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ABSTRACT 

In this paper we discuss the effect of chemical reaction and thermal radiation on unsteady free convective heat and mass transfer flow through a porous 

medium in a vertical wavy channel. The unsteadiness in the flow is due to the oscillatory flux in the flow region. The coupled equations governing the 

flow, heat and mass transfer have been solved by using a perturbation technique with the slope  of the wavy wall as the perturbation parameter. The 

expression for the velocity, the temperature, the concentration, the rate of heat and mass transfer are derived and are analyzed for different variations 

of the governing parameters G, R, M, D-1, , N, N1, ,  , k,  x and t. 
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1. INTRODUCTION 

Coupled heat and mass transfer phenomenon in porous media is gaining 

attention due to its interesting applications. The flow phenomenon is 

relatively complex rather than that of the pure thermal convection 

process. Underground spreading chemical wastes and other pollutants, 

grain storage ,evaporation cooling and solidification are the few other 

application areas where the combined thermo-solutal natural convection 

in porous media are observed .Combined heat and mass transfer by free 

convection under boundary layer approximations has been studied by 

Bejan and Khair (1985), Lai and Kulacki (1991) and Murthy and 

Singh(1990).Coupled heat and mass transfer by mixed convection in 

Darcian fluid-saturated porous media has been analyzed by Lai (1971). 

The free convection heat and mass transfer in a porous enclosure has been 

studied recently by Angirasa et al. (1997). The combined effects of 

thermal and mass diffusion in channel flows has been studied in recent 

times by a few authors, notably Nelson and Wood (1986, 1989), Lee at 

al. (1982). 

In recent years, energy and material saving considerations have 

prompted an expansion of the efforts at producing efficient heat 

exchanger equipment through augmentation of heat transfer.  It has been 

established that channels with diverging – converging geometries 

augment the transportation of heat transfer and momentum.  As the fluid 

flows through a tortuous path viz., the dilated – constricted geometry, 

there will be more intimate contact between them.  The flow takes place 

both axially (primary) and transversely (secondary) with the secondary 

velocity being towards the axis in the fluid bulk rather than confining 

within a thin layer as in straight channels.  Hence it is advantageous to 

go for converging – diverging geometries for improving the design of 

heat transfer equipment.  Vajravelu and Nayfeh (1981) have investigated 

the influence of the wall waviness on friction and pressure drop of the 

generated coquette flow.  Vajravelu and Sastry (1978) have analyzed the 
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free convection heat transfer in a viscous, incompressible fluid confined 

between long vertical wavy walls in the presence of constant heat source.  

Vajravelu and Debnath  have extended this study to convective flow in a 

vertical wavy channel in four different geometrical configurations.  This 

problem has been extended to the case of wavy walls by McMichael and 

Deutsch (1984), Deshikachar et al (1985), Rao et al (1983) and Sree 

Ramachandra Murthy (1992). Hyan Goo Kwon et al(2008) have 

analyzed that the Flow and heat/mass transfer in a wavy duct with various 

corrugation angles in two dimensional flow regimes.  Comini et al (2002) 

have analyzed the Convective heat and mass transfer in wavy finned-tube 

exchangers.  

In many chemical engineering processes, there does occur the 

chemical reaction between a foreign mass and the fluid in which the plate 

is moving. These processes take place in numerous industrial 

applications viz., polymer production, manufacturing of ceramics or 

glassware and food processing. Das et al(1994) have studied the effects 

of mass transfer on flow past an impulsively started infinite vertical plate 

with constant heat flux and chemical reaction. Muthukumaraswamy 

(2003) has studied the effects of reaction on a long surface with suction. 

Recently Gnaneswar (2008) has studied radiation and mass transfer on 

an unsteady two-dimensional laminar convective boundary layer flow of 

a viscous incompressible chemically reacting fluid along a semi-infinite 

vertical plate with suction by taking into account the effects of viscous 

dissipation. 

The present trend in the field of chemical reaction analysis is to give 

a mathematical model for the system to predict the reactor performance. 

A large amount of research work has been reported in this field. In 

particular the study of heat and mass transfer with chemical reaction is 

of considerable importance in chemical and hydrometallurgical 

industries. Chemical reaction can be codified as either heterogeneous or 

homogeneous processes. This depends on whether they occur at an 

interface or as a single phase volume reaction. Frequently the 
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transformations proceed in a moving fluid, a situation encountered in a 

number of technological fields. A common area of interest in the field of 

aerodynamics is the analysis of thermal boundary layer problems for two 

dimensional steady and incompressible laminar flow passing a wedge.  

Simultaneous heat and mass transfer from different geometrics 

embedded in a porous media has many engineering and geophysical 

application such as geothermal reservoirs, drying of porous solids 

thermal insulation, enhanced oil recovery, packed-bed catalytic reactors, 

cooling of nuclear reactors, and underground energy transport. A very 

significant area of research in radioactive heat transfer, at the present time 

is the numerical simulation of combined radiation and 

convection/conduction transport processes. The effort has arisen largely 

due to the need to optimize industrial system such as furnaces, ovens and 

boilers and the interest in our environment and in no conventional energy 

sources, such as the use of salt-gradient solar ponds for energy collection 

and storage. In particular, natural convection induced by the 

simultaneous action of buoyancy forces resulting from thermal and mass 

diffusion is of considerable interest in nature and in many industrial 

applications such as geophysics, oceanography, drying process, 

solidification of binary alloy and chemical engineering. Kandaswamy et 

al. (2006) have discussed the effects of chemical reaction, heat and mass 

transfer on boundary layer flow over a porous wedge with heat radiation 

in the presence of suction or injection. Madhusudan Reddy (2010) has 

analyzed the effect of chemical reaction on double diffusive heat transfer 

flow of a viscous fluid in a wavy channel. 

 

 
                         Fig. 1 Basic construction  

2. FORMULATION OF THE PROBLEM  

We consider the combined influence of radiation and chemical reaction 

on the unsteady motion of viscous, incompressible fluid through a porous 

medium in a vertical channel bounded by wavy walls . The thermal 

buoyancy in the flow field is created by an oscillatory flux in the fluid 

region. The walls are maintained at constant temperature and 

concentration. The Boussinesq approximation is used so that the density 

variation will be considered only in the buoyancy force. The viscous and 

Darcy dissipations are neglected in comparison with heat by conduction 

and convection in the energy equation. Also the Kinematic viscosity , 

the thermal conducting k are treated as constants. We choose a 

rectangular Cartesian system O(x,y)  with x-axis in the vertical direction 

and y-axis normal to the walls. The walls of the channel are  at 

 
The equations governing the unsteady flow, heat and mass transfer 

are: 
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Equation of Energy: 
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Equation of diffusion 
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Equation of state 
)()( eeeee CCTT             (6) 

where 
e  is the density of the fluid in the equilibrium state, Te, Ce are 

the temperature and concentration in the equilibrium state,(u,v)are the 

velocity components along O(x,y) directions, p is the pressure, T,C are 

the temperature and Concentration in the flow region,is the density of 

the fluid, is the constant coefficient of viscosity ,Cp is the specific heat 

at constant pressure,is the coefficient of thermal conductivity ,k is the 

permeability of the porous medium , is the coefficient of thermal 

expansion, Q is the strength of the constant internal heat source , is the 

electrical conductivity ,e is the magnetic permeability, * is the 

volumetric expansion with mass fraction coefficient D1, is the molecular 

diffusivity and k1 is the chemical reaction coefficient. 

In the equilibrium state 
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where De ppp 
, Dp being the hydrodynamic pressure. 

The flow is maintained by an oscillatory volume flux for which a 

characteristic velocity is defined as 
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The boundary conditions for the velocity and temperature fields are 

u = 0  , v = 0  ,T=T1   ,C=C1                on 
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In view of the continuity equation we define the stream function  as 

u = - y , v =  x   (10) 

Eliminating pressure p from equations (2.2)&(2.3)and using the 

equations governing the flow in terms of  are 
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Introducing the non-dimensional variables 
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the governing equations in the non-dimensional form ( after dropping the 
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The corresponding boundary conditions are 
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The value of  on the boundary assumes the constant volumetric 

flow in consistent with the hypothesis (7) .Also the wall temperature 

varies in the axial direction in accordance with the prescribed arbitrary 

function t.  

        3. METHOD OF SOLUTION 

The main aim of the analysis is to discuss the perturbations created over 
a combined free and forced convection flow due to traveling thermal 
wave imposed on the boundaries. The perturbation analysis is carried out 
by assuming that the aspect ratio 𝜹 to be small.   

Introduce the transformation such that  

 
Then 

 
For small values of <<1, the flow develops slowly with axial 

gradient of order  

And hence we take  

Using the above transformation the equations (2.15-2.17) reduces to  
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Introducing the transformation  
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the equations(3.1-3.3)reduces to  
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Where 

  

We adopt the perturbation scheme and write  
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On substituting (3.1) in (3.4) - (3.6) and separating the like powers 

of  the equations and respective conditions to the zeroth order are 
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The first order equations are 
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           4.  SOLUTION OF THE PROBLEM 
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5. NUSSELT NUMBER and SHERWOOD NUMBER 

The local rate of heat transfer coefficient (Nusselt number Nu) on the 
walls has been calculated using the formula  
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The local rate of mass transfer coefficient (Sherwood Number Sh) 
on the walls has been calculated using the formula  
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where 1421 .......,..........,.......... ddd  are constants. 

 

 
                  Fig. 1  Variation of u with  

 

Figure 1 represents an increase in the strength of the heat source () 

larger u in the left half and smaller in the right half of the channel. Figure 

2 with respect to chemical reaction parameter k we find that the axial 

velocity experiences an enhancement in the left half and depreciates in 

the right half of the channel with increase in k. Fig. 3 represents an 

increase in the thermal radiation parameter N1, leads to an enhancement 

in the left half and depreciates in the right half of the channel. From Fig. 

4 we find that higher the constriction of the channel walls lesser u in the 

left half and larger in the right half of the channel. 

 

 

 
                  Fig. 2  Variation of u with k 
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                  Fig. 3  Variation of u with  

 

 
             Fig. 4  Variation of u with N1 

 

 
                  Fig. 5  Variation of v with  

 

Figure 5-8 represents an increase in  enhances |v| in the left half 

and reduces if in the right half of the channel. The magnitude of v 

enhances with increase in the chemical reaction parameter k. An increase 

in N1 enhances |v| in the left half and depreciates in the right half. Higher 

the constriction of the channel walls larger |v| in the entire flow region. 

From Fig. 9-12 an increase in the chemical reaction parameter k 

depreciates in the non-dimensional temperature, an increase in the 

chemical reaction parameter k depreciates in the non-dimensional 

temperature, the variation of  with  shows that higher the constriction 

of the channel walls larger the actual temperature, we find that higher the 

thermal radiative heat fluxes lesser the actual temperature in the flow 

region. 

From Figs. 13-16, we find that the actual concentration depreciates 

with increase in the strength of the heat source. The variation of C with 

radiation parameter N1 shows that higher the thermal radiative heat flux 

lesser the actual concentration in the flow region. The effect of wall 

waviness on C is shown in.  Higher the constriction of the channel walls 

lesser the actual concentration in the entire flow region. The variation of 

C with chemical reaction parameter k shows that the actual concentration 

enhances in the degenerating chemical reaction case. 

 

 
Fig. 6  Variation of v with k 

 
Fig. 7  Variation of v with N1 

 
Fig. 8  Variation of v with  
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                   Fig. 9  Variation of  with  

 

 

 
               Fig. 10  Variation of  with k 

 

 

 

 
                Fig. 11  Variation of  with  

 

 

 

 

 

 

 
                      Fig. 12  Variation of  with N1 

 

 

 
                   Fig. 13  Variation of C with  

 

 

 

 
                   Fig. 14  Variation of C with k 
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                    Fig. 15  Variation of C with  

 

 

 
 

                      Fig. 16  Variation of C with N1 

 

 

 

 

Table 1 Nusselt number (Nu) at  = +1 

103 3x103 -103 -3x103 K  β N1 

1.12510 1.11642 1.13367 1.14229 0.5 2 -0.5 0.5 

0.16797 0.13180 0.20412 0.24026 1.5 2 -0.5 0.5 

-0.01251 -0.32169 0.29649 0.60531 2.5 2 -0.5 0.5 

0.39464 0.39431 0.39496 0.39528 0.5 4 -0.5 0.5 

0.33994 0.34368 0.33629 0.33275 0.5 6 -0.5 0.5 

0.92106 0.91917 0.92295 0.92484 0.5 2 -0.1 0.5 

1.01455 1.00879 1.02032 1.02608 0.5 2 -0.3 0.5 

1.25697 1.24653 1.26740 1.27783 0.5 2 -0.7 0.5 

1.40491 1.39405 1.41577 1.42662 0.5 2 -0.9 0.5 

0.39984 0.39943 0.40024 0.40064 0.5 2 -0.5 1.5 

0.35386 0.35487 0.35286 0.35187 0.5 2 -0.5 3.5 

0.34369 0.34617 0.34126 0.33889 0.5 2 -0.5 5.0 

0.33452 0.34615 0.32377 0.31380 0.5 2 -0.5 10 

 

 

Table 2 Nusselt number (Nu) at  = -1 

103 3x103 -103 -3x103 K  β N1 

3.21051 3.18767 3.23330 3.25610 0.5 2 -0.5 0.5 

0.50714 0.39812 0.61601 0.72472 1.5 2 -0.5 0.5 

-0.03988 -1.02613 0.94454 1.92711 2.5 2 -0.5 0.5 

0.95354 0.95453 0.95255 0.95158 0.5 4 -0.5 0.5 

0.74131 0.76254 0.72137 0.70259 0.5 6 -0.5 0.5 

2.35598 2.35106 2.36091 2.36583 0.5 2 -0.1 0.5 

2.73450 2.71980 2.74919 2.76387 0.5 2 -0.3 0.5 

3.79387 3.76516 3.82252 3.85110 0.5 2 -0.7 0.5 

4.32027 4.29045 4.35003 4.37970 0.5 2 -0.9 0.5 

0.97356 0.97423 0.97289 0.97223 0.5 2 -0.5 1.5 

0.79422 0.80163 0.78689 0.77991 0.5 2 -0.5 3.5 

0.75523 0.77006 0.74108 0.72752 0.5 2 -0.5 5.0 

0.72392 0.78617 0.67135 0.62657 0.5 2 -0.5 10 

 

Table 3 Sherwood number (Sh)  at  = +1 

103 3x103 -103 -3x103 K  β N1 

-0.51272 -0.52083 -0.50466 -0.49665 0.5 2 -0.5 0.5 

-0.42606 -0.43299 -0.41920 -0.41240 1.5 2 -0.5 0.5 

-0.36111 -0.38803 -0.33489 -0.30846 2.5 2 -0.5 0.5 

-0.74539 -0.75093 -0.74093 -0.73595 0.5 4 -0.5 0.5 

-0.96130 -0.96352 -0.95903 -0.95673 0.5 6 -0.5 0.5 

-0.21249 -0.21266 -0.21232 -0.21215 0.5 2 -0.1 0.5 

-0.36184 -0.36533 -0.35837 -0.35491 0.5 2 -0.3 0.5 

-0.69188 -0.70543 -0.67840 -0.66501 0.5 2 -0.7 0.5 

-0.94482 -0.96493 -0.92483 -0.90497 0.5 2 -0.9 0.5 

-0.73347 -0.73864 -0.72831 -0.72317 0.5 2 -0.5 1.5 

-0.88459 -0.88777 -0.88140 -0.87818 0.5 2 -0.5 3.5 

-0.93738 -0.93989 -0.93483 -0.93225 0.5 2 -0.5 5.0 

-1.01688 -1.01846 -1.01524 -1.01354 0.5 2 -0.5 10 

 

Table 4 Sherwood number (Sh)  at  = -1 

103 3x103 -103 -3x103 K  β N1 
-3.58679 -3.57838 -3.59524 -3.60376 0.5 2 -0.5 0.5 

-3.28566 -3.26364 -3.30806 -3.33083 1.5 2 -0.5 0.5 

-3.06827 -3.00708 -3.13091 -3.19501 2.5 2 -0.5 0.5 

-5.96445 -5.93697 -5.999192 -6.01936 0.5 4 -0.5 0.5 

-16.90677 -11.78356 -12.02938 -12.15175 0.5 6 -0.5 0.5 

-1.87421 -1.87371 -1.8747 -1.87518 0.5 2 -0.1 0.5 

-2.59156 -2.58743 -2.5957 -2.59984 0.5 2 -0.3 0.5 

-5.21615 -5.20036 -5.23212 -5.24826 0.5 2 -0.7 0.5 

-8.62135 -8.57364 -8.66998 -8.71963 0.5 2 -0.9 0.5 

-5.7786 -5.75304 -5.80416 -5.82971 0.5 2 -0.5 1.5 

-8.94114 -8.87494 -9.00802 -9.07465 0.5 2 -0.5 3.5 

-10.81453 
-

10.713998 -10.91478 -11.01467 0.5 2 -0.5 5 

-15.40237 -15.19252 -15.61235 -15.8223 0.5 2 -0.5 10 

6. CONCLUSIONS 

With respect to chemical reaction parameter k we find that the axial 

velocity experiences an enhancement in the left half and depreciates in 

the right half of the channel with increase in k.  The magnitude of v 

enhances with increase in the chemical reaction parameter k. An increase 

in the chemical reaction parameter k reduces the actual temperature and 

enhances the actual concentration in the degenerating chemical reaction 

case. 

An increase in the chemical reaction parameter k reduces |Nu| at  

= +1 while at   = -1, it reduces with k1.5 and enhances with higher 

k2.5 while |Sh| reduces with increase in k. 
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An increase in the strength of the heat source (), larger u, |v| in the 

left half and smaller in the right half of the channel and leads to a 

depreciation in the actual temperature and the actual concentration in the 

entire flow region. 

An increase in the strength of the heat source leads to a depreciation 

in |Nu| and enhancement in |Sh| at both the walls.  

An increase in the thermal radiation parameter N1, leads to an 

enhancement in u, |v| in the left half and depreciates in the right half of 

the channel. Higher the thermal radioactive heat flux lesser the actual 

temperature and the actual concentration in the flow region. 

Higher the thermal radioactive heat fluxes smaller the rate of heat 

transfer at both the walls.  

Higher the constriction of the channel walls lesser u in the left half 

and larger in the right half of the channel. Higher the constriction of the 

channel walls larger |v|, and lesser the actual concentration in the entire 

flow region.  

Higher the constriction of the channel walls larger |Nu|, |Sh| at  = 

1.  

NOMENCLATURE 

Re Reynolds Number (
𝑞𝐿

𝑣
) 

Gr Grashof number (
𝑔𝐿2𝑇𝑒

𝑣2
) 

Pr Prandtl Number (
𝐶𝑝

𝐾1
) 

𝐷𝑎−1 Inverse Darcy Parameter(
𝐿2

𝑘
) 

M2 Hartmann Number (
𝐿2𝐻0

2𝑒
2

𝑣2
 ) 

Sc Schmidt Number (
𝑣

𝐷1
) 

Α Heat source parameter (
𝑄𝐿2


) 

K             Chemical reaction parameter (
𝐾1𝐿

2

𝐷1
) 

τ2             Womersley number (
𝐿2

𝑣
) 

N1            Radiation Parameter (
𝑅

4𝑇𝑒
3

∗) 
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