Numerical Analysis of Supercritical CO₂ Flow and Heat Transfer Inside Porous Structures on a Microchip

Mengshuai Chen^{1,2}, Karim Ragui¹ and Lin Chen^{1,2,3,*}

¹Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190, China

²University of Chinese Academy of Sciences, Beijing, 100049, China

³ Innovation Academy for Light-Duty Gas Turbine, Chinese Academy of Sciences, Beijing, 100190, China

*Corresponding Author: Lin Chen. Email: chenlin2018@iet.cn

ABSTRACT

With the development of supercritical fluid technology, supercritical CO_2 has great applications in carbon sequestration, soil remediation, recovery of petroleum gas, material extraction in industrial processes, and product pure drug nanoparticles/nanocrystals. In these applications, the flow and heat transfer, phase change of sCO_2 in porous media are involved. Combined with the previous research methods, we establish a three-dimensional microchannel chip porous media model. Using the numerical simulation method, we study the flow and heat transfer characteristics of sCO_2 in the microchannel chip porous media under different working conditions. The temperature, pressure and density distribution are obtained under different working conditions. We also investigate the influence of inlet conditions such as mass flow and inlet temperature on pressure drop between inlet and outlet of porous media model and heat transfer coefficient between CO_2 and heating wall of microchannel chip. The results show that the increase of mass flow rate and inlet temperature will increase of mass flow will enhance heat transfer, while when the inlet temperature exceeds the critical temperature of CO_2 , the increase of inlet temperature will inhibit heat transfer. The variation of heat transfer coefficient in different regions of the numerical model is also observed.

KEYWORDS

Supercritical CO₂; porous structures; fluid flow; heat transfer; numerical analysis

Funding Statement: National Natural Science Foundation of China (No.51961145201, No.52150410406), CAS Project for Young Scientists in Basic Research (No.YSBR-043).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References:

- 1. Chen, Y., Guerschman, J. P., Cheng, Z., et al. (2019). Remote sensing for vegetation monitoring in carbon capture storage regions: A review. *Applied Energy*, 240, 312-326.
- 2. Chen, L., Hasanov, J., Chen, J., et al. (2022). Supercritical fluid remediation for soil contaminants: Mechanisms, parameter optimization and pilot systems. *The Journal of Supercritical Fluids, 189,* 105718.

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3. Chen, L. (2021). Handbook of research on advancements in supercritical fluids applications for sustainable energy systems. <u>https://www.igi-global.com/gateway/book/253256</u>.