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ABSTRACT

The Numerical analysis of magneto-hydrodynamics (MHD) boundary layer flow and heat transfer of incompressible, viscous and electrically con-
ducting fluid is presented. The flow is due to continuously stretching permeable surface embedded in non-Darcian porous medium in the presence of
transverse magnetic field, thermal radiation and non-uniform heat source/sink. The flow equations in the porous medium are governed by Forchheimer-
Brinkman extended Darcy model. A similarity transformation is used to transform partial differential equations into a coupled higher order non-linear
ordinary differential equations. These equations are solved numerically using implicit finite difference scheme called Keller-Box method. The effects
of the governing parameters on velocity and temperature are computed, analyzed and discussed. Moreover, the numerical results for the local skin
friction coefficient and local Nusselt number are computed for various physical parameters governing the flow problem. It is found that increasing
Darcy number accelerates the flow but increasing Forchhiemer number causes deceleration in the flow. The findings of the present study reveal that
an increase in the radiation, heat source and Forchheimer number increases the thermal boundary layer thickness. The results under the limiting case
were compared with the previously published work and found to be in good agreement.
Keywords: Heat Transfer, Boundary-Layer flow, Non-Uniform Heat source or Sink, Stretching Surface, Implicit finite difference (Keller-Box )
Method, Non-Darcy Porous Medium.

1. INTRODUCTION

The analysis of radiation effect has important applications in physics and
engineering especially in space technology and high temperature pro-
cesses. Radiation has a big impact on the boundary layer flow. However,
very little is known about the effects of radiation on the boundary layer
flow. Thermal radiation effect on the boundary layer may play important
role in controlling heat transfer in polymer processing industry where
the quality of the final product depends on the heat controlling factors to
some degree. Radiative effect often observed in many engineering areas
such as in electrical power generation, astrophysical flows, solar power
technology, space vehicle re-entry, nuclear engineering applications and
other industrial areas. Accordingly, researchers (Siddheshwar and Ma-
habaleswar (2005), Mahmoud (2009), Shateyi and Motsa (2010), Abel
and Mahesha (2008), Prasad et al. (2010)) have examined the effects of
thermal radiation on heat transfer over stretching sheet by considering dif-
ferent properties of a fluid. Moreover, when radiative heat transfer takes
place, the fluid involved can be electrically conducting since it is ionized
due to the high operating temperature. Therefore, it is important to ex-
amine the effect of the magnetic field on the flow. Many researches have
examined the effects of thermal radiation on fluid flow and heat trans-
fer in the presence of magnetic field. Accordingly, Pal (2011) studied
the effects of thermal radiation and non-uniform heat source/sink on heat
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transfer over permeable stretching surface. Moreover, Abel and Mahe-
sha (2008) also has conducted numerical study of the effects of thermal
radiation on a boundary-layer flow of a micro polar fluid with tempera-
ture dependent viscosity and thermal conductivity over a stretching sheet
through porous media. Still further, Elbashbeshy and Aldawody (2010)
studied heat transfer over stretching surface by considering variable heat
flux in the presence of a uniform heat source/sink. Furthermore, Pop et al.
(2011) studied the radiation effects using Rosseland model on the flow of
an incompressible viscous fluid over a flat sheet near the stagnation point.

The analysis of the flow and heat transfer induced by continuous
stretching heated surface placed in the porous medium has received the
attention of many researchers now days due to its important applications
in many field of engineering disciplines. For example, applications of
the porous medium includes, thermal insulation of buildings, heat ex-
changer, solar energy collector, geophysical applications, solidification
of alloys, nuclear waste disposal, drying processes etc. More applications
on porous medium are available in the book by Nield (2006)

Further, Elbashbeshy et al. (2010) investigated the unsteady boundary-
layer flow over a porous stretching surface embedded in a porous medium
in the presence of uniform heat source or sink. Their result indicates that
the unsteadiness parameter increases the skin friction coefficient and the
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local Nusselt number for different values of Prandtl number Pr. More-
over, Elbashbeshy and Bazid (2004) investigated heat transfer effect over
an unsteady porous stretching surface embedded in a porous medium with
variable heat flux in the presence of heat source or sink. Furthermore,
Ishak et al. (2009) numerically examined the effect of Heat transfer over
unsteady stretching permeable surface with prescribed wall temperature.

In all the above studies, the investigators are confined to Darcy’s
law which state that the volume-average velocity is proportional to the
pressure gradient. The Darcy model is valid in a densely packed porous
medium made up of uniform spherical particles under condition of low
velocity and small porosity and permeability Pal and Chatterjee (2010).
However, for relatively high velocity flow situations, the Darcy’s law is
inadequate for representing the flow behavior correctly since it does not
account for the resulting inertia effects of the porous medium. In such
case, the pressure drop has a quadratic relationship with volumetric flow
rate. Therefore, the inclusion of non-Darcian effect term necessitate for
more realistic solution of the problem. The inertia effect is expected to
be important at higher flow rate and it can be accounted for the addition
of a velocity squared term in the momentum equation, which is known
as the Forchheimer’s extension of the Darcy’s law. Several investigators
have considered the non-Darcian model to study the heat transfer rate
on surfaces embedded in a porous medium. Accordingly, Takhar et al.
(1998) studied the radiation-convection dissipative non-Gary gas flow in
a non-Darcy porous medium using Keller-Box implicit finite difference
schemes. Recently, Pal (2010) studied magnetohydrodynamic non-Darcy
mixed convection heat transfer from a vertical heated plate embedded in a
porous medium with variable porosity. All the above researchers studied
the non-Darcy porous medium when the physical properties of a fluid is
a constant. However, Pal and Mondal (2010) studied the effects of vari-
able viscosity on MHD non-Darcy mixed convection heat transfer over
stretching sheet embedded in porous medium. Some of the important ref-
erences dealing with the concept discussed in the paper are found Abol-
bashari et al. (2014); Rashidi and Erfani (2012); Rashidi et al. (2014);
Ibrahim (2016); Rashidi et al. (2012)

In all the above studies, the simultaneous effect of non-uniform heat
source/sink, thermal radiation, magnetic parameter and porosity were not
studied. Hence, the present study is aimed at filling this gap. The results
of this study is useful in many engineering applications such as MHD
generator, nuclear rectors, geothermal energy extractions etc.

2. MATHEMATICAL FORMULATION

Consider steady two-dimensional laminar boundary layer flow of an in-
compressible viscous fluid over a continuously moving stretching per-
meable surface embedded in non-Darcy porous medium in a quiescent
incompressible electrically conducting fluid. The x-axis is taken along
the stretching surface in the direction of the motion with the slot as the
origin as shown in fig.1.

The flow is subjected to a transverse magnetic field of strength B(x)
which is assumed to be applied in the positive y-direction normal to the
surface, thermal radiation and non-uniform heat source /sink. The in-
duced magnetic field is assumed to be small compared to the applied
magnetic field and is neglected. Moreover, applied electric field, Hall
effect and Joule heating are neglected.

We also assume that the sheet is stretched with the stretching veloc-
ity uw(x) along x-axis and the surface temperature of the sheet is Tw(x).
The fluid properties are assumed to be isotropic and homogenous. Darcy
resistance and quadratic drag terms are taken in to account by consid-
ering constant permeability of the porous medium. In order to get the
effect of temperature difference between the surface and ambient fluid,
we consider the non-uniform heat source/ sink in the flow. Under these
assumptions along with the boundary-layer approximations, the continu-
ity, momentum and energy equations are respectively, as used by Abel

                                                 Y  
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                                                                                                               Bo 
                                                                                                                   B = (0, Bo, 0) 
                                Slot x 
 
                                                                      Permeable stretching sheet 
 

Fig. 1 Schematic Diagram for Physical Flow Model

and Mahesha (2008) given by
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with boundary conditions

u = uw(x), v = vw, T (x) = Tw(x) at y = 0

u→ 0, T → T∞ as y →∞ (4)

where x and y represent coordinate axes along the continuous surface in
the direction of motion and normal to it, respectively; u and v are the ve-
locity components along x-axis and y-axis, respectively; υ is kinematics
viscosity; σ is electric conductivity, T is the temperature inside the bound-
ary layer, cp is the specific heat at constant pressure, ρ is the density, k
is the thermal conductivity, k′ is the permeability of the porous medium;
cb is the form of drag coefficient which is independent of viscosity and
other physical properties of fluid but is dependent on the geometry of the
medium; T∞ is the temperature far away from the stretching sheet with
Tw > T∞, and a, b are constants, a > 0, b ≥ 0.

The velocity of the sheet uw(x), the surface temperature of the sheet
Tw(x) and the transverse magnetic field strength B are respectively de-
fined as follows

uw(x) = ax, Tw(x) = T∞ + bx, B = B0 (5)

The particular form of uw(x) and Tw(x) represented in this paper has
been chosen in order to devise a similarity transformation, which trans-
form the partial differential equations (1)-(3) into a set of high order non-
linear ordinary differential equations. The equation of continuity is satis-
fied if we choose a stream function ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
(6)

The mathematical analysis of the problem is simplified by introducing the
following similarity transforms

η =

√
a

v
y, ψ =

√
av x f(η), θ(η) =

T − T∞
Tw − T∞

(7)

The term vw = −
(
vuw
x

) 1
2 f(0) represents the normal velocity at the

surface with vw > 0 for injection and vw < 0 for suction.
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The radiative heat flux in the x-direction considered negligible as
compared to y-direction. Hence, by using Rosseland approximation for
radiation, the radiative heat flux qr is given by

qr = −4σ∗

3k∗
∂T 4

∂y
(8)

where σ∗ and k∗ are respectively the Stephan-Boltzmann constant and
the mean absorption coefficient. We assume that the temperature differ-
ence with in the flow are sufficiently small such that the term T 4 may be
expressed as a linear function of temperature. This is done by expanding
T 4 in a Taylor series about a free stream temperature T∞ as follows:

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + · · · (9)

Neglecting higher-order terms in the above equation (9) beyond the first
degree in (T − T∞), we get

T 4 ∼= 4T 3
∞T − 3T 4

∞ (10)

Thus substituting equation(10) in to equation(8), we get

qr = −16T 3
∞σ
∗

3k∗
∂T

∂y
(11)

The non-uniform heat source/sink, qn, is defined as follows, as it is
used in Pal (2011)
qn = kuw(x)

xv
[A1(Tw − T∞)f ′ + (T − T∞)B1]

whereA1 andB1 are the coefficient of space and temperature-dependent
internal heat source/sink, respectively. A1 > 0, B1 > 0 corresponds to
internal heat generation and A1 < 0, B1 < 0 corresponds to internal
heat absorption. Using the similarity transformation equation, the gov-
erning equations (1), (2) and (3)are transformed to the non-dimensional
form as follow

f
′′′

+ ff
′′
− (1 + F )f ′

2 − (M +
1

Da
)f ′ = 0

(1 +R)Pr−1θ′′ + fθ′ − f ′θ + Pr−1(A1f ′ +B1θ) = 0 (12)

With boundary conditions

f(0) = s, f ′(0) = 1, θ(0) = 1, η = 0,

f ′(∞) = 0, θ(∞) = 0, η →∞ (13)

Where f(0) = s with s < 0 and s > 0 corresponds to injection
and suction, respectively. f ′ and θ are the dimensionless velocity and
temperature respectively, η is the similarity variables, the prime denotes
differentiation with respect to η, M = σ(B0)

2

ρa
is the magnetic parameter,

Pr =
µcp
k

is the Prandtl number, µ is coefficient of viscosity, R =
16σ∗T3

∞
3k∗k is the thermal radiation parameter and Rex = uwx

υ
is the local

Reynolds number, Da = k′a
υ

is Darcy number, F = cb√
k
′ x is the local

inertia coefficient of porous medium (Forchheimer number).
The important physical quantities of interest are the skin friction co-

efficient Cf and the local Nusselt number Nux and defined as

Cf =
τw
ρu2

w

, Nux =
xqw

k(Tw − T∞)
(14)

Where the skin friction τw and the heat transfer from the sheet qw are
given by
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And µ and k are the dynamic viscosity and thermal conductivity respec-
tively. By using equation (5) and (7), we get

Cf
√
Rex = −f ′′(0),

Nux√
Rex

= − (1 +R) θ′(0) (16)

Where Rex = uwx
υ

is the local Reynolds number.
It is noted that in the absence of magnetic parameter M, thermal

radiation R, heat source and sink parameters, A1 = 0 and B1 = 0, the
closed-form solution for flow problem in terms of Kummer’s function
were given by Ishak et al. (2009).

3. NUMERICAL SOLUTION

An efficient Keller-Box implicit finite difference method has been em-
ployed to examine the flow model for the above coupled ordinary differ-
ential equations (12) for different values of magnetic parameter M, ra-
diation parameter R, non-uniform heat source or sink parameter, Prandtl
number Pr, Darcy number Da and Forchheimer number F of porous medium.
The domain of the similarity variable η discretized into 0.001 value. The
step size and the convergence criteria were taken as 4η = 0.001 and
10−8 respectively. The CPU time to run the matlab code takes 56.42
seconds. The asymptotic boundary conditions are given by eq.(13) were
replaced by using a value of 8 for the similarity variable ηmax as follows:

ηmax = 8, f ′(4) = θ(8) = 0 (17)

4. RESULTS AND DISCUSSION

The transformed continuity, momentum and energy equations (12) sub-
jected to the boundary conditions equation (13) were solved numerically
by means of implicit finite difference scheme described in Cebeci and
Bradshaw (2012). The method has second order convergency, uncon-
ditionally stable. A uniform grid is used which is concentrated toward
the wall. The calculation is repeated until some convergence criterion is
satisfied. In this study the boundary condition for η at ∞ are replaced
by a sufficiently large value of η where the velocity and temperature ap-
proaches to zero. In order to see the effects of step length (∆η) we ran
the code for two different step size ∆η = 0.001 and ∆η = 0.01 in each
step length and it has been found good agrement with previous studies
available in open litterateur. After some trial we put the maximum value
of η at∞ of 8 and the grid size of ∆η = 0.01 We have obtained veloc-
ity and temperature profile for different values of governing parameter.
The Keller-box method is programmed in MATLAB with the step size of
∆η = 0.01 in η. The results obtained are shown through, Figs. 2-5, Figs.
6-11, Figs.12-14 and Figs.15-17 for velocity, temperature, skin friction
coefficient and local Nusselt number respectively.

Figs. 2-5 show the velocity graphs for different values of s, M, Da
and F respectively when the other parameters are fixed. Fig. 2 shows
the influence of wall transpiration(suction) on the flow velocity. With
an increase in suction (s > 0) the velocity clearly decrease i.e the flow
decelerate. Increasing in suction causes the boundary layer to adhere
closer to the flow and reduces momentum transfer.

Fig.3 reveals the influence of magnetic parameter M on velocity
field. It is observed that fluid velocity decreases with an increase in the
magnetic parameter M. This is because greater retarding effect is gen-
erated in the flow with greater values of M which causes the prominent
reduction in velocities due to Lorentz force effect. As magnetic field
strength increases the Lorentz force increases which opposes the flow of
fluid and flow opposition increase leads to the reduction of velocity of the
flow.

Fig.4 depicts the velocity graph for different values in Darcy number
Da. In the momentum equation, the Darcian drag term 1

Da
f
′
, is inversely

proportional to Da. An increase in Da increases the porous medium per-
meability and simultaneously decreases the Darcian impedance since pro-
gressively less solid fibre are present in the regime. Therefore, the flow
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Fig. 2 Velocity profile graph for different values of S, when M = 0.4,
R = 0.3, Pr = 1, A1 = B1 = −0.05,Da = 10, F = 0.2
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Fig. 3 Velocity profile graph for different values of M, when s = 0.4,
R = 0.3, Pr = 1, A1 = B1 = −0.05, Da = 10, F = 0.2

is accelerated for higher Da values causing an increase in the velocity
profile. Consequently, the velocity boundary layer thickens increases.

Fig.5 reveals the variation of velocity to a change in Forchheimer
inertia drag force parameter. It is observed that the velocity decreases
with an increase in the value of Forchheimer number F due to the fact
that the second-order quadratic drag force term will increases as a result
the impedance offered by fibre of the porous medium will increase which
results in decreasing velocity the boundary layer. To summarizes what
we discussed on velocity field, the velocity boundary layer thickness de-
creases monotonically when magnetic parameter M, injection/suction s
and Forchheimer number F increases. Furthermore, the graphs show that
velocity gradient on the surface of a stretching sheet decreases with an
increase in the values of parameters M, F and S .

Fig.6 point up the temperature response to a change in Forchheimer
number. The graph shows that as Forchheimer number increase the tem-
perature also increases because as Forchheimer number increase the ve-
locity decreases as wit has been discussed in fig.5. With decelerated flow,
heat will be diffused more easily as a result the boundary layer regime
will be heat and the boundary layer thickness increased consequently the
temperature is increased in the boundary layer.

Fig.7 illustrates the variation of temperature graph for different val-
ues of Darcy number Da. From the figure it is possible to see that the
temperature decreases with an increase in Da number. This is due to the
fact that the presence of fewer solid fibres in the regime with increasing
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Fig. 4 Velocity profile graph for different values of Da, when s = 0.4,
R = 0.3, Pr = 1, A1 = B1 = −0.05, M = 0.5, F = 0.2
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Fig. 5 Velocity profile graph for different values of F, when s = 0.4,
R = 0.3, Pr = 1, A1 = B1 = −0.05, M = 0.5, Da = 10

Da, inhibits the thermal conduction in the medium which reduces distri-
bution of thermal energy and thereby decrease thermal boundary layer
thickness. This results in the reduction of temperature profile.

Fig.8 demonstrate the variation of temperature with respect to radi-
ation parameter R. It shows that the temperature in the boundary layer
increases when the values of radiation parameter R increases at a fixed
value of η. This may be due to the fact that, the divergency of the ra-
diative heat flux ∂qr

∂y
increases as the Rosseland radiative absorptivity k∗

decreases which in turn increases the rate of radiative heat transfer to the
fluid which causes the fluid temperature to increase. This indicate that
the effect of thermal radiation is to enhance heat transfer.

Fig.9 depicts the the effects of B1 on the temperature graph. It is ob-
served that the temperature decreases with an increase in heat sink(A1 <
0, B1 < 0) parameter. This is due to the fact that the energy is released
when B1 > 0 which cause the temperature to decrease in the thermal
boundary layer. Thus thermal boundary layer thickness decreases with
an increase in the heat absorption sink(B1 < 0) parameter.

Fig.10 shows the variation of temperature profile with respect to co-
efficient of space-dependent internal heat source or sink parameter A1.
The graph reveals that the thermal boundary-layer thickness increases
with an increase in the value ofA1 at a fixed value for a given B1 because
the boundary layer generate the energy, which causes the temperature to
increase with increasing the values of A1 > 0 .

Fig.11 represents the variation of temperature profile with respect
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Fig. 6 Temperature profile graph for different values of F, when s = 0.4,
R = 0.3, Pr = 1, A1 = B1 = −0.05, M = 0.5, Da = 10
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Fig. 7 Temperature profile graph for different values of Da, when s = 0.4,
R = 0.3, Pr = 1, A1 = B1 = −0.5, M = 0.5, F = 0.2

to Prandtl number Pr. The graph shows that the temperature graph de-
creases when the values of Prandtl number Pr increase at a fixed value of
η. This is due to the fact that a higher Prandtl number fluid has relatively
low thermal conductivity, which reduces conduction and thereby the ther-
mal boundary layer thickness and as a result temperature decrease.

Figs.12-14 illustrate the effect of Da, S and F on the skin friction
coefficient along magnetic field. From all these graphs we can see that
the skin friction coefficient increases as the values of magnetic parame-
ter increase. Fig.12 demonstrates the effect of Darcy number on the skin
friction coefficient. The profile reveals that as the value of Darcy number
increase, the skin friction decreases. However, the graphs of skin fric-
tion coefficient increase as the values of both F and s increase. This is
illustrated in the figs. 13-14.

Figs.15-17 show the variation of the local Nusselt number along ra-
diation parameter R. The figures show that the local Nusselt number de-
crease as the influences of radiation parameter increase. Fig.15 give you
an idea about the variation of the local Nusselt number with respect to
radiation parameter for varies values of the hear source/sink parameter
A1 and B1 when all other governing parameters fixed constant. As the
values of A1 increases, the local Nusselt number decrease. This is due to
the fact that the space dependent heat source/sink reduces the heat trans-
fer rate. Similarly, fig. 16 illustrates the impacts of time dependent heat
source/sink on the local heat transfer rate. Analogous to fig.15, the heat
transfer rate decreases as the values of B1 increase.
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Fig. 8 Temperature profile graph for different values of R, when s = 0.4,
Da = 10, Pr = 1, A1 = B1 = −0.05, M = 0.5, F = 0.2
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Fig. 9 Temperature profile graph for different values of B1, when s = 0.4,
Da = 10, Pr = 1, A1 = B1 = −0.5, M = R = 0.5, F = 0.2

Furthermore, fig.17shows the variation of local Nusselt number with
respect to Forchheimer number. The graph indicates that the Forchheimer
number reduces the local Nusselt number.

To test the accuracy of our method, we have made a comparison of
heat transfer at the surface for different values of Pr and s with the result
available in the literature as shown in table1 and the present result is in
excellent agreement with previous work.

Table 1 shows a comparison of heat transfer at the surface for dif-
ferent values of s and Pr.The results available in the open literature and
ours are found to be in excellent agreement. Hence we can say that the
method we used for the present study is appropriate. Besides, the table
shows that as both values of s and Pr increase, the local Nusselt number
increases.

5. CONCLUSION

We examined the problem of MHD boundary layer flow and heat trans-
fer of incompressible, viscous and electrically conducting fluid past a
stretching sheet. The influences of thermal radiation and non-uniform
heat source/sink is taken into consideration. A numerical method called
Keller-box has been employed to study heat transfer in steady MHD
boundary-layer flow of continuously stretching permeable surface in the
presence of thermal radiation, non-uniform heat source/sink and mag-
netic field. The effects of various governing physical parameters, such
as the magnetic parameter M, radiation parameter R, heat source or sink
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Fig. 11 Temperature profile graph for different values of Pr, when S =
0.4, Da = 10, A1 = −0.5, B1 = −0.05, R = 0.5, M = 0.5,
F = 0.2

parameter qn, Prandtl number Pr, Darcy and Forchhiemer number on the
heat transfer characteristic were examined. The numerical results of this
study can be summarized as follows:

1. Increasing magnetic field parameter M and Forchheimer inertial
drag parameter F reduces velocity but increases temperature.

2. Increasing the radiation parameter R increases temperature.

3. An increment in Darcy number Da increases velocity but reduce
temperature.

4. Increasing suction/injection parameters decreases the velocity.

5. The thickness of velocity boundary layer decreases with an in-
crease in suction/injection with internal heat absorbtion and mag-
netic parameter.

6. Thermal boundary layer thickness decreases with an increase in
the value of the magnetic parameter M, suction/injectionparameter
s with internal heat absorbtion parameter, Prandtl number Pr and
radiation parameter.

7. The local Nusselt number increases with an increase in the value
of radiation parameter R and magnetic parameter M for fixed value
of Pr.
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Fig. 12 Skin friction profile graph for different values of Da, along M
when s = 0.4, A1 = −0.5, B1 = −0.05, R = 0.5, F = 0.2
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Fig. 13 Skin friction profile graph for different values of S, along M when
Da = 3, A1 = −0.5, B1 = −0.05, R = 0.5, F = 0.2

NOMENCLATURE

A1,B1 Coefficients of space and temperature-dependent heat source/sink
Bo Magnetic field(wbm−2)
M Magnetic parameter(Hartman number)
R Radiation parameter(Wm−2k−4)
F Forchheimer number
Pr Prandtl number
Re Local Reynolds number
Da Darcy number
T Temperature of the fluid inside the boundary layer(K)
Nux Local Nusselt number
cp Fluid specific heat capacity(Jkg−1K−1)
cf Local skin friction coefficient
qn Non-uniform heat source/sink
qr Radiative heat flux
k∗ Mean absorption coefficient
Tw Surface temperature of the sheet(K)
T∞ Ambient temperature(T∞ < Tw)(K)
uw Stretching velocity of the sheet(ms−1)
vw Normal velocity at the surface(ms−1)
cb Drag coefficient
a,b Empirical constants
u,v Velocity component along x- and y-direction(ms−1)
k Thermal conductivity
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Fig. 14 Skin friction profile graph for different values of F, along M when
Da = 3, A1 = −0.5, B1 = −0.05, R = 0.5, s = 0.5
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Fig. 15 The graph of local Nusselt number when Da = 3, F = 1,
B1 = −0.05, s = 0.5, M = 0.5

k
′

Permeability of porous medium
f Dimensionless stream function
s Injection/suction parameter
Greeks
η Dimensionless similarity variable
µ Dynamic viscosity of the fluid(Pa)
υ Kinematic viscosity of the fluid(m2s−1)
ρ Density of the fluid(kgm−3)
ψ Dimensional stream function
θ Dimensionless temperature
σ∗ Stephan-Boltzman constant
σ Electrical conductivity
τw Wall shear stress(Pa)
subscripts
∞ Condition at the free stream
w Condition at the surface
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Fig. 16 The graph of local Nusselt number when Da = 3, F = 1,
A1 = −0.5, s = 0.5, M = 0.5
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Fig. 17 The graph of local Nusselt number for different values of F, along
R when Da = 3, B1 = −0.5, A1 = −0.5, s = 0.5, M = 0.5

Table 1 Comparison of values of −θ′(0) for various A,Pr, M = R =
A1 = B1 = F = 0.0,Da→∞ with perviously published data.

-θ′(0)

Pr s Ishak et al. (2009) Present result
0.72 -1.5 0.4561 0.4561
1 -1.5 0.5000 0.5001
10 -1.5 0.6452 0.6452
0.72 0 0.8086 0.8086
1 0 1.0000 1.0000
10 0 3.7207 3.7207
0.72 1.5 1.4944 1.4944
1 1.5 2.0000 2.0000
10 1.5 16.0842 16.0842
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