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ABSTRACT
The two dimensional phase change problem was solved using the extended finite element method with a Lagrange formulation to apply the interface 
boundary condition. The Lagrange multiplier space is identical to the solution space and does not require stabilization. The solid-liquid interface 
velocity is determined by the jump in heat flux across the i nterface. Two methods to calculate the jump are used and compared. The first is based on 
an averaged temperature gradient near the interface. The second uses the Lagrange multiplier values to evaluate the jump. The Lagrange multiplier 
based approach was shown to be more robust and precise. 
Keywords: Phase change, XFEM, Lagrange multiplier

1. INTRODUCTION

The finite element method Reddy (2006) has been extensively studied
and successfully used in a wide variety of scenarios involving continuous
media but particular situations are still problematic. The finite element
method uses polynomial interpolations within individual elements to ap-
proximate the solution. Consequently, it can only be applied to prob-
lems with discontinuities by splitting the domain into submeshes. This
makes the finite element method ill suited to solve problems involving
discontinuities that are part of the solution or move in time. The Stefan
problem Nedjar (2002); Beckermann et al. (1999); Helenbrook (2013);
Özişik (1993) for the isothermal solidification or melting of a material is
one such situation.

The extended finite element method Belytschko et al. (2001); Dol-
bow et al. (2000); Belytschko et al. (2009) is based on the partition of
unity method Babuska and Melenk (1997); Dolbow et al. (2000); Me-
lenk and Babuska (1996). Using carefully selected functions ψ(x, t),
the technique adds additional degrees of freedom that will “enrich" the
interpolation and allow the solution to adopt a discontinuous behavior.
The particular type of behavior is determined by the enrichment function
ψ(x, t), known a priori. Only those nodes who’s support is cut by the
interface and have a modified behavior must be enriched (see figure 1),
making the additional computational costs local to the interface. The in-
terface geometry is stored and transported in a computationally efficient
manner, most commonly using the level set method Osher and Sethian
(1988); Osher and Fedkiw (2001).

An important challenge in the extended finite element method is the
imposition of Dirichlet boundary conditions on the interface. The absence
of nodes on the interface means that we cannot apply specified values di-
rectly and an additional constraint must be added in the finite element
formulation to apply the appropriate boundary condition on the interface.
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Fig. 1 Enriched node mesh to capture discontinuity Γ

The two main numerical techniques used are the penalty method Chessa
et al. (2002); Zabaras et al. (2006); Bernauer and Herzog (2011) and
Lagrange multiplier method Moes et al. (2006); Ji and Dolbow (2004);
Babuska (1973). The penalty method requires the definition of a free
numerical parameter to be determined by trial and error. The Lagrange
multiplier requires no such numerical parameter but is more computa-
tional expensive and may present oscillations in the solution near the in-
terface if an improper interpolation space is used for the multiplier Moes
et al. (2006); Ji and Dolbow (2004).

A recent effort has been done by Gerstenberger and Wall Gersten-
berger and Wall (2010) to eliminate this obstacle and facilitate the use
of Lagrange multipliers. They have developed a Lagrange multiplier for-
mulation for the solution of problems involving voids in the geometry.
The main advantage of their approach is the use of identical interpolation
spaces for the solution and Lagrange fields. Although no mathematical
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proof of its stability was given, numerical applications with the stationary
diffusion equation Gerstenberger (2010) and Navier-Stokes equations in
fluid-structure interactions Gerstenberger and Wall (2010) were shown to
be stable.

In the work presented here, this novel Lagrange multiplier tech-
nique is applied to the classical two dimensional Stefan phase-change
problem. The physical nature of the problem being quite different to
the FSI problem Gerstenberger and Wall (2008), a different type of en-
richment scheme is required. Specifically, a weakly discontinuous tem-
perature field and strongly discontinuous Lagrange multiplier field at the
liquid/solid interface. The jump in the Lagrange multiplier value at the
interface is then used to determine the interface velocity and compared
with a temperature gradient based heat flux calculation.

The paper is divided as follows. The governing equations for the
Stefan problem are described in section 2 . The finite element formu-
lation, level set problem and details concerning the interface movement
and extended finite element method are described in section 3. Bench-
mark examples are then solved in section 4 to validate the new Lagrange
multiplier approach and compare its performance with the penalization
technique commonly found in the literature. Finally, the paper ends with
some concluding remarks in section 5.

2. GOVERNING EQUATIONS

2.1. Problem Formulation

Consider a domain Ω with an initial temperature T (x, t0) and interface Γ
separating solid (Ωs) and liquid (Ωl) phases with different thermal prop-
erties. We suppose that the density is identical in both phases and that
the material has an isothermal phase change at some melting temperature
Tm. Applying the conservation of energy in Ω results in equation (1a),
where (cp)i, i = l, s is the specific heat, ki, i = l, s the thermal conduc-
tivity and ρ the density. Additionally, the melting temperature must be
applied on the solid-liquid interface (1b). Dirichlet and Neumann type
boundaries away from the interface are applied on ∂Ω = ΓN ∪ ΓD as
usual (1c,1d).

(ρcp)i
∂T

∂t
−∇ · (ki∇T ) = 0 x ∈ Ωi i = l, s (1a)

T − Tm = 0 x ∈ Γ (1b)

T = T̂ x ∈ ΓD (1c)

−k∇T · n = q̂ x ∈ ΓN (1d)

Conservation of energy at the interface requires that the jump in heat
flux normal to the interface (caused by the imposition of the melting tem-
perature) be related to the rate of solidification or melting of the material
as described in equation (2), where L is the latent heat and vΓ the normal
interface velocity Özişik (1993).

[[−ki∇T ]] · ns = (kl∇Tl − ks∇Ts) · ns = ρLvΓ x ∈ Γ (2)

The normal vector ns points from the liquid to solid phase, meaning that
the interface velocity is positive for melting and negative for solidifica-
tion.

Tracking the moving interface is done using the level set method Os-
her and Fedkiw (2001); Osher and Sethian (1988). The principle behind
this method is to introduce a new variable φ(x, t) defined as the signed
distance function to the interface (3). The interface is then easily identi-
fied as the set of points where φ(x, t) = 0.

φ(x, t) = min |x− xΓ| sign(nΓ · (x− xΓ)) x ∈ Ω, xΓ ∈ Γ (3)

2.2. Enriched Interpolation Scheme

To account for the jump in heat flux at the interface, the temperature field
must be continuous with a jump in the gradient. This behavior is captured

by using the approximation (4) for the temperature field Chessa et al.
(2002) where Ni are the standard interpolation functions, Ti and T ∗j the
standard and enriched degrees of freedom, respectively and ψj(x, t) the
enrichment function, based on the absolute value of the level set field.

T (x, t) =
∑
i∈I

Ni(x) Ti(t) +
∑
j∈J

Nj(x)ψj(x, t) T
∗
j (t) (4a)

ψj(x, t) = |φ(x, t)| − |φ(xj , t)| (4b)

When using (4) special attention must be given to elements contain-
ing enriched nodes that are not cut by the interface, called blending ele-
ments. A modified interpolation scheme must be used in these elements
to maintain an optimal convergence rate, as described in Fries (2008);
Shibanuma and Utsunomiya (2009). A more compact way to write (4) is
by use the more standard matrix form (5).

T (x, t) = 〈N〉{T} (5a)

〈N〉 = 〈N1, N2, ..., N1ψ1, N2ψ2, ...〉 (5b)

{T} = 〈T1, T2, ..., T
∗
1 , T

∗
2 , ...〉T (5c)

The Lagrange multiplier q used to apply the fusion temperature, as
described in (13), must reproduce the behavior of the heat flux, which
will have a jump at the interface. This behavior is captured by using the
approximation (6). In this case, the enrichment function is constructed
with a modified Heaviside function.

q(x, t) =
∑
i∈I

Ni(x) qi(t) +
∑
j∈J

Nj(x)ψj(x, t) q
∗
j (t) (6a)

ψj(x, t) = H(φ(x, t))−H(φ(xj , t)) (6b)

H(x, t) =

{
1 if φ(x, t) < 0

0 if φ(x, t) > 0
(6c)

Following the expression (5), the Lagrange multiplier may be writ-
ten as (7) where the symbol is used to distinguish between the temper-
ature and Lagrange field interpolation functions.

q(x, t) = 〈N〉{q} (7)

3. NUMERICAL IMPLEMENTATION

3.1. Finite Element Formulation

The weak form of the energy conservation equation (1a) is (8), where δT
is the test function evaluated at the current time step: δT = δT (tn+1)
Fries and Zilian (2009).

∫
Ω

δTρcp
∂T

∂t
dΩ +

∫
Ω

∇δT k∇T dΩ +

∫
ΓN

δT q̂ dΓ = 0 (8)

Using a backward Euler scheme for the time derivative of T in (8)
gives Fries and Zilian (2009):

∫
Ω

δTρ
(cpT )n+1 − (cpT )n

∆t
dΩ +

∫
Ω

(∇δT k∇T )n+1 dΩ

+

∫
ΓN

δTn+1q̂ dΓ = 0 (9)

2
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Substituting the approximation for the temperature field into (9) leads
to the finite element system of equations (10).

1

∆t
[M ]{T}n+1 + [K]{T}n+1 =

1

∆t
[M ]∗{T}n − {f}n+1

q

(10a)

[M ] =

∫
Ω

{N}n+1ρcn+1
p 〈N〉n+1 dΩ (10b)

[M ]∗ =

∫
Ω

{N}n+1ρcnp 〈N〉n dΩ (10c)

[K] =

∫
Ω

([B]T )n+1kn+1[B]n+1 dΩ (10d)

{f}n+1
q =

∫
ΓN

{N}n+1q̂ dΓ (10e)

Bij =
∂Ni
∂xj

In elements which are intersected by the interface, an additional con-
straint must be applied to the formulation to take into account the inter-
face boundary condition (1b). In this work, two methods are used. The
first is the penalization method Chessa et al. (2002); Bernauer and Herzog
(2011); Zabaras et al. (2006), which applies the melting temperature on
the interface by multiplying (1b) by a very large penalization parameter
β (eq. 11) and including it in the weak form (8) for intersected elements
only.

fpen =

∫
Γ

δTβ(T − Tm) dΓ (11)

The complete system of equations for intersected element then be-
comes: (

1

∆t
[M ] + [K] + [P ]

)
{T}n+1 =

1

∆t
[M ]∗{T}n (12a)

− {f}n+1
q + {f}n+1

pen (12b)

[P ] =

∫
Γ

{N}n+1β〈N〉n+1 dΓ (12c)

{f}n+1
pen =

∫
Γ

{N}n+1β Tm dΓ (12d)

This method is simple to implement and adds very little computa-
tional effort. However, the choice of β can be an important factor in the
solution’s precision. If β is too small, the constraint will not be properly
taken into account. If β is too large, oscillations can appear along the
interface Ji and Dolbow (2004). Moreover, the optimal value is problem
dependent and must be found by trial and error.

The second method used in this work to impose the proper bound-
ary condition on the interface is the Lagrange multiplier Ji and Dolbow
(2004). This method adds a secondary variable to the formulation. Phys-
ically, this secondary variable corresponds to the heat flux generated on
the interface from the additional constraint on the problem. Normally, this
secondary flux variable is defined purely on the interface and requires the
primary (temperature) and secondary (heat flux) variables to respect the
inf-sup condition Babuska (1969); Brezzi (1974). Otherwise, oscillations
may appear in the solution near the interface Béchet et al. (2009); Ji and
Dolbow (2004); Moes et al. (2006).

To overcome this difficulty, a new adaptation of this method was de-
veloped in Gerstenberger and Wall (2010); Baiges et al. (2012), based on
the Lagrange multiplier technique found in Zilian and Fries (2009). Here,
the Lagrange multiplier is defined as a vectorial flux and interpolated on
the same mesh as the temperature field. The projection of this secondary
variable on the interface is then used as a scalar Lagrange multiplier to
impose the melting temperature. Note that since the secondary variable

is now a vector field, two additional unknowns have been added. To ob-
tain a properly defined problem, the secondary variable is weakly coupled
with the flux calculated from the temperature gradient in the domain and
a complete system of equations (13) is obtained Gerstenberger (2010).

∫
Ω

δTρcp
∂T

∂t
dΩ +

∫
Ω

∇δT k∇T dΩ +

∫
ΓN

δT q̂ dΓN (13a)

−
∫

Γ

δTq · ns dΓ = 0∫
Ω

δq ·
(

1

k
q +∇T

)
dΩ−

∫
Γ

δq · ns (T − Tm) dΓ = 0 (13b)

After applying the backward Euler scheme Fries and Zilian (2009) to
the time derivative and replacing T and q with their interpolation schemes
(5) and (7), we obtain the following system of equations for intersected
elements:

[
1

∆t
[M ] + [K] −[L]

[C]− [L]T [M ]

]{
{T}n+1

{q}n+1

}
=

[
1

∆t
[M ]∗ 0
0 0

]{
{T}n
{q}n

}
(14a)

−
{
{f}n+1

q

{f}lag

}

[M ] =

∫
Ω

1

kn+1
{N}n+1〈N〉n+1 dΩ (14b)

[C] =

∫
Ω

{N}n+1[B]n+1 dΩ (14c)

[L] =

∫
Γ

{N}n+1〈N〉n+1ns dΓ (14d)

{f}lag =

∫
Γ

{N}n+1Tm dΓ (14e)

In elements which are not cut by the interface, the Lagrange multi-
plier is weakly coupled with the temperature gradient but no constraint is
present and the system reduces to:

[
1

∆t
[M ] + [K] 0

[C] [M ]

]{
{T}n+1

{q}n+1

}
=

[
1

∆t
[M ]∗ 0
0 0

]{
{T}n
{q}n

}
−
{
{f}n+1

q

0

}
(15)

As described in Gerstenberger and Wall (2010), the interpolation
used for the Lagrange multiplier can be C-1 continuous (continuous tem-
perature, discontinuous heat flux) at inter-element boundaries, allowing
the condensation of equation (14) on the element level. The resulting
contribution of q is added to the global matrix for elements intersected
by the interface. Only the temperature field is solved, reducing the size of
the global system of equations. The secondary flux variables may then be
calculated from the temperature values Gerstenberger and Wall (2010).

3.2. Level Set Formulation

Once an initial value φ(x, t0) is defined using (3), the interface movement
is governed by its transport equation (16a) where v is the convection
velocity and F (16b) is the interface speed in the normal direction. The
calculation of F is explained below.

∂φ

∂t
+ v · ∇φ =

∂φ

∂t
+ F‖∇φ‖ = 0 x ∈ Ω (16a)

F (x, t) =
∇φ
‖∇φ‖ · v x ∈ Ω (16b)

3
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Equation (16a) is solved explicitly (forward Euler scheme) using a
linear interpolation. The weak form is given by:∫

Ω

δφ
φn+1 − φn

∆t
dΩ +

∫
Ω

δφFn‖∇φn‖ dΩ = 0 (17)

In most applications, the normal component F is only known on Γ.
In order to solve (17) on Ω, a valid value for F must first be constructed
using the following problem Chessa et al. (2002):

sign(φ)∇F · ∇φ = 0 x ∈ Ω (18a)

F (x, t) =
∇φ
‖∇φ‖ · vΓ x ∈ Γ (18b)

This approach guarantees that the φ field velocity is everywhere nor-
mal to the interface and is coherent with the interface’s physically deter-
mined velocity. For more details concerning the construction of F, see
Osher and Fedkiw (2003); Chessa et al. (2002). In this paper, two differ-
ent methods are used to evalute vΓ and are described below.

Equation (16a) is first order hyperbolic and must be stabilized to
minimize the presence of oscillations in the solution Chessa et al. (2002);
Bernauer and Herzog (2011). The GLS method is used here Hughes et al.
(1989). The level set method offers several advantages. It is easily ex-
tensible to three dimensions and stores the interface location as a scalar
variable. Furthermore, the level set field can be defined in a small region
surrounding the interface and the level set formulation solved locally, re-
ducing the impact on the total simulation computation time. It is also
robust enough to handle interface merging and breaking naturally Osher
and Fedkiw (2001).

The main disadvantage of the the level set method is its tendency
to deviate from a signed distance function over time Osher and Fedkiw
(2001). This error accumulates with additional time steps and degrades
the quality of the solution, particularly the level set gradient near the in-
terface. This distortion can be a source of error in the numerical solu-
tion of the level set formulation and the physical problem on which it is
based. Therefore, it is necessary to reinitialize φ(x, t) regularly to main-
tain an acceptable solution (‖∇φ‖ ≈ 1). Another limitation to the level
set method is the use of an explicit time scheme, which limits the size of
the time step. The explicit time step is required in order to determine the
nodes to enrich. In other words, the interface position must be determined
before equations (12) or (14) can be solved.

3.3. Interface velocity calculation

The proper evaluation of fluxes on either side of the interface in equation
(2) is crucial in obtaining a precise and robust model. The simplest way
to evaluate the jump in heat flux across the discontinuity is to evaluate the
gradient at appropriately chosen points in the solid and liquid phases at
some small distance away from the interface Chessa et al. (2002); Zabaras
et al. (2006). However, this approach may be the least accurate option Ji
and Dolbow (2004). A more involved but robust technique is to evaluate
the temperature at multiple points at specific distances from the interface
to obtained an averaged value Bernauer and Herzog (2011). This ap-
proach is used in this work and given in (19), where δx is some fraction
of the average element size (figure 2).

vΓ =
1

ρL

2

5

[
ks

2T (xΓ) + T (x
δx/4
s )− T (x

3δx/4
s )− 2T (xδxs )

δx

−kl
2T (xδxl ) + T (x

3δx/4
l )− T (x

δx/4
l )− 2T (xΓ)

δx

] (19)

When applying the Lagrange multiplier technique another option be-
comes available. As previously mentioned, the Lagrange multiplier cor-
responds to the heat flux within the element. We can evaluate the jump in

2 x

Γ

Fig. 2 Gradient based velocity calculation. Circles show T evaluation
points, square shows vΓ evaluation point

x x
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x

x

x
x x
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x

x

x
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Fig. 3 Geometry subdivision for integration of cut elements

heat flux across the interface directly from the Lagrange field, given by
equation (20).

vΓ =
[[q]] · ns
ρL

=
(ql − qs) · ns

ρL
(20)

This is done by evaluating the Lagrange field on the interface, approach-
ing from either side. A similar strategy was used by Merle and Dolbow
(2002), using an iterative procedure based on the LATIN method to im-
pose the interface temperature. To our knowledge, no Lagrange multi-
plier based algorithm for the Stefan problem has been developed using
this strategy for the interface velocity.

The final algorithm can be described as follows. Assuming a given
time tn, temperature solution Tn and level set solution φn, the strategy
to solve for Tn+1 consists in the following steps:

1. Compute the interface velocity vnΓ using (19) or (20)

2. Construct F on the level set domain by solving problem (18)

3. Solve for φn+1 using (17)

4. Solve for Tn+1 using (12) or (14)

5. Set tn = tn+1 and go to step 1

3.4. Numerical Integration

The introduction of discontinuous functions inside elements greatly re-
duces the precision of standard Gaussian quadrature and may lead to rank
deficient matrices âĂłChessa et al. (2002). An accurate but geometrically
complex solution is to subdivide elements involving discontinuities into
continuous subelements Moes et al. (1999); Chessa et al. (2002); Ger-
stenberger and Wall (2010). Each element is subdivided into a number
of subelements (lines, triangles or tetrahedrons), as shown in figure 3, to
properly fit the contour of the interface (point, line or surface) and ele-
ment boundaries. The integral over the entire element Ie is then the sum
of the integration of each subelement Is using standard Hammer quadra-
ture. It is important to note that subelements carry no degrees of freedom
or interpolation functions. They are only required as a geometrical tool
to construct the element integrals.

In transient problems the location of the quadrature points must
change as the interface moves in time, requiring that every cut element
be subdivided at each time step. However, the subdivision is applied only

4
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to a small number of elements, reducing the overall increase in computa-
tional effort required.

In transient problems, the interpolation functions at time steps n and
n + 1 are based on different positions of the interface and are discontin-
uous at different places in the element. The integration scheme for the
mass matrix (equation (10c)) must take both intersections into account
when generating the integration subelements to obtain optimal conver-
gence Fries and Zilian (2009). This can be difficult and can significantly
increases the number of subelements required to fit the geometry. How-
ever, previous authors have successfully used integration schemes consid-
ering the current interface position only Chessa et al. (2002); Chessa and
Belytschko (2003) and this strategy is used in this work. As suggested in
Fries and Zilian (2009), the test functions are evaluated using the current
time step’s level set values.

4. RESULTS

To validate the new Lagrange formulation and compare its performance
with the penalty method, two benchmark problems were solved with both
approaches. To evaluate the precision of the imposed Dirichlet boundary
condition on the interface, the penalty (12) and Lagrange formulations
(14) were compared using the same gradient based interface velocity al-
gorithm (19), referred to as case I. A third solution to the problem was
also obtained by using the Lagrange multiplier jump value to evaluated
the interface velocity (20), referred to as case II .

To evaluate the impact of the Lagrange field’s polynomial degree
on the solution, two implementations of the Lagrange formulation were
used. In the first, the Lagrange field is linear and continuous at inter-
element boundaries (C0 continuous). In the second, the Lagrange field
is constant per element and condensed on the element level (C-1 contin-
uous) Gerstenberger and Wall (2010). Both linear and constant interpo-
lation schemes were tested with both gradient (19) and Lagrange (20)
based velocity values, for a total of 4 distinct solving algorithms based
on the Lagrange multiplier technique and one using penalization. The
temperature field interpolation is linear in all cases.

4.1. 2 Phase 1D problem

The first benchmark problem is the one dimensional two phase analytical
solution of the Stefan problem in a semi-infinite domain (x > 0), taken
from Merle and Dolbow (2002). The thermal properties are phase de-
pendent and given in table 1. The domain is initially liquid, as shown in
figure 4, with the solid-liquid interface 2 mm away from the left domain
boundary. The initial temperature is 277 K. The top and bottom edges are
insulated. At t = 0, the temperature on the left edge is lowered to 263 K
and the right edge is maintained at 277 K. Temperature evaluation points
for the gradient based velocity calculations are taken at a maximum dis-
tance of 10% of the mean element size and β = 108 where applicable.
The interface position, as a function of time for both interface boundary
condition techniques, is shown in figure 5. Three different mesh sizes
were used to verify the convergence of the various techniques, and are
shown in figure 6. The error norms are calculated using (21a) where xaΓ
is the analytical interface position and λ = 0.3073 Merle and Dolbow
(2002). The time step was chosen as ∆t = ∆x2

( ρcp
k

)
s

Merle and Dol-
bow (2002).

E =

∫ t

0

√
(xΓ − xaΓ)2dt (21a)

xaΓ = 2λ

√
k

(ρcp)s
t (21b)

As shown in figure 5, the numerical solutions follows the analyti-
cal solution up to approximately 3000 seconds. Beyond this point, the
effects of the finite computation domain become apparent. The same be-
havior was observed by Merle and Dolbow (2002). Consequently, the

q·n=0

q·n=0

T = 277 KT = 263 K T = 277 K
i

T = 273 K
m

0.10

0.025

Fig. 4 1D problem definition. Largest mesh size shown

Table 1 Material properties for 2 phase 1D problem

Properties Solid Liquid Interface

ρcp [J/m3 K] 2.05× 106 2.59× 106 -
k [W/m K] 4.02 2.89 -
ρL [J/m3] - - 8.03× 107

Tm [K] - - 273.0

error norms shown in figure 6 are calculated over the time interval [0,
3000]. The convergence curves show that all techniques converge to the
analytical value. However, differences in performance for the different
algorithms are apparent. It is clear that using the Lagrange multiplier to
evaluate the interface velocity (case II) improves the solution compared
to the gradient based evaluation (case I). This behavior is explained by the
approximative nature of the gradient based calculation, which uses multi-
ple values further away from the interface to determine a locally averaged
gradient. To obtain a precise value, the flux jump must be calculated di-
rectly on the interface. The use of the Lagrange multiplier gives us an
easy and precise way of doing so.

The use of different interpolation schemes has a much smaller im-
pact on performance. A small increase in precision is obtained by using
a linear interpolation for the Lagrange multiplier field, no matter the in-
terface velocity used. In fact, the use of a constant per element Lagrange
field leads to a slightly less precise solution than the penalization tech-
nique when the gradient based interface velocity is used. This difference
may be caused by the use of bi-linear quadrilateral elements for the tem-
perature field. When using bi-linear interpolation functions, the gradient
varies linearly inside the element. Consequently, the constant per ele-
ment Lagrange field cannot reproduced the behavior of the temperature
gradient within the element exactly. An identical performance is observed
between the linear Lagrange field and penalization algorithms using the
gradient based interface velocity, indicating that both approaches enforce
the melting temperature equivalently.

From a more practical point of view, the gradient based calculation
has certain drawbacks. First of all, it requires the determination of 6
evaluation points normal to the interface, which will vary with changing
interface geometries and must be determined at every time step. Sec-
ondly, some of theses points may be outside of the calculation domain
depending on the interface position (see figure 2) and must be treated by
some approximation, depending on the situation. These extra tasks in-
crease the computational effort and code complexity. By contrast, the
Lagrange based velocity is evaluated directly on the interface and avoids
these extra steps and approximations. Ultimately, the extra computational
effort required for the gradient based interface velocity is traded for the
effort required to solve the more involved condensed Lagrange formula-
tion. Depending on the exact implementation, either approach may be
slightly faster. In our case, the condensed Lagrange formulation was
slightly quicker. The uncondensed Lagrange formulation lead to a much
larger tangent matrix and was the slowest due to the longer global system
resolution time.

Time steps significantly smaller than ∆x2
( ρcp
k

)
s

would lead to er-
roneous interface temperatures at early times with the Lagrange formu-
lation as shown in figure 7. The effect of time step size on the solution
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of transient heat transfer problems using the finite element method has
been previously investigated in Thomas and Zhou (1997). However, it
is important to note that the penalty formulation was unaffected at the
tested time step of ∆x2

100

( ρcp
k

)
s
(figure 7), suggesting that the Lagrange

multiplier is more sensitive to this phenomenon.

4.2. 2 Phase 2D problem

The second benchmark problem is the two phase analytical solution of the
Stefan problem in two dimensions, taken from Aysoufi and Keith (2003).
The thermal properties are constant and given in table 2. The domain
is initially liquid, as shown in figure 8. The initial temperature is 273.3
K. The top and right edges are insulated. At t = 0, the temperature on
the left and lower edges are lowered to 272 K. The analytical solution
of this problem was first developed in Rathjen and Jiji (1971). The non-
dimensionalized interface position y′(x′) is determined using equation
(22c) where C = 0.159, m = 5.02 and λ = 0.70766 for the given
material properties and boundary conditions, α is the thermal diffusivity
and x′ the non-dimensionalized x axis.

y′(x′) =

(
λm +

C

(x′)m − λm

) 1
m

(22a)

x′ =
xΓ√
4αt

(22b)

y′ =
yΓ√
4αt

(22c)
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Fig. 8 2D problem definition

Temperature evaluation points for the gradient based velocity calcula-
tions are taken at a maximum distance of 35% of the mean element size
and β = 109 where applicable. The level set formulation used in this
work does not have a reinitialization procedure. To validate the present
Lagrange formulation and compare the various algorithms, the problem
was simulated using ∆t =5 × 10−5s. The final interface position at
t = 0.025s is shown for the different algorithms and the analytical so-
lution in figure 11. The error norms for the final interface position are
given in table 3. The error norms were calculated using equation (23)
where (xnumn , ynumn ) is the position on the interface of the numerical so-
lution, (x′min, y

′
min) the position on the analytical interface (22a) closest

to (xnumn , ynumn ) and n the total number of points taken on the interface.

E =
1

n

n∑
1

√
(x′min − xnumn )2 + (y′min − ynumn )2 (23)

As shown in figure 11, the numerical solution is in agreement with
the analytical solution for all algorithms, indicating that both approaches

Table 2 Material properties for 2D problem

Property Solid Liquid Interface

ρcp [J/m3 K] 1.0 1.0 -
k [W/m K] 1.0 1.0 -
L [J/kg] - - 0.25
Tm [K] - - 273.0
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enforce the melting temperature appropriately in 2D as well. No improve-
ment in the solution is obtain by using the linear or constant Lagrange
formulation compared to the penalty formulation when using the gradient
based interface velocity. Using the linear Lagrange field interface veloc-
ity significantly improved the solution. The use of the constant Lagrange
field interface velocity also increased the accuracy but to a smaller extent.
This is probably due to the inability of the constant Lagrange field to re-
produce the linear gradient of the bi-linear quadrangle interpolation used
for the temperature. As a result, a linear Lagrange formulation, using a
Lagrange based interface velocity, would lead to an optimal algorithm in
terms of accuracy. To reduce the resolution time, a C-1 continuous linear
interpolation could be used and condensed on the element level Gersten-
berger and Wall (2010).

It is well known in the literature that the level set field must be regu-
larly reinitialized to maintain accurate results Chessa et al. (2002); Osher
and Fedkiw (2003). The one dimensional problem does not require this
step because the interface velocity is constant on the entire domain. The
two dimensional problem involves varying interface velocities in space
and distortions in the level set field may appear. The absence of a reinitial-
ization step in this work did not have a significant impact on the stability
of the simulation.

A detailed convergence study for different time steps and mesh sizes
would be influenced by the accumulated error in the level set field, mak-
ing comparisons between algorithms difficult. However, a convergence
study was done using the linear Lagrange field formulation for complete-
ness. The results are shown in figure 9 for the element size and figure
10 for the time step. As we can see, the Lagrange formulation converges
as the mesh is refined, although the convergence rate appears to be lower
than in the one dimensional case. Decreasing the time step size has the
reverse affect, increasing the error in the solution. These sub-optimal con-
vergence results are, at least in part, caused by the absence of the level set
reinitialization. As the simulation advances, errors in the level set field
accumulate, leading to errors in the overall solution. Decreasing the time
step size increases the amount of time steps needed to reach the final time,
quickening the degrading of the level set solution and increasing the error.
The one dimensional problem is immune to the effect because the linear
interface creates a uniform level set velocity field and no distortions can
appear.

Another practical aspect that was observed in the 2D case was the
importance of numerical parameter selection. For the penalty formula-
tion, two user-based numerical parameters are required: the penalty term
β and the maximum element distance δx to evaluate the interface veloc-
ity. An inappropriate selection of either of these parameters could lead to
a significant reduction in precision of the interface position, with the dis-
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tance δx having a much more significant impact than β. As an example,
the benchmark problem using the penalty formulation was solved using
δx = 20%. The interface position at t = 6.25 × 10−3s, at which point
the program fails, is shown in figure 12.

5. CONCLUSION

In this work, the Lagrange multiplier scheme developed by Gerstenberger
and Wall (2010) was applied to the classical Stefan problem in one and
two dimensions using a weakly discontinuous temperature field and strongly
discontinuous flux-based Lagrange field. We have shown that it allows
the application of Dirichlet boundary conditions with comparable preci-
sion to the penalty technique Chessa et al. (2002) using constant and lin-
ear interpolation schemes for the Lagrange field. Furthermore, a gain in
accuracy was obtained by calculating the interface velocity using the La-

Table 3 Error norms for 2D benchmark final interface position

Algorithm Error norm

Penalty 0.043
Lin. Lag. I 0.041
Lin. Lag. II 0.005
Cst. Lag. I 0.044
Cst. Lag. II 0.010
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grange field instead of the more widely used temperature gradient and re-
duced the discrepancy in computational cost between the two techniques.
The Lagrange based formulation requires no user defined numerical pa-
rameters, improving the model’s robustness. Further work will be real-
ized to account for convection in the liquid phase and mass flux at the
interface in problems involving different densities in the solid and liquid
phases.
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NOMENCLATURE

C Solution parameter for 2D analytical solution
cp Specific heat (J/kg K)
E Error norm
F Normal level set convection speed
K Kelvin
k Thermal conductivity (W/m K)
L Latent heat (J/kg)
m Solution parameter for 2D analytical solution
N Temperature interpolation function
N Lagrange multiplier interpolation function
ns Solid-liquid interface normal
q Lagrange multiplier variable (W/m2)
T Temperature variable
Tm Melting temperature
t Time variable
v Level set convection velocity
x Space variable
x′ non-dimensionalized interface position in 2D analytical solu-
tion
y′ non-dimensionalized interface position in 2D analytical solu-
tion
Greek Symbols
α Thermal diffusivity
β Penalization parameter
Γ Solid-liquid interface

ΓD Dirichlet boundary condition
ΓN Neumann boundary condition
∆t Time step
δT, δq, δφ Variable test function
δx Distance for gradient based velocity calculation
λ Solution parameter for analytical solutions
ρ Density (kg/m3)
φ(x, t) Level set variable (m)
ψ(x, t) Enrichment function
Ω Problem domain
Superscripts, subscripts and modifiers
a∗ Enriched degree of freedom
ai ith degree of freedom
aj jth enriched degree of freedom
al Liquid phase
as Solid phase
aΓ Solid-liquid interface
an+1 time step
â Boundary condition
〈a〉 Row vector
{a} Column vector
[a] Matrix
[[a]] Value jump across Γ
‖a‖ Vector norm
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