PROCEEDINGS

An Experiment-Simulation Method for the Determination of the Mode-II Critical Energy Release Rate

Liulei Hao¹, Hongjun Yu^{1,*} and Licheng Guo¹

¹Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin, 150001, China *Corresponding Author: Hongjun Yu. Email: yuhongjun@hit.edu.cn

ABSTRACT

To overcome the harsh experimental conditions of determining the mode-II critical energy release rate Guic, a flexible experiment-simulation method for determining G_{UC} is proposed based on the mixed-mode fracture experiments and the corresponding simulations by the mixed-mode phase-field model. In details, a mixedmode fracture experiment is first conducted to obtain the initial crack deflection angle. Subsequently, a series of phase-field simulations are conducted by altering the value of G_{IC}/G_{IIC} to reproduce the experimental result so as to determine the value of G_{IIC} with a known G_{IC} . Three mixed-mode fracture tests (single edge cracked circular test, central crack rectangular tension test and compact tension shear test) of PMMA indicate that the determined G_{IIC} is a stable material parameter independent of test and loading conditions. Meanwhile, the determined prediction of *Guc* is compared with those in other references with a deviation of about 3.5%, which demonstrates that the proposed method can quantitatively and qualitatively obtain G_{IIC} . Furthermore, the determined parameter G_{IIC} is used to develop the mixed-mode phase-field model through using the mode-mixity factor (G_{IC}/G_{IIC}) to regular the relative contribution of the volumetric and distortional crack driving energy. As a result, the mixed-mode phase-field model provides better simulations than the classical phase-field model for the materials with large difference between G_{IC} and G_{IIC}. Without the harsh conditions of the pure mode-II fracture, the proposed method is of significant practice in the determination of *Guc*, which benefits the study of mixed-mode fracture problems.

KEYWORDS

Mode-II critical energy release rate; experiment-simulation method; mixed-mode phase-field model; modemixity factor

Acknowledgement: This study was supported by the National Natural Science Foundation of China and Heilongjiang Touyan Innovation Team Program.

Funding Statement: National Natural Science Foundation of China, Grant Numbers 12172103 (HY), 11972134 (LG) and 12020101001 (HY).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

