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ABSTRACT 

An integral energy equation model is used to calculate the heat transfer coefficient/Nusselt number, thermal boundary layer thickness and 

temperature distribution in the turbulent boundary layer for forced convection over a smooth flat plate. The proposed model is based on two 

polynomial temperature profiles in a thermal laminar sublayer as well as in a fully developed boundary layer and two integral energy equations. The 

performance of this new model is compared with the most commonly used semi-empirical correlations and the complex established models such as 

k-ε, k-ω, RSM, and a good agreement is achieved. 
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1. INTRODUCTION 

Turbulence modeling is the construction and use of a model to predict 

the effects of turbulence, and divided into three general categories: 

1) The most natural and straight forward approach to turbulence 

simulations is to solve the Navier-Stokes equations without any 

approximation of the turbulence other than numerical 

discretization. This type of simulation is called Direct Numerical 

Simulation (DNS). In such simulations all the motions contained in 

the flows are resolved. In order to capture the structures of the 

turbulence one have to use extremely fine grids and time steps for 

these type of simulations. Due to this, DNS is very costly from a 

computational point of view and this method is only useful for 

flows with low Reynolds numbers. The application of DNS is 

therefore limited to turbulence research and results from DNS 

simulations can be important to verify results from other 

turbulence models. 

2) A simulation that is less computationally costly is Large Eddy 

Simulation (LES). This type of simulation uses the fact that the 

large scale motions are generally more energetic than the small 

scale ones. These large eddies are more effective transporters of 

the conserved properties and therefore LES threats the large eddies 

more exactly than the small scale ones. LES is preferred over DNS 

when the Reynolds number is too high or the computational 

domain is too complicated. 

3) Both DNS and LES modeling give a detailed description of 

turbulent flows. If one is not interested in that much details of the 

turbulence, a Reynolds-Averaged Navier-Stokes model (RANS 

model) can be a good choice. This type of model is much less 

costly compared to both DNS and LES. In the RANS approach to 

turbulence, all of the unsteadiness in the flow is averaged out and 

regarded as part of the turbulence. When averaging, the non-

linearity of the Navier-Stokes equations gives rise to terms that 

must be modeled. These terms can be modeled differently leading 

to various types of RANS models, each behaving differently 

depending on the Reynolds number of the flow, the computational 

domain, and etc. The various RANS models are classified in terms 

of number of transport equations solved: 

a) Zero-equation model; mixing length model (Van Driest, 

1956). 

b) One-equation models; Prandtl's one-equation model 

(Glushko, 1965), Baldwin-Barth model (1990), Spalart-

Allmaras model (1994). 

c) Two-equation models; k-ε style models contains standard k-ε 

(Launder and Sharma, 1974), RNG k-ε (Yakhot et al., 1992), 

etc., k-ω models contains Wilcox k-ω (Wilcox, 1988), SST k-

ω (Menter, 1994), etc. 

d) Nonlinear eddy viscosity models; v2-f model (Popovac and 

Hanjalic, 2007). 

e) Reynolds Stress Model (RSM) (Launder et al., 1975). 

These models attempt to predict turbulence by two or more partial 

differential equations (PDEs) so; they are in general much complicate 

and contain many parameters. However, they are much expensive in 

terms of memory as they require two/more extra PDEs. Therefore, the 

lack of a simple model to predict accurately turbulent flow is felt. 

External forced convection heat transfer from isothermal or isoflux 

external flat surfaces is an important problem for engineers. There are 

many engineering systems that are modeled using forced convection, 

such as plate type heat exchanger design. 

There have been a number of studies on the heat transfer characteristics 

of turbulent flow over flat plate. Wassel and Catton (1973) investigated 

three different hypotheses representing turbulent transport on a flat 

plate, namely, the Van Driest model (1956) of turbulence, a modified 

Nee-Kovasznay (1969) hypothesis and a combination of the kinetic 

energy of turbulence and the mixing length hypotheses; and developed 

a model for the variable turbulent Prandtl number. Chung and Sung 

(1984) analyzed numerically turbulent convective heat transfer with 

appreciable buoyancy effect over a heated or cooled horizontal flat 

plate by solving four equations for mean square temperature variance 

2θ , its rate of destruction εθ, turbulent kinetic energy k and the rate of 
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kinetic energy dissipation ε. A Heat transfer and dispersion model for 

both laminar and turbulent regimes in flat plate heat exchangers were 

considered by Pinson et al. (2007). The velocity and thermal laws of the 

wall and wake were used by Sucec (2006), in modern integral methods 

for turbulent boundary layer, to solve the momentum and thermal 

energy equations in their integral forms to give predictions of the 

Stanton number distribution. Vallejo and Trevino (1990) analyzed the 

cooling of a flat plate in a convective flow, taking into account the 

longitudinal heat conduction through the plate. Both laminar and 

turbulent boundary layer flows were considered and the three term 

asymptotic solution was compared with the numerical solution of the 

governing equation. Kondjoyan et al. (2004) described the effect of 

highly turbulent air flows on the development of a flat-plate boundary 

layer at Reynolds numbers ranging from 8400 to 127000. Radmehr and 

Patankar (2001) proposed two independent solution approaches to 

compute the transition boundary layer using low-Reynolds-number 

turbulence models: (1) to solve the boundary layer equations over a flat 

plate with the starting location of calculation very close to the leading 

edge of the plate, and (2) to solve the elliptic Navier–Stokes equations 

over the whole plate, including the leading edge and some region 

upstream of it. Ilegbusi (1989) described the calculation of a turbulent 

boundary layer on a porous flat plate with severe injection at different 

rates and at different angles to the surface using two turbulent models, 

namely, the k-ω (Ilegbusi and Spalding, 1989) and k-ε (Launder and 

Spalding, 1974) models. Various comparisons among well-known 

equations of the convection heat transfer coefficient and those that 

come from the boundary layer theory for forced air flow over flat 

surfaces and particularly over flat plate solar collectors, with the aim at 

arriving at a consensus on which of such equations is more accurate, are 

carried out by Sartori (2006). 

Also, several attempts have been made over the years to develop 

generalized Nusselt number correlations that would apply to a range of 

Reynolds and Prandtl numbers. Table 1 summarizes some of these 

correlations for the turbulent flow on a flat plate. 

In the present study, a new relatively simple model is proposed to 

investigate the turbulent flow of water and air over a flat plate with 

constant surface temperature. This model is based on two polynomial 

temperature profiles in a thermal laminar sublayer as well as in a fully 

developed boundary layer and two integral energy equations. This 

approximate method is even easy to implement. Such model can 

approximate the governing PDEs to ordinary differential equations 

(ODEs), which leads to reduce the computer runtime. This method, 

however, involves a lot of embedded empiricism not only in turbulent 

modeling but in closing the integral equations. The evolution of thermal 

boundary layer thickness, temperature profile and heat transfer 

coefficient inside the turbulent boundary layer on the flat plate is 

calculated using this new model. The Nusselt number that comes from 

this integral energy equations model is compared with the semi-

empirical correlations shown in Table 1 and the complex models such 

as k-ε, k-ω, RSM, with the aim at detecting validation. 

 

Table 1: Common semi-empirical correlations of Nusselt number for the turbulent boundary layer on a flat plate. 
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2. MODEL DESCRIPTION 

For incompressible flow along a flat plate, the energy equation is 

expressed in terms of the following turbulent boundary layer equation: 
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To construct the model, an approximate analysis which furnishes an 

easier solution is used without a loss in physical understanding of the 

processes. To simplify the analysis, the following assumptions are 

considered: 

• The fluid is incompressible, and the flow is steady. 

• The free-stream temperature and velocity are constant. 

• The fluctuation in velocity and temperature is neglected. 

• The fluid physical properties are assumed constant and are 

calculated at the average temperature of wall and fluid (film 

temperature). 

• There is no pressure variation in the direction perpendicular to the 

plate. 

• The turbulent zone starts at the end of laminar zone; the transition 

zone is neglected. As, Shames (2003) was noted that the transition 

occurs in the range of Re = 3.2×105 to 106. In addition, he was 

noted that cannot prescribe a specific Reynolds number for 

transition because of the effect of many factors that are involved in 

the transition process. The high value of 106 can be reached by 
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having very small turbulence, plate smoothness, and so on. So, in 

this study similar to the shames work, the value of 5×105 is 

generally used as the critical Reynolds number Recr. 

• The stream-wise pressure gradient is neglected. 

• As the buffer zone is a transient region from laminar sublayer to 

turbulent boundary layer zone so, that is neglected. 

Figure 1 shows a schematic of a thermal boundary layer flow 

system consists of laminar and turbulent zone. In the turbulent zone, the 

thermal laminar sublayer thickness is δt1, the thermal fully developed 

turbulent boundary layer thickness is δt2, the wall temperature is Tw, and 

the free-stream temperature and velocity outside the turbulent boundary 

layer is T∞ and u∞, respectively. 
 

 
 

Fig. 1 A schematic of a thermal boundary layer flow system (red 

arrow: heat convection; blue arrow: heat conduction). 

Two total energy balances are applied on the control volume 

shown in Fig. 1. These two integral energy equations become: 
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The details of calculation of these two equations are given in 

appendixes A and B. 

Khademi et al. (2010) analyzed a simple model for turbulent 

boundary layer momentum transfer on a flat plate. This model can be 

used to calculate the velocity profiles in the laminar sublayer and fully 

developed turbulent boundary layer zones, u1 and u2. If the temperature 

profiles were known, the appropriate functions alongside u1 and u2 

(calculated by Khademi et al. (2010)) could be inserted in Eqs. (8) and 

(9) to obtain two expressions for the thermal boundary layer 

thicknesses. The details of momentum transfer equations are presented 

by Khademi et al. (2010). 

For the proposed approximate analysis method, some boundary 

conditions are first written down that the temperature functions must 

satisfy: 
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With disregarding viscous heating, Eq. (7) yields: 
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Since the velocities u and v are zero at y = 0. 

The temperature profiles at various x positions are assumed to be 

similar; that is, they have the same functional dependence on the y 

coordinate. The simplest functions that it can be chosen to satisfy these 

boundary conditions are two polynomials with six arbitrary constants. 

Thus 
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T1 and T2 are temperature profiles in the laminar sublayer and fully 

developed turbulent zones, respectively. 

These six boundary conditions (10) to (15) are applied in the 

polynomial functions (16) and (17), and then, the six arbitrary constants 

are calculated as follows: 
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According to Prandtl’s mixing-length theory (Prandtl and Angew, 

1925), the mixing length is proportional to the distance y measured 

from the solid surface. Correspondingly, the following form for the 

eddy thermal conductivity is suggested: 

y
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Here, κ is a universal constant whose value is given as 0.40 by some 

investigators and as 0.36 by others. 

The proposed polynomial functions for the temperature profile in 

this paper and velocity distribution produced by Khademi et al. (2010) 

are inserted into Eqs. (8) and (9), and integrated. The result is two 

differential equations as below: 
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where a1, a3, b1 and b2 are constants of polynomial functions of velocity 

profiles in viscous sublayer and fully developed turbulent zones, which 

is presented by khademi et al. (2010) in details. 

Two following boundary conditions are needed to solve these two 

differential equations. 
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where δt
* is the boundary layer thickness of laminar flow at Recr = 

5×105. 

3. NUMERICAL SOLUTION 

An approximate method based on the integral energy equation followed 

by the numerical solution is used to obtain the thermal boundary layer 

thickness and temperature profile. Two ODEs (25) and (26) are solved 

simultaneously with their boundary conditions (Eqs. (27) and (28)). At 

first, these two equations (25) and (26) are rearranged in the form of 

dδt1/dx = f(δt1,δt2) and dδt2/dx = f(δt1,δt2) in the Maple programming 

environment. Then, these two last ODEs are solved by fourth order 

Runge-Kutta method which leads to obtaining δt1 and δt2 as a function 

of x. Since temperature profiles in laminar sub-layer and fully 

developed boundary-layer are functions of δt1 and δt2, therefore these 

temperature profiles are obtained as functions of x and y. 

4. RESULTS AND DISCUSSION 

In this section, to verify the validity of this new model, the effect of 

various parameters such as Reynolds number, Prandtl number, free-

stream velocity and wall to free-stream temperature ratio on the 

turbulent flow over a flat plate is analyzed in the boundary layer zone. 

4.1 Heat transfer coefficient 

The heat transfer coefficient could be calculated using the results 

obtained by this model. For this purpose, according to definition of heat 

transfer coefficient (Eq. (29)), the following relation (Eq. (30)) is 

obtained: 
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Variation of the Nusselt number for air and water at free-stream 

velocity and temperature 5 m/s and 25 oC, respectively, and Tw/T∞ = 3 

along the flat plate (Reynolds number) is shown in Fig. 2. The Nusselt 

number increases with the Reynolds number on a logarithmic scale. In 

other word, the heat transfer coefficient decreases with the distance 

from the leading edge as a result of increasing in the turbulent boundary 

layer thickness. The Nusselt number calculated by the proposed model 

is compared with three different correlations, Eqs. (1), (4) and (5), as 

well as three complex models, k-ε, k-ω, and RSM. As illustrated in Fig. 

2(a), for air at Pr = 0.7, the Nusselt number calculated by the proposed 

model is in good agreement with Eqs. (1) and (4) in the whole range of 

the Reynolds numbers 5×105-107, and with Eq. (5) in the relatively high 

Reynolds numbers > 5×106. However, the highest deviation between 

the present model and Eq. (5) appears at Re = 5×105 with relative error 

84%. As seen in Fig. 1, significant differences between the results of 

semi-empirical correlations and k-ε, k-ω, and RSM models are founded 

for air flow. The relative error between our model and these established 

models is 54% at Re = 5×105, and 42% at Re = 107. 

Figure 2(b) shows a good agreement between the present model 

for water at Pr = 3.7 and Eq. (5), and the k-ε, k-ω, and RSM models in 

the high Reynolds number > 3×106 and to Eq. (4) in the low Reynolds 

number < 3×106. In other word, the Nusselt number obtained by the 

present model starts to deviate from Eqs. (4), (5) and the complex 

established models at Re = 3×106. The maximum deviation 46% occurs 

between such model and Eq. (4) at Re = 107, and 72% between that and 

Eq. (5) at Re = 5×105. The average deviation between the proposed 

model and Eq. (1) is relatively within 30%. The highest relative error 

between this new model and the k-ε, k-ω, and RSM models is 50% at 

Re = 5×105 which can be due to chosen boundary condition for laminar 

sub-layer thickness at the beginning of turbulent flow. 
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Fig. 2 Variation of the Nusselt number for (a) air and (b) water at u∞ = 

5 m/s, T∞ = 25 oC, and Tw/T∞ = 3 along the flat plate. 
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4.2 Influence of free-stream velocity 

Figure 3(a) and (b) shows influence of the free-stream velocity on the 

laminar viscous sublayer thickness of water and turbulent boundary 

layer thickness of air, respectively, along the flat plate at Tw/T∞ = 3 and 

free-stream temperature 25 oC. In Fig. 3(a) at constant free-stream 

velocity, the laminar sublayer thickness grows very slowly with a 

constant slope from the leading edge distance, whereas in Fig. 3(b), the 

turbulent boundary layer thickness continues this trend with more 

slopes. At any x position, the laminar sublayer and turbulent boundary 

layer thicknesses decrease as a result of increasing the free-stream 

velocity. In other word, both boundary layers shift to the down with the 

free-stream velocity. The plate role in terms of transport phenomena 

viewpoints is to inject the negative momentum to the flow. Increasing 

free-stream velocity results in a reduction in residence time. As a result, 

the net momentum injected to the flow by the plate decreases tending to 

a reduction in boundary layer thickness. 

According to the Fig. 3(a) and (b), increasing the free-stream 

velocity from 5 to 15 m/s results in decreasing the laminar sublayer 

thickness of water and the turbulent boundary layer thickness of air 

averagely 65%. 
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Fig. 3 Influence of the free-stream velocity on (a) the laminar sublayer 

thickness of water and (b) the turbulent boundary layer 

thickness of air along the flat plate at Tw/T∞ = 5 and T∞ = 25 oC. 

4.3 Influence of wall to free-stream temperature ratio 

Figure 4(a) and (b) illustrates influence of wall to free-stream 

temperature ratio (Tw/T∞) on the laminar viscous sublayer thickness of 

air and turbulent boundary layer thickness of water, respectively, along 

the flat plate at free-stream velocity and temperature of 25 oC and 10 

m/s. As shown in Fig. 4(a), the laminar sublayer thickness (also the 

turbulent boundary layer thickness) increases for air flow as a result of 

increasing the wall to free-stream temperature ratio. But this trend 

occurs differently for water flow. With increasing the wall to free-

stream temperature ratio, the turbulent boundary layer thickness (also 

the laminar sublayer thickness) decreases for water flow, as shown in 

Fig. 4(b). As such, the plate acts as the source of momentum for the 

flow. The transportation rate of momentum through the air flow rises 

with the kinematic viscosity of the fluid. Because the kinematic 

viscosity of gases increases with temperature, the momentum boundary 

layer thickness increases as well. On the other hand, liquids show the 

opposite trend in kinematic viscosity variation with temperature. It 

means that the momentum transportation rate through water flow is 

reduced as temperature rises. 

Figure 4(a) and (b), respectively, show increasing Tw/T∞ from 2 to 

8 leads to increase the laminar sublayer thickness of air nearly 44% and 

to decrease the turbulent boundary layer thickness of water averagely 

60%. 
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Fig. 4 Influence of Tw/T∞ on (a) the laminar sublayer thickness of air 

and (b) the turbulent boundary layer thickness of water along 

the flat plate at u∞ = 10 m/s and T∞ = 25 oC. 
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Both comparisons of the results shown by Fig. 3(a) with 4(a) and 

Fig. 3(b) with 4(b) demonstrate that both laminar sublayer and turbulent 

boundary layer for water are lower than those for air for the same 

conditions. For example, at Re = 106, Tw/T∞ = 5 and free-stream 

velocity 10 m/s, the laminar sublayer and turbulent boundary layer 

thicknesses are ~ 5×10-5 and 0.001 m for water, respectively, whereas 

those are ~ 2.5×10-3 and 0.05 m for air, respectively. It can be attributed 

to the fact that the kinematic viscosity of water is quite less than that of 

air. 

4.4 Temperature profile 
Figure 5 represents the temperature profile as a function of 

distance from the wall at Re = 106, the free-stream velocity and 

temperature 10 m s-1 and 25 oC, respectively, and Tw/T∞ = 5 for water 

flow. The temperature decreases with distance from the wall. As can be 

seen in this figure, in the region near the wall (y/δt2 < 0.04), the 

temperature profile is linear in the laminar sub-layer zone, and that is a 

curve line in the fully developed turbulent boundary layer (see Eq. 

(17)). Also in this figure, temperature profile of this model was 

compared with the results of k-ε and k-ω models. The difference 

between the temperature profile of this model and other models could 

be due to the approximate nature of the model, choosing the degree of 

polynomials, or type of temperature profile function. 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(T-T
w

)/(T
∞∞∞∞
-T

w
)

y
/ δδ δδ

t2

 

 

Proposed model

k-εεεε  model

k-ωωωω model

0 0.2 0.4 0.6
0

0.01

0.02

0.03

0.04

 

 
Laminar sublayer

 
 
Fig. 5 The temperature profile of water as a function of distance from 

the wall at Re = 106, u∞ = 10 m/s, T∞ = 25 oC and Tw/T∞ = 5. 

5. CONCLUSIONS 

In this study, a new relatively simple turbulent model is proposed to 

predict the boundary layer thickness and temperature profile in laminar 

viscous sublayer and fully developed turbulent boundary layer, as well 

as the heat transfer coefficient for forced convection on a smooth flat 

plate. The model incorporates the integral energy equations with the 

polynomial temperature profile. Totally, in addition to the turbulent 

hydrodynamic boundary layer (Khademi et al., 2010), the thermal 

boundary layer also grows thicker along the surface of the plate. In 

addition, some common correlations as well as the k-ε, k-ω, RSM 

models were used to investigate the reliability and accuracy of the 

proposed model for the cases of air and water flows. The results show 

that the heat transfer coefficient calculated by the proposed model is in 

good agreement with the semi-empirical correlations and other 

established models. Both thermal boundary layers shift to the down 

with increasing the free-stream velocity. The thermal boundary layer 

thickness increases for air but that decreases for water with increasing 

the wall to free-stream temperature ratio. 

Finally, the advantages and disadvantages of this new model 

compared with other established models such as k-ε, k-ω, and RSM are 

as follows: In this model, a set of ODEs have been used to solve the 

boundary layer problems while, the other models try to estimate 

turbulence by a set of PDEs. In other word, the other models are very 

time consuming to solve problems. Therefore, this model is in general 

much simpler than the other models and easy to use. But it should be 

noted that, this method is less accurate than other models due to its 

approximate nature. This model is able to estimate the thickness of 

laminar sub-layer zone that it may not be possible in other methods. 

The results show prediction of turbulence over a smooth flat plate 

is feasible by this integral energy equation model. The authors are 

looking to apply this integral model to predict the turbulent flow on the 

other submerged bodies in future work. 

NOMENCLATURE 

v  Time–smoothed velocity in y direction (m/s) 

v′  Fluctuation velocity in y direction (m/s) 

T ′ , ú Fluctuation temperature and velocity in x direction (K), 

(m/s) 

T , ū 
Time–smoothed temperature and velocity in x direction 

(K), (m/s) 

Cp Heat capacity (J/kg oC) 

ET, Eμ Eddy thermal conductivity and eddy viscosity (W/moC), 

(Pa.s) 

h Heat transfer coefficient (W/m2 oC) 

k Thermal conductivity (W/m oC) 

Nu Nusselt number 

Rex Reynolds number based on x 

T∞, u∞ Free-stream temperature and velocity (oC), (m/s) 

T1 , u1 Temperature and velocity in the laminar sub-layer zone 

(oC), (m/s) 

T2 , u2 Temperature and velocity in the turbulent boundary layer 

zone (oC), (m/s) 

Tw Wall temperature (oC) 

x Direction along the plate (m) 

y Direction normal to the plate (m) 

 

Greek symbols 

µ Dynamic viscosity (Pa s) 

ρ Density (kg/m3) 

δt
* Thermal laminar boundary-layer thickness at Recr=5×105 

(m) 

δt1 Thermal laminar sub-layer thickness (m) 

δt2 Thermal fully developed turbulent boundary-layer 

thickness (m) 

α Thermal diffusivity (m2/s) 
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APPENDIX A: CALCULATION OF THE INTEGRAL 

ENERGY EQUATION IN THE LAMINAR SUBLAYER 

ZONE 
 

With due attention to Fig. 1, the input mass flow rate through the 

laminar sublayer zone is 

∫
1

0
1

t

dyu
δ

ρ  (A.1) 

and the input energy convected through laminar sublayer zone is 

∫
1

0
11

t

dyTuC p

δ

ρ  (A.2)  

The output mass flow rate from the laminar sublayer zone is 

dxdyu
dx

d
dyu

tt
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11

0
1

0
1

δδ

ρρ  (A.3) 

and the output energy convected from the laminar sublayer zone is 

dxdyTuC
dx

d
dyTuC

tt

pp 







+ ∫∫

11

0
11

0
11

δδ

ρρ  (A.4)  

Considering the conservation of mass and the fact that no mass can 

enter the control volume through the solid wall, the additional mass 
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flow in Eq. (A.3) over that in Eq. (A.1) must enter through the laminar 

sublayer from the top zone (fully develop turbulence zone). This mass 

flow carriers with it an energy in the x direction equal to 

dxdyu
dx

d
TC

t

p 







∫

1

0
12

δ

ρ  (A.5)  

The net energy flow out of the control volume is therefore 

dxdyu
dx

d
TCdxdyTuC

dx
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The heat transfer at the wall is 

0
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=
∂
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T
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(A.8)  

The heat transfer between the laminar sublayer and the fully developed 

turbulence zone is 
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and the viscous-dissipation term within the laminar sublayer zone is 

dxdy
dy
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Combining these energy quantities according to energy balance 

equation and collecting terms gives the integral energy equation in the 

laminar sublayer zone as follows 
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APPENDIX B: CALCULATION OF THE INTEGRAL 

ENERGY EQUATION IN THE FULLY DEVELOP 

TURBULENCE ZONE 
 

The input mass flow rate through the fully develop turbulence zone is 

∫
2

1

2

t

t

dyu
δ

δ
ρ  (B.1)  

and the input energy convected through the fully develop turbulence 

zone is 
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The output mass flow rate from the fully develop turbulence zone is 
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and the output energy convected from the fully develop turbulence zone 

is 
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Considering the conservation of mass and the output mass flow rate 

from the fully develop turbulence zone through the laminar sublayer 

(second term of Eq. (A.3)), the input mass flow rate from the free-

stream through the fully develop turbulence zone is obtained. This mass 

flow carriers with it an energy in the x direction equal to 
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The net energy flow out of the control volume is therefore 
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and the viscous-dissipation term within the fully developed turbulence 

zone is 
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Considering constant free-stream temperature, setting the energy 

balance equation and collecting terms gives the integral energy equation 

in the fully develop turbulence zone as follows 
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