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ABSTRACT

The study scrutinizes the effect of convective heating on magnetohydrodynamic (MHD) stagnation point flow and heat transfer of upper-convected 
Maxell fluid p ast a  s tretching s heet i n t he p resence o f n anoparticles. T he m odel u sed i n t he s tudy i ncludes t he e ffect o f B rownian m otion and 
thermophoresis parameters. The non-linear governing equations and their boundary conditions are initially cast into dimensionless forms by similarity 
transformation. The resulting system of equations is then solved numerically using fourth order Runge-Kutta method along with shooting technique. 
Numerical results are obtained for velocity, temperature, concentration profiles, skin friction coefficient, local Nusselt number and Sherwood number. 
It is found that the skin friction coefficient, the local Nusselt number and Sherwood number increase with an increase in A and β and decreases as the 
values of M increase. Moreover, the local Nusselt number -θ′(0) and local Sherwood number -φ′(0) increases with an increase in Bi.
keywords: Nanofluid; MHD; Stagnation point flow; Heat transfer; Convective boundary condition; upper-convected Maxwell fluid

1. INTRODUCTION

The increasing demand of non-Newtonian fluids in many industries has
aroused a strong motivation to study their behavior in several transport
processes. The studies of boundary layer flow and heat transfer of non-
newtonian fluids over stretching surface have received considerable at-
tention due to their many theoretical and technical applications in the en-
gineering and technology. Few examples of such applications are drilling
mud, plastic polymers, optical fibers etc. and many more. The knowl-
edge of heat transfer of non-Newtonian fluids over a stretching sheet is
crucial in understanding the coating process and the design of various
heat exchangers and chemical-processing equipment. The comprehen-
sive review of literature on boundary layer flow and heat transfer of non-
Newtonian fluids are given in the references Hady et al. (2011); Abel
et al. (2012); Hsiao (2011); Mahapatra and Gupta (2002); Hayat et al.
(2012b); Kumari et al. (2010).

Due to viscosity difference in fluids, researchers proposed different
models to study non-Newtonian fluids which accommodate all the fea-
tures of non-Newtonian materials. Theses models are classified into three
categories. They are differential, rate and integral type fluids. The fluid
model under consideration is subclass of a rate type fluid called Maxwell
fluids. This fluid model predicts the relaxation time effect. The upper-
convected Maxwell (UCM) model is a generalization of the Maxwell ma-
terial for the case of large deformations using the upper-convected time
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derivative.

Generally, the flow of Maxwell fluid has been studied by many re-
searchers. Accordingly, Rajagopal (2012) gave the generalized classical
viscoelastic fluid due to Maxwell to allow the relaxation time. More-
over, Abel et al. (2008) numerically investigated the MHD flow and heat
transfer of the upper convected Maxwell fluid past a stretching sheet.
Similarly, Kumari and Nath (2009) analyzed numerically steady mixed
convection stagnation point flow of upper-convected Maxwell fluids with
induced magnetic field. Their study shows that the surface velocity gra-
dient and heat transfer are increased by increasing magnetic and buoy-
ancy parameter. Sadeghy et al. (2005) studied the Sakiadis flow of an
upper-convected Maxwell fluid. The analysis indicated that the wall skin
friction coefficient is predicted to decrease with an increase in the Deb-
orah number for Sakiadis flow of a upper-convected Maxwell (UCM)
fluid. This prediction is indirect contradiction with the reports in the
literature for a second-grade fluid. Furthermore, Sadeghy et al. (2006)
studied stagnation point flow of upper-convected Maxwell fluids. Still
further, Hayat et al. (2009) extended the study of Maxwell fluid and an-
alyzed MHD stagnation-point flow of an upper-convected Maxwell fluid
over a stretching surface. Their study shows that the magnitude of the
skin-friction coefficient increases for large values of Deborah number β.
Similarly, Hayat et al. (2012a) analyzed melting heat transfer in the stag-
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nation point flow of an upper-convected Maxwell fluids past a stretch-
ing/shrinking sheet. The study indicated that velocity field is a decreas-
ing function of Deborah number. The boundary layer flow of the upper
convected Maxwell fluid was investigated by Renardy and Wang (2012).
Moreover, Hayat et al. (2011) studied the effects of mass transfer on the
two-dimensional stagnation point flow of an upper-convected Maxwell
(UCM) fluid over a stretching surface. Their analysis indicated that the
effects of magnetic field and Deborah number β on velocity and con-
centration φ are quite opposite. Still further, Hayat and Qasim (2010)
and Aliakbar et al. (2009) investigated the effect of thermal radiation and
joule heating on MHD flow of a Maxwell fluid over a stretching sheet in
the presence of thermophoresis. Their analysis indicated that the magni-
tude of the local Nusselt and Sherwood number increases when porosity
parameter λ is increased. Furthermore, Hayat et al. (2008) investigated
MHD flow and mass transfer of a upper-convected Maxwell fluid past a
porous shrinking sheet with chemical reaction species.

Motsa et al. (2012) studied MHD flow of upper-convected Maxwell
fluid over porous stretching sheet using successive Taylor series lineariza-
tion method. The numerical result shows that in the presence of suc-
tion, the effect of an increase in the elasticity parameter β is to reduce
the flow velocity and decrease the skin friction at the stretching surface.
The opposite effect is observed in the presence of injection. Similarly,
Alizadeh-Pahlavan et al. (2009) investigated MHD flows of UCM fluids
above porous stretching sheets using two-auxiliary-parameter homotopy
analysis method. Their numerical results indicated that an increase in the
elasticity or magnetic number, the wall shear stress represented by f ′′(0)
is increased and the boundary layer thickness is decreased.

Moreover, the study of slip, magnetohydrodynamic stagnation point
flow and heat transfer of a power-law fluid towards a stretching sheet has
been discussed by investigators Mahapatra et al. (2009); Khan and Gorla
(2012).

Recently, the study of heat transfer under convective boundary con-
dition received numerous interests on the researchers side due to its in-
fluence on heat transfer characteristics on the surface and consequently,
the quality of the final product of the manufacturing industries. The study
of a convective heat transfer in magnetic field is important in processes,
such as, gas turbine, nuclear plants, thermal energy storage, etc. Since
then, different researchers extended the idea of convective heating to var-
ious configurations of the flat plate and stretching sheet. Accordingly, re-
searchers in the references Aziz (2009, 2010); Ishak et al. (2011); Bataller
(2008); Yao et al. (2011); Ishak (2010); Merkin and Pop (2011); Makinde
and Olanrewaju (2010) studied the heat transfer under convective bound-
ary condition over a flat surface.

Furthermore, Ibrahim and Shanker (2012) have numerically exam-
ined the boundary-layer flow and heat transfer of Nanofluid over a vertical
plate with convective surface boundary condition. Their study indicated
that the local Nusselt number and Sherwood number increase with an
increase in convective parameter and Lewis number.

Also, Vajravelu et al. (2011) have discussed the convective heat
transfer in a nanofluid flow over a stretching surface by focusing on Ag-
water and Cu-water nanofluid. They have investigated the effects of the
nanoparticle volume fraction on the flow and heat transfer characteristics
under the influence of thermal buoyancy and temperature dependent in-
ternal heat generation or absorption. Their numerical result indicates that
an increase in the nanoparticle volume fraction will decrease the veloc-
ity boundary layer thickness while increasing the thermal boundary layer
thickness.

Moreover, Mustafa et al. (2011) and Bachok et al. (2010) have stud-
ied the stagnation point flow and heat transfer characteristic of a nanofluid
over a stretching sheet. Their findings show that the highest value of heat
transfer was obtained for Cu nanoparticle near the nodal point. Further-
more, Ibrahim et al. (2013) investigated the MHD stagnation point flow
and heat transfer due to nanofluid towards a stretching sheet numerically.
Their analysis indicates that an increase in velocity ratio parameter A

increases both the local Nusslet number and local Sherwood number. Re-
cently, Ibrahim and Shankar (2013) have analyzed MHD boundary layer
flow and heat transfer of a nanofluid past a permeable stretching sheet
with velocity, thermal and solutal slip boundary conditions. Very recently,
Ibrahim and Makinde (2013) studied the effect of double stratification on
boundary layer flow and heat transfer of nanofluid over a vertical plate.

All the above investigators ignore the effects of nanoparticles in the
analysis of the problem of Maxwell fluid.

In view of this, the present paper aim to analyze the effect of nanopar-
ticle and convective heating on MHD stagnation point flow, the bound-
ary layer flow and heat transfer of upper-convected Maxwell fluid over a
stretching sheet using Runge-Kutta fourth order with shooting technique.
Therefore, the inclusion of the effect of nanoparticles makes this study a
novel one. The effects of governing parameters on fluid velocity, temper-
ature and particle concentration have been discussed and shown graphi-
cally and in tables. The results are compared with the results available in
the open literature and are found to be in an excellent agreement.

2. MATHEMATICAL FORMULATION

Consider a two-dimensional steady state MHD stagnation point flow of
upper-convected Maxwell fluid past stretching sheet in the presence of
nanoparticles subjected to a convective heating process at its lower sur-
face, which is characterized by a temperature Tf and a heat transfer coef-
ficient hf . The coordinate system such that the x-axis is along the sheet
and y-axis is normal to the sheet is chosen for this study. At this boundary,
concentration C take constant values Cw. The ambient values attained
as y tends to infinity of T and C are denoted by T∞ and C∞, respec-
tively. The free stream velocity distribution is assumed to be in the form
u∞ = bx and uw = ax is the velocity of the stretching sheet, where a and
b are positive constants. λ is the relaxation time parameter of the fluid.
B0 is the strength of the magnetic field, υ is the kinematic viscosity of the
fluid. Under these assumptions, along with the boundary-layer approxi-
mations, the governing equation of mass, momentum, thermal energy and
concentration of steady, laminar boundary-layer flow of a nanofluid past
a stretching sheet is given by Abel et al. (2012) as:
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Where α = k
(ρc)f

, τ =
(ρc)p
(ρc)f

The boundary conditions are:

u = uw = ax, v = 0, −k ∂T
∂y

= hf (Tf − T ), C = Cw at y = 0

u→ U∞ = bx, v = 0, T → T∞, C → C∞ as y →∞


(5)

Where k is the thermal conductivity of the fluid.
The mathematical analysis of the problem is simplified by introducing the
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following similarity transformations:

η = y

√
a

υ
, ψ =

√
aυ x f(η),

θ(η) =
T − T∞
Tf − T∞

, φ(η) =
C − C∞
Cw − C∞

(6)

The equation of continuity is satisfied if we choose a stream function
ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
(7)

Using the similarity transformation quantities (6), the governing equa-
tions (1)- (4) are transformed into the non-dimensional form as follows:

f
′′′

+ ff
′′
− f ′2 +A2 +M(A− f ′) + β(2ff ′f ′′ − f2f ′′′) = 0 (8)

θ
′′
+ Pr

[
fθ

′
+Nbφ

′
θ′ +Ntθ′2

]
= 0 (9)

φ′′ + PrLefφ′ +
Nt

Nb
θ
′′
= 0 (10)

The corresponding boundary conditions are:

f(0) = 0, f ′(0) = 1, θ′(0) = Bi(θ(0)− 1), φ(0) = 1, at η = 0,

f ′(∞)→ A, θ(∞)→ 0, φ(∞)→ 0, as η →∞ (11)

where the governing parameters are defined by
where f ′, θ and φ are the dimensionless velocity, temperature, and

concentration respectively. η is the similarity variable and the prime de-
notes differentiation with respect to η. A(velocity ratio), Pr(Prandtl num-
ber), Nb(Brownian motion parameter), Nt(thermophoresis parameter),
Le( Lewis number), Bi(Biot number), β(Deborah number) and M(magnetic
parameter).

If magnetic field, free stream velocity and Deborah number param-
eters are neglected, the problem is reduced to boundary layer flow of
nanofluid past stretching sheet with convective boundary condition which
was investigated by Makinde and Olanrewaju (2010).

The important physical quantities of interest in this problem are the
skin friction coefficient Cf , the local Nusselt number Nux and the local
Sherwood number Shx, respectively, are defined as:

Cf =
τw
ρu2

w

, Nux =
xqw

k(Tw − T∞)
, Shx =

xhm
DB(φw − φ∞)

(12)

Where the wall shear stress τw, the wall heat flux qw and wall mass flux
hm are given by

τw = µ(1+β)
∂u

∂y
, qw = −k

(
∂T

∂y

)
y=0

, hm = −DB
(
∂φ

∂y

)
y=0

(13)
By using the above equations, we get

Cf
√
Rex = (1 + β)f ′′(0),

Nux√
Rex

= −θ′(0), Shx√
Rex

= −φ
′
(0)

(14)
WhereRex,Nux, Shx are local Reynolds number, local Nusselt number
and local Sherwood number, respectively.

3. NUMERICAL SOLUTION

The flow model for the above coupled ordinary differential equations Eqs.
(8)-(10) subjected to the boundary conditions, Eq. (11) for different val-
ues of governing parameters viz. Biot number, magnetic parameter M,
Prandtl number Pr, velocity ratio parameter A, a Brownian motion pa-
rameter Nb, a thermophoresis parameter Nt, a Lewis number Le and
β(Deborah number) has been numerically solved using Maple 17.0. This
software uses a fourth-fifth order Runge-Kutta-Fehlberg method as the

default method to solve the boundary value problems numerically. Its ac-
curacy and robustness have been confirmed by different investigators. As
a further check on the accuracy of our numerical computations, we have
compared our results with the investigators Mahapatra and Gupta (2002)
and have found to be in an excellent agreement.

4. RESULTS AND DISCUSSION

The transformed momentum, energy and concentration equations (8) -
(10) subjected to the boundary conditions equations (11) are coupled
non-linear differential equation for which closed form solution can’t be
obtained and hence we required to solve numerically. The governing
equations (8) - (10) are solved using Runge-Kutta-Fehlberg method with
shooting technique by Maple 17.0 software. We obtained velocity, tem-
perature and concentration profile for different values of governing pa-
rameters. The results obtained are displayed through figs. 1-3, figs. 4-10,
figs. 11-15 for velocity, temperature and concentration profile respec-
tively. Moreover, fig. 16 and fig. 17 display the graph of skin friction
coefficient and local Nusselt number respectively.

Figs. 1 - 3 show the velocity graphs for different values of A, M and
β, respectively, while the other parameters remain fixed.

Fig. 1 illustrates the influence of velocity ratio parameter A on flow
velocity. The flow has boundary layer structure and the boundary layer
thickness increases as the values of A increase. The velocity graph is
feasible when the velocity ratio A is less than or equal to 1.i.e when the
velocity of stretching sheet is greater than or equal to the free stream
velocity.

Fig. 2 demonstrates the variation of velocity graph with respect to
M. As the values of Magnetic parameter M increase, the velocity bound-
ary layer thickness decreases. The magnetic parameter M represents the
importance of magnetic field on the flow field. The presence of transverse
magnetic field sets in Lorentz force, which results in retarding force on
the velocity field. Therefore, as the values of M increase, so does the
retarding force and hence the velocity decreases.

Fig. 3 reveals the variation of velocity graph with respect to β(Deborah
number). As the values of β increase, the velocity boundary layer thick-
ness increases. This may be due to the fact that as Deborah number in-
creases, the force due to the parameter opposes the flow velocity.

Figs. 4 - 9 represent the variation of temperature with respect to the
governing parameters, such as, Biot number parameter Bi, Deborah num-
ber β, Prandtl number Pr, Brownian motion parameter Nb, thermophore-
sis parameter Nt and velocity ratio parameter A.

Fig. 4 shows the effect of Biot number(Bi) on temperature field. It is
found that both the sheet surface and the nanofluid temperature increase
when Bi is increased. This leads to an increase in thermal boundary layer
thickness. As the value of parameter Bi increases, the intensity of convec-
tive heating on the sheet surface increases, which leads to an increasing
rate of convective heat transfer from the hot fluid on the lower surface of
the sheet to the nanofluid on the upper surface. The graph also reveals
that θ(η) increases rapidly near the surface due to the increasing values
of Bi.

Fig. 5 displays the influence of Deborah numberβ on temperature
profile. As the values of β increase, the thermal boundary layer thick-
ness increases. This may be due to the fact that as the as the values of β
increase thermal difussivity decreases, which induces the rise of temper-
ature in the boundary layer.

Fig. 6 represents variation of temperature with respect to Brown-
ian motion parameter Nb. As the values of Nb increase, the temperature
graph is decreasing. The graph also reveals that the thermal boundary
layer thickness increases when the values of Nb increase. Moreover, the
surface temperature increases as the values of Nb increase.

Fig. 7 shows the influence of the change of thermophoresis param-
eter Nt on temperature graph. It can be noticed that as thermophoesis
parameter increases, the thermal boundary layer thickness increases and
the temperature gradient at the surface decreases (in absolute value) as Nt
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increases. Therefore, the local Nusselt number −θ′(0), which represents
the heat transfer rate at the surface decreases. Consequently, tempera-
ture on the surface of a sheet increases. This is due to the fact that the
thermophoresis Parameter Nt is directly proportional to the heat transfer
coefficient associated to the fluid. The thermal resistance on the hot fluid
side is inversely proportional to hf . Thus, as Nt increases, the hot fluid
side convection resistance decreases, as a result, the surface temperature
θ(0) increases.

Fig. 8 represents the variation of temperature graph with respect to
Prandtl number Pr. The graph depicts that the temperature and thermal
boundary thickness decrease when the values of Prandtl number Pr in-
crease at a fixed value of η. This is due to the fact that a higher Prandtl
number fluid has relatively low thermal conductivity, which reduces con-
duction and there by the thermal boundary layer thickness, and as a result,
temperature decreases. Increasing Pr is to increase the heat transfer rate
at the surface because the temperature gradient at the surface increases.
The influence of Prandtl on Newtonian fluids is similar to what we have
observed in nanofluid. Therefore, these properties are also inherited by
nanofluids.

Fig. 9 shows the variation of temperature profile in response to a
change in the values of velocity ratio parameter A. It is observed that
as the velocity ratio parameter A increases, the thermal boundary layer
thickness decreases. Moreover, the temperature at the surface decreases
(in absolute value) as A increases. As a result, local Nusselt number -
θ′(0) on the surface of a sheet increases. This is due to the fact that the
velocity ratio Parameter B is directly proportional to the heat transfer co-
efficient associated with hot fluid hf . The thermal resistance on the hot
fluid side is inversely proportional to hf . Thus, as A increases, the hot
fluid side convection resistance decreases; as a result, the surface temper-
ature θ(0) decreases. The graph also shows that θ(0)→ 1 as Bi→∞.

Figs. 10 - 14 demonstrate the variation of nanoparticle concentration
with respect to the change of governing parameters, viz.Lewis number
Le, Biot number Bi, Brownian motion parameter Nb and thermophoresis
parameter Nt.

As it is noticed from graph 10, as Lewis number increases, the con-
centration graph decreases. Moreover, the concentration boundary layer
thickness decreases as Lewis number increases. This is probably due
to the fact that mass transfer rate increases as Lewis number increases.
It also reveals that the concentration gradient at surface of the sheet in-
creases.

Fig. 11 shows the variation of concentration graph with respect to a
change in Biot number Bi. From the graph, it is possible to see that as the
values of Biot number parameter Bi increase, the concentration graph is
decreasing. Moreover, the graph reveals that as the values of Bi increase,
the concentration boundary layer thickness is increasing.

Fig. 12 shows the influences of thermophoresis parameter on tem-
perature profile. As the values of thermophoresis parameter Nt increases,
the concentration boundary layer thickness increases. This indicates that
an increment in thermophosis parameter induces resistance to the diffu-
sion of mass. This results in the reduction of concentration gradient on
the surface.

Fig. 13 elucidates the variation of concentration graph with respect
to Brownian motion parameter Nb. As the values of Brownian motion
parameter Nb increase, the concentration boundary layer thickness de-
creases.

Fig. 14displays the variation of concentration graph with respect to
magnetic parameter M. As the values of M increase, the concentration
boundary layer thickness increases which is opposite to the scenario ob-
served in fig14.

Figs. 15-16 shows the variation of the skin friction coefficient -
f ′′(0) with respect to A and β as the values of magnetics parameter M
increase. As the values of M increase, the graph of skin friction coeffi-
cient increases, however, as the values β increases the graph decreases
and the boundary thickness decreases.

Table 1 Comparison of skin friction coefficient f ′′(0) for different values
of velocity ratio parameter A when M=0, β = 0, Bi= 1000.

A α δ Present result
0.1 -0.9694 -0.9694 -0.9694
0.2 -0.9181 -0.9181 -0.9181
0.5 -0.6673 -0.6673 -0.6673
2.0 2.0175 2.0175 2.0175
3.0 4.7293 4.7293 4.7293
5.0 - - 11.7520
10.0 - - 36.2574

where α =MahapatraandGupta (2002), δ = Ibrahimet al. (2013)

Table 2 Comparison of local Nusselt number −θ′(0) at β = A = M =
0.0, Nt = Nb = 10−10, Le = 2 for different values of Pr with
perviously published result

.

Pr a b Present result
0.07 0.0663 0.0656 0.0656
0.2 0.1691 0.1691 0.1691
0.7 0.4539 0.4539 0.4539
2.0 0.9113 0.9113 0.9113
7.0 1.8954 1.8954 1.8954
20.0 3.3539 3.3539 3.3539
70.0 6.4621 6.4621 6.4621

Where a = KhanandGorla (2012) and
b =MakindeandOlanrewaju (2010)

Fig. 16 shows the variation of the skin friction coefficient -f ′′(0)
with respect to A as the values of magnetics parameter M increase. As
the values of M increase, the graph increases and the boundary thickness
also increases.

Fig. 17 displays the effect of Brownian motion parameter on local
Nusselt number against thermophoresis parameter Bi. As the values of
Bi parameter increase, the graph of local Nusselt number -θ′(0) increases
and the thermal boundary layer thickness also increases.

Table 1 shows the comparison of the variation of skin friction coef-
ficient f ′′(0) for different values of velocity ratio parameter A with pre-
vious studies. From the table it is possible to see that our result is in an
excellent agreement with the results given by researchers Mahapatra and
Gupta (2002) and Ibrahim et al. (2013) in limiting conditions. Moreover,
to check the accuracy of the numerical solutions, a comparison of heat
transfer rate for different values of Pr is made with Makinde and Olanre-
waju (2010) and Khan and Gorla (2012) and we have found an excellent
agreement with them.

From table 1 and 2, we can see that the present result is in an excel-
lent agreement with the results reported by previous studies under limit-
ing conditions. Therefore, we are confident that our numerical method is
suitable for the analysis of the problem.

The variation of f ′′(0), -θ′(0) and -φ′(0) with respect to velocity
ratio A, M, Bi and β is given in table 3. From the table, it is possible to
see that skin friction coefficient increases when velocity ratio parameter A
and Deborah number β increase; however, it remain constant as the values
of convective parameter Bi increase. Moreover, the table illustrates that
the local Nusselt number -θ′(0) of the flow field increases as the values of
A, Bi and β increase. It is also indicated that the local Sherwood number -
φ′(0) increases as the values of the three parameters A, Bi and β increase.
All the three quantities of interest skin friction coefficient, local Nusselt
number and local Sherwood number decrease as the values of M increase.
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Table 3 Computed values of skin friction coefficient f ′′(0), local Nusselt
number −θ′(0) and local Sherwood number −φ′(0) for different
values of A, M , Bi β and when Nb = Nt = 0.5, Pr = 2,
Le = 5

A M Bi β f ′′(0) −θ′(0) −φ′(0)
0.0 1 0.5 0.01 -1.4160 0.1943 1.4336
0.2 -1.3815 0.1970 1.4536
0.6 -1.1228 0.2107 1.5599
1.0 1 -0.6565 0.2254 1.6870

2 -1.1179 0.2144 1.5874
3 -1.4739 0.2054 1.5088
4 -1.7695 0.1977 1.4438
2 0.1 -1.1179 0.0814 1.5780

0.5 -1.1179 0.2144 1.5874
1 -1.1179 0.2601 1.5980

10 -1.1179 0.3120 1.6170
20 -1.1179 0.3152 1.6481
0.5 0.01 -1.1179 0.2144 1.5874

0.0 -1.1165 0.2145 1.5878
-1.0 -0.9828 0.2185 1.6234
-2.0 -0.8664 0.2220 1.6550

5. CONCLUSIONS

A numerical study is presented for a boundary layer and MHD stagna-
tion point flow of upper-convected Maxwell fluid flow over a stretching
sheet with convective boundary conditions. Using similarity variables,
the governing equations are transformed into a set of differential equa-
tions, where numerical solution has been given for different governing pa-
rameters. The results indicate that the velocity field is sensitive when the
Deborah number β is negative. Moreover, the velocity graph has shown
a change when the velocity ratio is less than or equal to 1. The velocity
boundary layer thickness increases as the values of Deborah number β
increase. The inclusion of the effect of Deborah number in the presence
of nanoparticle makes this study a novel one. The following conclusions
are drawn from the analysis:

• The thickness of velocity boundary layer increases with an increase
in A.

• The thickness of the velocity boundary layer increases as the values
of Deborah number β increase.

• The thickness of thermal boundary layer increases with an increase
in Biot number and Brownian motion parameters.

• The thickness of thermal boundary layer decreases as Deborah
number β, Prandtl number parameter Pr and velocity ratio A in-
crease.

• The thickness of concentration boundary layer increases with an
increase in the values of Nt and Bi parameters.

• The thickness of concentration boundary layer decreases with an
increase in Lewis number Le.
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NOMENCLATURE

A Velocity ratio
Bi Biot number
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Fig. 1 Velocity graph for different values of A when β = 0.1, M = 0.2
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B0 Strength of Magnetic field
Cf Skin friction coefficient
C∞ Ambient concentration
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coefficient
f Dimensionless velocity stream function
hf Heat transfer coefficient
k Thermal conductivity
Le Lewis number
M Magnetic parameter
Nb Brownian motion parameter
Nt Thermophoresis parameter
Nux Local Nusselt number
Pr Prandtl number
Rex Local Reynolds number
Shx Local Sherwood number
T Temperature of the fluid inside

the boundary layer
Tw Uniform temperature over

the surface of the plate
Tf Temperature of a hot fluid
T∞ Ambient temperature
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u,v Velocity component
along x- and y-direction

Greeks
α Thermal diffusivity
β Deborah number
η Dimensionless similarity variable
µ Dynamic viscosity of the fluid
υ Kinematic viscosity of the fluid
(ρ)f Density of the fluid
(ρc)f Heat capacity of the fluid
(ρc)p Effective heat capacity of

a nanoparticle
ψ Stream function
σ Electrical conductivity
φw Dimensionless concentration

function at the surface
φ∞ Dimensionless concentration

function at large values of y
θ Dimensionless temperature
τ Parameter defined by (ρc)p

(ρc)f
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