy distribution are as

follows [28]:
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subjected to

v1 = −uw(x) = aex/2ℓ, v2 = −Vw(x) = V0e
x/2ℓ T = Tw = T∞ + Toe

x/2ℓ at y = 0,

v1 → 0, T → T∞ as y → ∞, (4)

where v1 and v2 denotes respectively velocity components along x- and y-directions, k = ko/e
x/2ℓ

gives variable permeability of porous medium with ko being a non-negative constant, T represents

temperature of hybrid nanofluid, uw = aex/2ℓ is variable shrinking velocity with a being positive

constant having dimension ℓT−1. Next, Vw = V0e
x/2ℓ is variable velocity of suction/injection, To and ℓ

denote reference temperature and length. Furthermore, (ρhnf ), (µhnf ), (σhnf ), (khnf ), and (ρcp)hnf are the

density, dynamic viscosity, electrical conductivity, thermal conductivity and heat capacity of hybrid

nanofluid, respectively, which are defined as [29].
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Note that the properties related to base fluid, the SWCNTs and MWCNTs nanoparticles are

denoted with subscript f ,SW and MW . Next, the continuity Eq. (1) is satisfied with the introduction of
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the stream function 9 so that v1 =
∂9

∂y
and v2 = −

∂9

∂x
. To simply, the dependent variable in Eqs. (2)

and (3) can be reduced. It is introduced the following self-similar transformations:

v1 = aex/ℓF ′(η), v2 = −
√

avf

2ℓ
(F(η) + ηF ′(η)) ,

θ(η) =
T − T∞

Tw − T∞

, η = yex/2ℓ
√

a

2ℓvf
.

(5)

Using Eq. (5), the Eqs. (2) and (3) can be expressed in the form of self-similar nonlinear equations

as follows:
P1

P2

(F ′′′ − KF ′) + FF ′′ − 2 (F ′)
2 −

P3

P2

MF ′ +WeF ′′F ′′′ = 0, (6)

P4θ
′′ + Pr (Fθ ′ − F ′θ) = 0, (7)

where K =
2ℓvf

ak∗
is the permeability parameter, Pr =

vf (ρCp)f

kf
is the Prandtl number.
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√
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vf
is the Weissenberg number andM =
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σfB
2
0
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)

is the magnetic parameter. Also
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1
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2.5
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,
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.

The boundary conditions in Eq. (4) is reduced to the following forms:

F = S,F ′ = −1, θ = 1, at η = 0,

F ′ → 0, θ → 0, as η → ∞.
(8)

Here, S = V0

√

2ℓ/avf is the wall mass transfer parameter, The physical quantities interested in

this study are the local skin friction coefficient Cf and the Nusselt numberNu which can be expressed

as [28]

Cf =
τ x

ρhnfU 2
w

, Nu =
xqw

kf (Tw − T∞)
, (9)

where

τ x = µhnf

(

∂v1

∂y

)

y=0

, qw = −khnf

(

∂T

∂y

)

y=0

. (10)

Using the definitions described above then the Cf and Nu are reduced as

√
ReCf =

K1

K2

[

F ′′(0) +We(F ′′(0))2
]

,
Nu

√
Re

= −
khnf

kf
θ ′ (0) . (11)
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with
√
Re = x

√

a

vf
where Re is the local Reynolds number.

Figure 1: Physical geometry of the fluid flow

3 Numerical Simulation

The transformed ordinary differential Eqs. (6) and (7) with the boundary conditions (8) were

solved numerically considering the water-based Williamson nanofluid SWCNTs/H2O and the water-

based Williamson hybrid nanofluid (SWCNTs + MWCNTs)/H2O. Results from the study are pre-

sented in a graphic and tabular format, with a focus on the model’s mathematical components and

their effects on velocity, temperature, and physical interest quantities. This study used the numerical

technique from bvp4c function in MATLAB. bvp4c is the finite difference code implements the well-

known three-stage Lobatto IIIA formula. Named after Rehuel Lobatto, this method is a collocation

formula as Runge-Kutta method and provides a fourth-order accurate uniformly results. Related

works that implements the bvp4c method included [30,31] and recently by [32,33].

To use this approach, the transformed ordinary differential equations are converted into the

system of 1st order differential equations, which is followed as
{

y1 = F , y2 = F ′, y3 = F ′′, yya = F ′′′,

y4 = θ , y5 = θ ′, yyb = θ ′′
(12)

with

yya =
[

1/

((

P1

P2

)

−Wey3

)] [(

P1

P2

)

Ky2 + 2y2

2
+

(

P3

P2

)

My2

]

(13)

yyb = −
(

Pr

P4

)

[y1y5 − y2y4]. (14)
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Corresponding boundary condition are converted as










y1(0) − S

y2(0) + 1

y2(∞)

{

y4(0) − 1

y4(∞)

(15)

The resulting transformation above with the suitable IVP are coded into MATLAB software to

compute numerically, see Fig. 2.

Figure 2: Flow chart of bvp4c method
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4 Results and Discussion

The transformed ordinary differential Eqs. (6) and (7) with boundary conditions (8) were solved

numerically using the BVP4C function in MATLAB software. The numerical computation considers

the changes of pertinent parameters such as the permeability parameter K, the magnetic parameter

M, the Williamson parameterWe, the nanoparticle volume fractions of SWCNTs χSW and MWCNTs

nanoparticles χMW , respectively and the wall mass transfer parameter S in the fluid flow. Further, the

Prandtl number Pr is taken as 7 considering the Pr values for water. Table 1 shows the thermos-physical

properties of water as a based fluid with carbon nanotube nanoparticles.

Table 1: Thermo-physical properties of water and carbon nanotube nanoparticles [13,14]

Thermo-physical properties ρ
(

kgm−3
)

CP

(

J k g−1K−1
)

k
(

Wm−1K−1
)

σ
(

Sm−1
)

H2O 997.1 4179 0.613 5.5 × 10−6

SWCNTs 2600 425 6600 10−6

MWCNTs 1600 796 3000 1.9 × 10−4

The effects of fluid parameters on the reduced skin friction coefficient
√
ReCf is tabulated

in Table 2. From Table 2, it is found that the increase in magnetic parameter M, the permeability

parameter K, the nanoparticle volume fractions of MWCNTs χMW and the wall mass transfer

parameter S results in enhanced friction between the fluid and the plate surface. This is physically

realistic due to the effects of M and K attracting the fluid particle or giving the suction effects

towards the plate surface which contributing extra force from fluid to a surface thus increased friction.

Meanwhile, the increase in Williamson parameter We have reduced the skin friction coefficient.

Crossing Table 2, it is concluded that, the water-based Williamson hybrid nanofluid (SWCNTs +
MWCNTs)/H2O produced high in

√
ReCf values compared to the water-based Williamson nanofluid

SWCNTs/H2O.

Table 2: Influence ofM, K, We, S and χMW on
√
ReCf

M K S χMW We (SWCNTs + MWCNTs)/H2O (SWCNTs)/H2O

1 1 2 1 2.7557 1.8173

2 3.3411 2.0245

3 3.7808 2.1953

1 1 2 1 2.7557 1.8173

2 2.9608 2.1088

3 3.1423 2.3355

1 1 2 1 2.7557 1.8173

3 3.0631 2.2108

4 3.3751 2.5909

1 1 2 1 2.7557 1.8173

2 2.3332 1.5258

3 2.0892 1.3565

0.05 1.5557 –

(Continued)
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Table 2 (continued)

M K S χMW We (SWCNTs + MWCNTs)/H2O (SWCNTs)/H2O

0.1 3 2.0892 –

0.2 2.8384 –

Table 3 tabulated the effects of fluid parameters on the reduced Nusselt number Nu/
√
Rex. It is

suggested that a small increment onNu/
√
Rex was found asM andK increased. On the other hand, the

increase in S has boosting the values ofNu/
√
Rex drastically. Physically the suction effect produced by

thewallmass transfer parameterS reduced the fluid particle, providing the convection process between

the fluid and plate surface occurs effectively thus boosted the reduced Nusselt number Nu/
√
Rex.

Meanwhile, the increase in Williamson parameter We and χMW has slightly reduced the values of

Nu/
√
Rex. Comparing the performance between the nanofluid, the water-based Williamson hybrid

nanofluid (SWCNTs + MWCNTs)/H2O has lower in Nu/
√
Rex values compared to the water-based

Williamson nanofluid SWCNTs/H2O. Physically, carbon nanotube nanoparticles have high thermal

conductivity properties. The increase in carbon nanotube nanoparticles in the fluid has enhanced

the fluid thermal conductivity, thus raising the fluid conductive properties, therefore reducing the

convective heat transfer capabilities of the fluid.

Table 3: Influence ofM, K, We, S and χMW on Nu/
√
Rex

M K S χMW We (SWCNTs + MWCNTs)/H2O (SWCNTs)/H2O

1 1 2 1 11.3665 11.5472

2 11.4083 11.5586

3 11.5472 11.5677

1 1 2 1 11.3665 11.5472

2 11.3816 11.5631

3 11.3946 11.5750

1 1 2 1 11.3665 11.5472

3 17.9208 18.0513

4 24.2903 24.3920

1 1 2 1 11.3665 11.5472

2 11.3352 11.5310

3 11.3155 11.5210

0.05 11.4248 –

0.1 3 11.3155 –

0.2 11.0460 –

In discussing the fluid flow behavior across the boundary layer, Figs. 3–7 are illustrated. From

Figs. 3 and 5, it is found that the increase ofM, K and S has slightly increased the fluid flow velocity

while reducing the velocity boundary layer thickness. The reduction in the thickness of the boundary

layer physically leads to the increase in velocity gradient which derives to the increase in skin friction
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coefficient as found in Table 2. The same pattern occurs in Fig. 7 where the increase in χMW results in

an increase in velocity distribution while reducing the boundary layer thickness. The increase in χMW

enhanced the fluid momentum thus speeds up the fluid flow velocity. This outcome is agreed by the

fluid comparison achieved in Figs. 3–6 where the water-basedWilliamson hybrid nanofluid (SWCNTs

+ MWCNTs)/H2O has higher fluid flow velocity as well as the skin friction coefficient compared to

thewater-basedWilliamson nanofluid SWCNTs/H2O.Meanwhile, theWilliamson parameterWe gives

negative effects on the fluid flow. As seen in Fig. 6, it is found that the velocity distribution decreases

as theWe increases.

Figure 3: Influence of K on velocity profiles F ′(η)

Figure 4: Influence ofM on velocity profiles F ′(η)
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Figure 5: Influence of S on velocity profiles F ′(η)

Figure 6: Influence ofWe on velocity profiles F ′(η)

Lastly, Figs. 8 and 9 depicted the temperature profiles θ(η) for different values of S and χMW ,

respectively. From Fig. 8, it is observed that the increase in S results in a reduction in the thermal

boundary layer thickness. This implies shortening the depth for the fluid with wall temperature to

achieve the stream temperature outside the boundary layer. Shortening the thickness refers to the

increase in the temperature gradient, thus physically reflecting the increase in Nusselt number as

supported byTable 3.Meanwhile, the increase inχMW in Fig. 8 haswidened the thermal boundary layer

thickness as well as the temperature distributions. This is realistic because the increase in χMW leads

to an increase in nanofluid thermal conductivities, thus enhancing the fluid thermal capabilities. The

comparison between the temperature distributions for the water-based Williamson hybrid nanofluid

(SWCNTs+MWCNTs)/H2O and the water-basedWilliamson nanofluid SWCNTs/H2O are shown in
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Fig. 8. It is clearly shown the advantages of high χSW and χMW in the fluid enhanced temperature and

its thermal boundary layer thickness.

Figure 7: Influence of χMW on velocity profiles F ′(η)

Figure 8: Influence of S on temperature profiles θ (η)
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Figure 9: Influence of χMW on temperature profiles θ(η)

.

5 Conclusions

The study on the flow and heat transfer of porous Williamson hybrid nanofluid on an expo-

nentially shrinking sheet with magnetohydrodynamic (MHD) effects are numerically studied. The

influence of the fluid parameters such as the permeability parameter K, the magnetic parameter M,

the Williamson parameter We, the nanoparticle volume fractions of SWCNTs χSW and MWCNTs

nanoparticles χMW , respectively and the wall mass transfer parameter S on the fluid flow and heat

transfer characteristic are analyzed and discussed. In conclusion, it is found that:

• The increase in M, K, χMW , and S has promoted the increase in skin friction coefficient while

We do the contrary.

• The small increase has been recorded on a Nusselt number asM and K increase.

• S played an important role as it increased may boost the values of Nusselt number drastically.

Meanwhile, the Nusselt number reduced with the increase ofWe and χMW .

• The water-based Williamson hybrid nanofluid (SWCNTs + MWCNTs)/H2O has a lower

Nusselt number compared to the water-basedWilliamson nanofluid SWCNTs/H2O. This might

be explained by the increase in fluid thermal conductivity in the fluid thus increasing the

domination of conduction over the convection heat flow.

• The increase in magnetic paramater in SWCNTs + MCWNTs hybrid nanofluid results to the

increase of 72.2% on skin friction compared to SWCNT nanofluid.

We note that this analysis may be extended for the Jeffrey fluid, Oldroyd-B fluid and other non-

Newtonian fluids.
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