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ABSTRACT

The paper aims the heat transfer analysis for the flow of two immiscible micropolar fluids inside a horizontal channel, by the first and second laws
of thermodynamics under the action of an imposed transverse magnetic field. The plates of the channel are maintained at constant temperatures
higher than that of the fluid. The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The condition of
hyper-stick is taken on the plates and continuity of velocity, micro-rotation, temperature, heat flux, shear stress and couple stress are imposed at the
interface. The velocity, micro-rotation and temperature profiles are derived analytically and these are used to compute the dimensionless expressions
for the entropy generation number and Bejan number. The results are presented graphically. It is observed that the imposed magnetic field reduces
the entropy production rate near the walls.

Keywords: MHD flow, Immiscible fluids, Micropolar fluids, Entropy generation number, Bejan number.

1. INTRODUCTION

The optimal design of thermal systems can be achieved by minimizing
the entropy generation rate in the systems. This issue has been the topic
of great importance in many engineering fields such as heat exchangers,
thermal insulation, petroleum and geothermal reservoirs, cooling of nu-
clear reactors, MHD power generators, cooling of electronic devices etc.
Two decades earlier, measuring the entropy generation rate of such com-
plex systems which have different geometries in the presence and absence
of a magnetic field in a porous or non-porous channel was restricted to the
first law of thermodynamics. In recent days, to estimate the entropy gen-
eration rate it is observed that use of the second law of thermodynamics,
is more reliable than the calculations based on first law. In almost all ther-
mal systems, based on the second law, the efficiency of the system can be
defined in terms of the ratio of actual thermal efficiency to reversible ther-
mal efficiency under the same conditions. In order to enhance the thermal
performance of a system, i.e., to reduce the destruction of the available
work, the entropy generation rate must be minimized (Bejan, 1980). The
entropy generation rate is associated with thermodynamic irreversibility,
which is common in all types of heat transfer processes. Different sources
like heat transfer across finite temperature gradient, characteristic of con-
vective heat transfer, fluid friction, viscosity effects within the fluid and
at the solid boundaries, chemical reactions, body force effect, coupling
effects between heat and mass transfer, viscous dissipation effect etc. are
all responsible for entropy generation rate. Bejan (1982, 1979) discussed
different reasons behind the entropy generation rate in many thermal sys-
tems. Generation of entropy destroys available work of a system. There-
fore, it makes a good engineering sense to focus on the irreversibility of
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heat transfer and fluid flow processes and try to understand the mecha-
nism of entropy generation rate. Also he performed an analytical study to
show how the entropy generation rate can be calculated in fundamental
convective heat transfer problems such as pipe flow, boundary layer flow
over a flat plate, single cylinder in cross flow and flow in the entrance re-
gion of a flat rectangular duct. He demonstrated how the flow geometric
parameters may be selected in order to minimize the irreversibility asso-
ciated with a specific convective heat transfer.

There are many problems in the fields of hydrology and reservoir
mechanics in which systems involving two or more immiscible fluids of
different densities/viscosities flowing in same pipe or channel or through
porous media are encountered. Typical fluid examples of these systems
are: air-water, water-salt water, oil-water, gas-oil, and gas-oil-water sys-
tems. These are referred to as multi-phase flows in literature. Blood flow
in arteries has been studied by many researchers considering the flow of
blood as a two phase flow. Several investigations of multi-phase flows
are reported by various researchers (e.g., Bird et al., 1960; Kapur, 1964;
Bhattacharya, 1968; Chaturani and Samy, 1985; Rao and Usha, 1979;
Bakhtiyarov and Siginer, 1997). The flow and heat transfer in immiscible
fluids are of special importance in the petroleum extraction and transport
problem. Heat transfer in immiscible flows was discussed by many au-
thors (e.g., Chamkha, 2000; Umavathi et al., 2005; Malashetty et al.,
2006; Muthuraj and Srinivas, 2010; Prathap Kumar et al., 2011).

In the last few decades, a lot of study has been developed in or-
der to investigate the effect of a magnetic field on different geometries
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(Chamkha, 1998; Chamkha and Quadri, 2001). Alpher (1961) discussed
the heat transfer in magnetohydrodynamic flow between parallel plates.
Nikodijevic et al. (2011) studied the MHD Couette two-fluid flow and
heat transfer in the presence of a uniform inclined magnetic field. It is
also to be noted that the analytical study of first and second laws of ther-
modynamics for the flow within the channel in the presence of a magnetic
field is significant in many industrial applications, such as MHD marine
propulsion, MHD generators, pumps, accelerators, flow meters, filtration,
geothermal systems and has applications in nuclear reactors too. Sev-
eral works have been reported on the effect of MHD flow on the entropy
generation for various flows and geometries (e.g., Damseh et al., 2008;
Mahian et al., 2012; Kiyasatfar et al., 2012; Komurgoz et al., 2012). In re-
cent years, the fluid flow and entropy generation in two immiscible fluids
in a channel have received considerable attention of researchers. Kamisli
and Hakan (2008) considered the fluid flow and entropy generation in
two immiscible fluids in a channel. These authors explained very nicely
the thermodynamic interface conditions involved in a flow of immisci-
ble fluids and made a significant observation that minimum temperature
gradient in the transverse direction of the flow offers minimum entropy
generation near the plates.

The theory of a micropolar fluid was initiated by Eringen (1966,
1960) in 1966. This theory accounts for the internal characteristics of the
substructure particles with the assumption that they are allowed to un-
dergo a rotation independent of their linear velocity. Micropolar fluids
represent fluids consisting of rigid randomly oriented particles suspended
in a viscous medium when the deformation of the particles is ignored.
The equations of motion characterizing a micropolar fluid flow are non-
linear in nature (as in the case of Newtonian viscous fluids) and are con-
stituted by a coupled system of vector differential equations in velocity
q̄ and micro-rotation ν̄ (which is independent of q̄). To understand the
departure from the viscous fluid flow model, several problems that were
studied in viscous fluid flow theory, have also been studied in the realm of
micropolar fluids. This theory can be used to explain the flow of colloidal
fluids, liquid crystals, animal blood etc. An account of the early devel-
opments in polar fluid theory can be found in the book by Stokes (1984).
Ariman and Cakmak (1968) discussed some basic viscous flows in mi-
cropolar fluids. A detailed survey of microcontinuum fluid mechanics
with several applications in physiological fluid flows has been presented
by Ariman et al. (1973). Interesting aspects of the theory and applica-
tions of micropolar fluids are dealt in the books by Eringen (1960) and
Lukaszewicz (1999).

Thermodynamic analysis in the case of viscous fluids was carried out
by many researchers (e.g., Kiyasatfar et al., 2012; Kamisli and Hakan,
2008). But very less attention has been paid in this direction for the mi-
cropolar fluid flows. Since micropolar fluids are known to have rotational
effects, these fluids may help to increase the exergy. Hence, the present
study aims to study a comparatively involved problem dealing with the
entropy generation characteristics in a channel of two immiscible microp-
olar fluid flows under the influence of a transverse magnetic field.

2. MATHEMATICAL FORMULATION

Consider the flow of two immiscible micropolar fluids between two par-
allel plates extending in the axial direction and distant 2h apart. X and
Y are the axial and transverse coordinates respectively with the origin
at the center of the channel (Fig. 2). The length of the plates is much
greater than the distance between them so that the flow at any point in the
X-direction is same. Fluid flow is generated due to a constant pressure
gradient which acts at the mouth of the channel. A constant transverse
magnetic field is applied on the plates. The fluid in the lower zone (vis-
cosity µ1, micropolarity κ1, density ρ1 and thermal conductivity k1) oc-
cupies the region (i.e. −h ≤ Y ≤ 0) comprising the lower half of the

channel and this region is named zone I. The fluid in the upper zone (vis-
cosity µ2, micropolarity κ2, density ρ2(< ρ1) and thermal conductivity
k2) is assumed to occupy the upper half of the channel (i.e. 0 ≤ Y ≤ h),
and this region is called zone II. The equations for the flow and energy
in zone I and II (i.e. −h ≤ Y ≤ h) are assumed to be governed by
micropolar fluid flow equations as given by Eringen (1966).

∂ρ

∂t
+∇ · (ρ~q) = 0 (1)

ρ
d~q
dt

= ρ~f−∇P+κ∇×~ν−(µ+κ)∇×∇×~q+(λ+2µ+κ)∇(∇·~q)+ ~J× ~H

(2)

ρj
d~ν

dt
= ρ~̀−2κ~ν+κ∇× ~q−γ∇×∇×~ν+(α+β+γ)∇(∇·~ν) (3)

ρ
dE

dt
= −P (∇ · ~q) + ρΦ− (∇ · ~h) + ~J2 (4)

where

ρΦ = λ(∇ · ~q)2 + 2µ(D : D) + 4κ

(
1

2
∇× ~q − ~ν

)2

+ α(∇ · ~ν)2 + γ(∇~ν : ∇~ν) + β
(
∇~ν : (∇~ν)T

)
The equations (1)-(4) represent conservation of mass, balance of linear
momentum, micro-rotation and energy equation respectively. The scalar
quantities ρ and j are respectively the density and gyration coefficient
and are assumed to be constants. The vectors ~q, ~ν, ~f and ~̀ are the ve-
locity, micro-rotation, body force per unit mass and body couple per unit
mass respectively. P is the fluid pressure at any point. ~J is the cur-
rent density and ~H is the total magnetic field ( ~H = ~Ho + ~ho) where
~Ho is the applied magnetic field and ho is the induced magnetic field
(ho << Ho). The material constants (λ, µ, κ) are viscosity coefficients
and (α, β, γ) are gyro-viscosity coefficients. In the energy equation, Φ is
the dissipation function of mechanical energy per unit mass, D denotes
the deformation tensor, E is the specific internal energy and ~h is the heat
flux, where k is the thermal conductivity.

The current density ~J , magnetic field ~H and electric field ~E are
related by Maxwell’s equations∇× ~E = 0,∇· ~H = 0,∇× ~H = µ1 ~J ,
∇ · ~J = 0, ~J = σ( ~E + ~q × ~H) where µ1 is the magnetic permeability
and σ is the electric conductivity.

Fig. 1 Geometry of the problem

To develop the governing equations for the problem considered, the
following assumptions are made:

1. The flow is assumed to be one-dimensional, steady, laminar, and
incompressible.

2. The gravity effect is negligible and the Lorentz force ( ~J × ~H) is
the only body force acting on the fluid.
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3. The magnetic Reynolds number is assumed to be small, so that the
induced magnetic field is neglected and the Hall-effect of magne-
tohydrodynamics is assumed to be negligible.

We assume that the velocity of the fluid is ~q = (U(Y ), 0, 0) and micro-
rotation vector as ~ν = (0, 0, C(Y )). The flow is subjected to a uni-
form applied magnetic field Ho in the positive y-direction.i.e., ~H = Ho

~j
which gives ~J × ~H = −σH2

o ~q.

Introducing the non-dimensional variables: x =
X

h
, y =

Y

h
, u =

U

Uo
,

p =
P

ρ1U2
o

, C =
CUo

h
where Uo is the maximum velocity of the fluid in

the channel, we get the following sets of non-dimensional form of gov-
erning equations (neglecting body couples) and boundary conditions cor-
responding to the flow in the two zones.

3. GOVERNING EQUATIONS

Zone I: (−1 ≤ y ≤ 0)
The governing equations in zone I are:

d2u1

dy2
+ c1

dC1

dy
−Ha2(1− c1)u1 = (1− c1)Re

dp

dx
(5)

d2C1

dy2
− s1

du1

dy
− 2s1C1 = 0 (6)

Zone II: (0 ≤ y ≤ 1)
The governing equations in zone II are:

d2u2

dy2
+ c2

dC2

dy
− nσ

nµ
Ha2(1− c2)u2 =

1

nµ
(1− c2)Re

dp

dx
(7)

d2C2

dy2
− s2

du2

dy
− 2s2C2 = 0 (8)

where Re =
ρ1Uoh

µ1
is the Reynolds number, Ha2 =

σ1H
2
oh2

µ1
is the

Hartmann number, nµ =
µ2

µ1
is the viscosity ratio, nσ =

σ2

σ1
is the elec-

tric conductivity ratio, ci =
κi

µi + κi
is the micropolarity parameter and

si =
κih

2

γi
is the couple stress parameter (i=1,2).

4. BOUNDARY AND INTERFACE CONDITIONS

A characteristic feature of the two-layer flow problem is the coupling
across liquid-liquid interfaces. The liquid layers are mechanically cou-
pled via transfer of momentum across the interfaces. Transfer of momen-
tum results from the continuity of tangential velocity and a stress balance
across the interface.

To determine the velocity and micro-rotation components u1(y),
C1(y), u2(y) and C2(y) in the zones I and II described above, we adopt
the following boundary and interface conditions:

Zone I is constituted by the fixed lower plate given by y = −1 and a
fluid-fluid interface defined by y = 0. Zone II is constituted by the fluid
interface given by y = 0 and the fixed upper plate given by y = 1.

In view of the no-slip condition (Sandeep and Deshpande (2003)) on
the static boundaries, we have to prescribe velocity as:

u1(y) = 0 on y = −1 and u2(y) = 0 on y = 1 (9)

which represent the no-slip condition.
The microrotation vector on the boundary = angular velocity of the

fluid on the boundary. i.e., Cwall = 1
2
(∇ × ~qwall). A more general

condition is taken as Cwall = n
2

(∇ × ~qwall) where 0 ≤ n ≤ 1 (Refer
Lukaszewicz (1999), page 31). This value of n indicates the concentra-
tion of micropolarity or interaction of fluid particles with the boundary.
The case n = 0 indicates C = 0 at the plates. It represents the flow

of concentrated particles in which the microelements close to the wall
surface are unable to rotate (Jena and Mathur, 1981). While there has
been theoretical justification for no-slip condition for the velocity on the
boundary, the boundary condition for the micro-rotation vector ~ν needs
to be established in a rigorous form. The hyper-stick condition on the
boundary as given in Lukaszewicz (1999) is the one adopted here follow-
ing the studies made by Rees and Bossom (1996); Bhattacharyya et al.
(2012) and several workers in micropolar fluid flow and hence we take
that the microrotation vanishes on the static boundaries.

C1(y) = 0 on y = −1 and C2(y) = 0 on y = 1 (10)

At the fluid-fluid interface y = 0, we assume that the velocity, mi-
crorotation, shear stress and couple stress components are continuous.
This implies

u1(0−)
= u2(0+)

, C1(0−) = C2(0+), τ1xy|(0−) = τ2xy|(0+) and

M1xy|(0−) = nβ M2xy|(0+) (11)

The last two conditions of (11) give us

τ1xy|(0−) = τ2xy|(0+) ⇒
[

∂u1

∂y

∣∣
(0−)

+ 2 c1 C1

∣∣
(0−)

]
= nµ

(
1− c1

1− c2

)[
∂u2

∂y

∣∣
(0+)

+ 2 c2 C2

∣∣
(0+)

]
,

M1xy|(0−) = M2xy|(0+) ⇒
∂C1

∂y

∣∣
(0−)

= nβ
∂C2

∂y

∣∣
(0−)

. (12)

At the interface as there is no mass transfer, it is justified to assume
that there is no velocity in normal direction and that the tangential ve-
locity and microrotation are continuous. Also interface is assumed to be
a smooth surface representing force balance and hence shear stress and
couple stress are prescribed to be continuous.

5. SOLUTION OF THE PROBLEM

5.1. Velocity and Microrotation distributions

Solution of momentum equations subject to the conditions through (9)-
(11) are obtained as:
Zone I: (−1 ≤ y ≤ 0)
Eliminating C1 from (5), (6) we have

d4u1

dy4
− (Ha2(1− c1) + s1(2− c1))

d2u1

dy2
+ 2s1(1− c1)u1

= −2s1(1− c1)ReB (13)

substituting dC1
dy

from (5) in (6) we have

C1(y) = − 1

2c1s1

[
(Ha2(1− c1)− c1s1)

du1

dy
− d3u1

dy3

]
(14)

solving (13) we get,

u1(y) = c11 cosh α1y + c12 sinh α1y + c13 cosh α2y + c14 sinh α2y

+
1

Ha2
ReB (15)

and substituting u1(y) in (14) we have

C1(y) =
1

2c1s1
[α1(Ha2(1− c1)− c1s1 − α2

1)

(c11 sinh α1y + c12 cosh α1y) + α2(Ha2(1− c1)− c1s1 − α2
2)

(c13 sinh α2y + c14 cosh α2y)] (16)
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Zone II: (0 ≤ y ≤ 1)
Eliminating C2 from (7), (8) we have

d4u2

dy4
− (Ha2 nσ

nµ
(1− c2) + s2(2− c2))

d2u2

dy2
+ 2s2(1− c2)u2

= −2s2(1− c2)
1

nµ
ReB (17)

substituting dC2
dy

from (7) in (8) we have

C2(y) = − 1

2c2s2

[
(Ha2 nσ

nµ
(1− c2)− c2s2))

du2

dy
− d3u2

dy3

]
(18)

solving (17) we get,

u2(y) = c21 cosh α3y + c22 sinh α3y + c23 cosh α4y + c24 sinh α4y

− 1

nµ

1

Ha2
ReB (19)

and substituting u2(y) in (18), we have

C2(y) =
1

2c2s2

[
α3

(
Ha2(1− c2)

nσ

nµ
− c2s2 − α2

3

)
(c21 sinh α3y + c22 cosh α3y) + α4

(
Ha2(1− c2)

nσ

nµ
− c2s2 − α2

4

)
(c23 sinh α4y + c24 cosh α4y)

]
(20)

where α2
1, α2

2 are the roots of x2−a1x+a2 = 0 and α2
3, α2

4 are the roots
of x2−b1x+b2 = 0 and a1 = α2

1+α2
2 = Ha2(1−c1)+s1(2−c1), a2 =

α2
1α

2
2 = 4s1(1−c1)Ha2, b1 = α2

3+α2
4 = nσ

nµ
Ha2(1−c2)+s2(2− c2),

b2 = α2
3α

2
4 = 4nσ

nµ
s2(1− c2)Ha2

The solutions u1(y), C1(y) and u2(y), C2(y) involve eight constants
c11, c12, c13, c14, c21, c22, c23 and c24. These constants are found from
the boundary conditions given in (9)-(11) and these are obtained using
MATHEMATICA. As the expressions are cumbersome, they are not pre-
sented here.

5.2. Temperature distributions

In the present problem, it is assumed that the two walls are maintained at
constant and different temperatures TI and TII (TI < TII).
The governing equation for the temperature T1 of the conducting fluid in
zone I is then given by

k1
d2T1

dY 2
= −

[
µ1

(
dU1

dY

)2

+κ1

(
dU1

dY
+2C1

)2

+β1

(
dC1

dY

)2

+σ1H
2
oU2

1

]
(21)

The governing equation for the temperature T2 of the conducting fluid in
zone II is then given by

k2
d2T2

dY 2
= −

[
µ2

(
dU2

dY

)2

+κ2

(
dU2

dY
+2C2

)2

+β2

(
dC2

dY

)2

+σ2H
2
oU2

2

]
(22)

In order to non-dimensionalize the above equations, the following trans-
formation is used in addition to those already introduced in above: θ =
T − TI

TII − TI
.

The Equations (21) and (22) are then reduced to the following form:

d2θ1

dy2
= −Br

[(du1

dy

)2

+

(
c1

1− c1

)(
du1

dy
+ 2C1

)2

+δ1

(
dC1

dy

)2

+ Ha2u2
1

]
(23)

d2θ2

dy2
= −Br

nk

[
nµ

((
du2

dy

)2

+

(
c2

1− c2

)(
du2

dy
+ 2C2

)2
)

+ nβδ1

(
dC2

dy

)2

+ nσHa2u2
2

]
(24)

where Br = Ek Pr is the Brinkman number, Ek =
U2

o

cp1(TII − TI)
is

the Eckert number, Pr =
µ1cp1

k1
is the Prandtl number, nk =

k2

k1
is the

thermal conductivity ratio, nβ =
β2

β1
is the couple stress co-efficient ratio

and δ1 =
β1

µ1h2
is the couple stress parameter.

In the non-dimensional form, the boundary conditions for temperature are
as below:
(i) at the lower and upper plate boundaries the temperatures are respec-
tively,

θ1 = 0 at y = −1 and θ2 = 1 at y = 1 (25)

(ii) at the fluid interface temperature (θ) and heat flux (~h) are continuous:

θ1 = θ2 and
dθ1

dy
= nk

dθ2

dy
at y = 0 (26)

The solutions of Eqns. (23) and (24) with boundary and interface con-
ditions are solved analytically and they are lengthy and are not shown
here. The solution involves four constants and they are found from the
four boundary conditions (Eqns. (25) and (26)) and are obtained using
MATHEMATICA.

5.3. Nusselt number

The heat transfer coefficient at the walls is given by Fourier’s law of heat
conduction ~h = −k∇T . In non-dimensional form this represents Nus-
selt number Nu = − dθ

dy

]
y=±1

. The Nusselt number Nu is the ratio of

convective to conductive heat transfer across (normal to) the wall.

6. ENTROPY GENERATION ANALYSIS

6.1. The volumetric entropy generation

If we take an infinitesimal fluid element in each zone and assume that
the element as an open thermodynamic system subjected to mass fluxes,
energy transfer and entropy transfer interactions through a fixed control
surface, the volumetric rate of entropy generation for incompressible mi-
cropolar fluid is given as

(Si)G =
ki

T 2
o

(
∂Ti

∂Y

)2

︸ ︷︷ ︸
≥0

+
µi

To

(
∂Ui

∂Y

)2

︸ ︷︷ ︸
≥0

+
κi

To

(
∂Ui

∂Y
+ 2Ci(Y )

)2

︸ ︷︷ ︸
≥0

+
βi

To

(
∂Ci

∂Y

)2

︸ ︷︷ ︸
≥0

+
1

To
σiH

2
oU2

i︸ ︷︷ ︸
≥0

(27)

where the value of i can be either 1 or 2 that represents zone I or zone II,
respectively. Equation (27) clearly shows contributions of three sources
of entropy generation rate. The first term on the right-hand side of Equa-
tion (27) is the entropy production due to heat transfer across a finite tem-
perature difference, the second, third, and fourth terms are due to viscous
dissipation and the fifth term is due to the effect of the magnetic field.

6.2. The characteristic entropy generation rate

The characteristic entropy generation rate SG,C is defined as,

SG,C =

[
(~h1)

2

k1T 2
o

]
=

[
k1(∆T )2

h2T 2
o

]
(28)
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In the above equation, ~h1 is the heat flux, To is the average, characteristic,
absolute reference temperature of the medium, ∆T = TII − TI and h is
the half of transverse distance of the channel.

6.3. The entropy generation number

According to Bejan (1996), the dimensionless form of entropy generation
is the entropy generation number Ns and which is, by definition, equal to
the ratio of actual generation rate to a characteristic entropy transfer rate.
The entropy generation number for each fluid is given by

Ns1 =

(
dθ1

dy

)2

+

(
Br

Ω

)[(
du1

dy

)2

+

(
c1

1− c1

)(
du1

dy
+ 2C1

)2

+ δ1

(
dC1

dy

)2

+ Ha2u2
1

]
(29)

Ns2 = nk

(
dθ2

dy

)2

+

(
Br

Ω

)[
nµ

((
du2

dy

)2

+

(
c2

1− c2

)(
du2

dy
+ 2C2

)2
)

+ δ1nβ

(
dC2

dy

)2

+
nknσ

nµ
Ha2u2

2

]
(30)

where Br =
(

µ1U2
o

k1∆T

)
is the Brinkman number, which determines impor-

tance of viscous dissipation because of the fluid frictions relative to the
conduction heat flow resulting from the impressed temperature difference
and Ω =

(
∆T
To

)
is the temperature difference number. This number is

a dimensionless parameter always present in the second law treatment of
heat transfer processes. In most applications of engineering interest, we
find Ω ≤ 1 (Bejan, 1979).

6.4. The viscous dissipation parameter

The viscous dissipation parameter is an important dimensionless number
for the irreversibility analysis. It determines the relative importance of
the viscous effects for the entropy generation and it is equal to the ra-
tio of Brinkman number to the dimensionless temperature difference i.e.,
(Br/Ω). It is desirable to consider the Ek and Pr in a group called the
Brinkman number (Br = Ek.Pr) for evaluating the relative importance
of the energy due to viscous dissipation to the energy due to heat conduc-
tion. It was reported that Br is much less than unity for many engineering
processes (Bejan, 1979).

6.5. The Bejan number

The domination of the irreversibility mechanisms is physically impor-
tant. The entropy generation originates from both heat transfer and vis-
cous friction, these effects should be separately investigated to see the
dominance of one over the other. The entropy generation number is un-
able to to give any idea about the relative importance of friction and heat
transfer effects. An alternate parameter, called Bejan number (Be), is
introduced for this purpose and it is achieving an increasing popularity
among researchers studying the second law. This parameter was defined
by Paoletti et al. (1989) as ratio of irreversibility due to heat transfer to
the total irreversibility (sum of heat transfer irreversibility, fluid friction
irreversibility and Joule dissipation irreversibility) and it is given by

Be =
Nyi

Nsi
=

Nyi

Nyi + Nfi + Nmi
(31)

This is employed to understand the entropy generation mechanisms
as proposed by Bejan (1996, 1979). The value of Be → 1 indicates that
the heat transfer irreversibility dominates. On the other hand, Be → 0
indicates that the irreversibility due to fluid friction and magnetic field
dominates over the irreversibility due to the heat transfer. It is obvious

that Be = 0.5 is the case in which the irreversibility due to heat transfer
is equal to sum of fluid friction and magnetic field contributions in the
entropy generation.

7. RESULTS AND DISCUSSION

The closed form solutions for the flow of two immiscible micropolar flu-
ids are obtained and reported in the previous section. These solutions are
evaluated numerically and depicted graphically. The variations of veloc-
ity, micro-rotation, temperature, entropy generation number and Bejan
number for different values of parameters are shown through figures.

7.1. Flow field
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Fig. 2 Effect of s2 on u for B = −1.5, c1 = 0.6, c2 = 0.7, Ha = 1,
nβ = 0.9, nµ = 0.9, nσ = 0.9, Re = 2, s1 = 5.
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Fig. 3 Effect of c2 on u for B = −1.5, c1 = 0.8, Ha = 0.5, nβ = 0.9,
nµ = 0.9, nσ = 0.5, Re = 1.5, s1 = 2, s2 = 3.

The effect of the couple stress parameter s2 on the velocity field is
shown in Fig. 2. It is seen that as s2 increases, the velocity increases
in both the zones of the channel. As s2 → ∞, we get the case of
Newtonian (viscous) fluids. The effect of the micropolarity parameter
c2(0 ≤ c2 < 1) on the velocity field is shown in Fig. 3. It is seen that
as c2 increases, the velocity decreases in both zones of the channel. The
velocity in case of micropolar fluid is less than that of the viscous fluid
(c2 → 0 corresponds to viscous fluid).
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Fig. 4 shows the effect of the Hartmann number Ha (magnetic pa-
rameter) on the velocity field. As we expected, the velocity profiles are
symmetrical about the centerline of the channel. It is clear that, increas-
ing the value of Ha have a tendency to slow down the fluid motion. This
is because of the presence of the transverse magnetic field, which creates
a resistive force similar to the drag force that acts in the opposite direc-
tion of the fluid motion, thus causing the velocity of the fluid to decrease.
This shows that the imposed magnetic field has a retarding influence on
the flow field.

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

C
 -

--
>

y --->

 s
2
=2

 s
2
=4

 s
2
=6

 s
2
=8

Zone-I Zone-II

Fig. 5 Effect of s2 on C for B = −2, c1 = 0.9, c2 = 0.8, Ha = 0.5,
nβ = 0.8, nµ = 0.8, nσ = 0.8, Re = 6, s1 = 5.

The effect of the couple stress parameter s2 is found to decrease
the micro-rotational velocity drastically as seen in zone II and slightly in
zone I as shown in Fig. 5. From Fig. 6, we observe that the micro-rotation
changes sign from increasing nature to decreasing character in the zone
II and in zone I the rotational velocity is increasing. The micro-rotation
tends to zero as is expected that in the limit κ → 0 i.e., c2 → 0, the eqns.
(1) and (2) are uncoupled with (3) and they reduce to viscous fluid flow
equations. This may be due to increase in rotation of particles in zone II.

Fig. 7 shows the effect of the Hartmann number Ha on the micro-
rotation field. As the Hartmann number Ha increases, micro-rotation
changes its increasing nature to decreasing nature in zone II and as Ha
increases, micro-rotation decreases numerically in the channel.
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Fig. 6 Effect of c2 on C for B = −2, c1 = 0.9, Ha = 1, nβ = 0.6,
nµ = 0.6, nσ = 0.8, Re = 6, s1 = 4, s2 = 4.
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Fig. 7 Effect of Ha on C for B = −4, c1 = 0.9, c2 = 0.9, nβ = 0.9,
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7.2. Thermal field and Heat transfer

The effect of the couple stress parameter s2 on temperature field is shown
in Fig. 8. It is seen that as s2 increases, the temperature increases in both
zones of the channel. This may be due to the fact that velocity increases
and hence dissipation increases (see fig 2). Fig. 9 depicts the effect of the
micropolarity parameter c2 on temperature field. It is observed that the
temperature decreases with the increase of parameter c2. Since velocity
is decreasing, dissipation of energy due to velocity decreases and hence
temperature decreases.

Fig. 10 displays the effect of the Hartmann number Ha on the tem-
perature field. As the Hartmann number Ha increases, temperature de-
creases in both the regions of the channel. As Ha increases due to in-
creasing magnetic field intensity, the fluid temperature decreases within
the channel. This behavior is attributed to decrease the fluid velocity due
to the magnetic field as shown in Fig. 4. Fig. 11 displays the effect of
Brinkman number Br on temperature. It is observed that the temperature
of both the fluids increases with increase in Brinkman number Br. This
may be due to viscous dissipation.

Fig. 12 shows that as Reynolds number Re increases, Nusselt num-
ber Nu increases.
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7.3. Entropy generation and Heat transfer irreversibility

The transverse variation in heat transfer irreversibility in terms of entropy
generation number Ns is shown in Figs. 13 - 16 for different values of
the parameters. Fig. 13 shows the effect of couple stress parameter s2

on entropy generation number Ns. As s2 increases entropy generation
increases drastically near the plates in zone II. Fig. 14 shows the effect
of micropolarity parameter c2 on entropy generation number Ns. As c2

increases entropy generation decreases in both the zones of the channel.
The values of Ns when c2 is near to zero are more than the values of Ns
when c2 is tending to 1. Since the case c2 → 0 represents viscous fluid
case, the entropy generation rate in this special case is more than that of
the micropolar fluid case.

Fig. 15 shows the variation of entropy generation number Ns as
a function of y at different Hartmann numbers Ha. As Ha increases,
Ns decreases drastically near the plates and has negligibly small effect
at the interface. As Hartmann number increases, the curve for an entropy
generation number becomes flat for a considerable distance in the middle
of the channel.

The entropy generation number Ns is plotted in Fig. 16 as a func-
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δ1 = 0.7, nβ = 0.9, nk = 1.1, nµ = 0.6, nσ = 0.8, Re = 2.5,
s1 = 8, s2 = 8.
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Fig. 11 Effect of Br on θ for B = −1.5, c1 = 0.9, c2 = 0.9, δ1 = 0.7,
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tion of transverse direction y for different values of the viscous dissipa-
tion parameter (Br/Ω). This parameter is an important dimensionless
number in the entropy generation analysis. It determines the relative im-
portance of viscous effects to temperature gradient entropy generation.
The entropy generation near the plates increases more rapidly in the zone
I than in the zone II. The more the viscosity of the fluid is, the more the
entropy generation. It is observed that since Ns takes the least value at
the interface, the fluid friction irreversibility dominates at the interface of
the channel. Again the entropy generation near the plates increases with
increasing the viscous dissipation parameter (Br/Ω). For (Br/Ω) = 0,
fluid friction irreversibility has no contribution to an entropy generator
which falls to zero in the entire channel.

The transverse variation in heat transfer irreversibility in terms of
Bejan number Be is shown in Figs. 17 - 20 for different values of the pa-
rameters. Fig. 17 shows the effect of couple stress parameter s2 on Bejan
number Be. As s2 increases, Bejan number decreases. At the interface
the variation in Be is rapid. Fig. 18 shows the effect of micropolarity
parameter c2 on Bejan number Be. As c2 increases, Bejan number in-
creases from 0.992 to 1 within a small range. Which implies c2 almost

7
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has no effect on Be.

Fig 19 displays the variation of Bejan number Be as a function of
y at different Hartmann numbers Ha. As Ha increases, Be increases
drastically near the plates and has negligibly small effect at the interface.
As Hartmann number increases, the curve for Bejan number becomes flat
for a considerable distance in the middle of the channel. This shows that
magnetic effect decreases friction at the walls but increases the entropy
generation rate at the interface. This is a significant observation that can
be made from the present study in view of its practical applicability.

The Bejan number Be is shown in Fig. 20 as a function of transverse
direction y for different values of viscous dissipation parameter (Br/Ω).
At (Br/Ω)=0, the contribution of fluid friction irreversibility to overall
entropy generation is absent, thus resulting in an invariant distribution of
Bejan number. Bejan number shows its maximum value Be = 1 which
means there is no entropy generation due to fluid friction. The Bejan
number is highest at the interface of the channel and decreases as we
move towards the channel walls on either direction. The Bejan number
decreases as the viscous dissipation parameter (Br/Ω) increases.
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8. CONCLUSION

The MHD flow of two immiscible incompressible micropolar fluids in a
horizontal channel of width 2h with the plates at constant temperature,
under the influence of a constant pressure gradient has been analyzed in
terms of entropy generation rate. It is observed that
1. The higher values of the micropolarity parameter c2 (i.e., the effect
of micro-rotation becomes significant) result in lowering the velocity dis-
tribution and the presence of couple stresses in the fluid decreases the
velocity.
2. The values of Ns near the plates are more than they are at the inter-
face, indicating that friction due to surface on the fluids increases entropy
generation rate.
3. The values of Ns in zone-I are more than they are in the zone-II near
the plates. This indicates that the more is the viscosity of the fluid, the
more is the entropy generation rate.
4. Increasing Hartmann number Ha (Magnetic parameter) tends to in-
crease the values of Bejan number near the plates. The entropy generation
number decreases near the plates with an increase in magnetic parameter
and it attains almost flat shape in the middle of the channel. This implies
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that magnetic field reduces the fluid friction near the walls.
5. The walls act as strong sources of irreversibility since the viscous shear
stress on the walls is maximum due to momentum transfer from the plate
to the fluid. This shows an industrial application that micropolar fluids
with high micropolarity and less couples stresses will act as good lubri-
cants.
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NOMENCLATURE

Be Bejan number(= 1
1+φ

)
Br Brinkman number(= Ek Pr)
Br

Ω
viscous dissipation parameter

c1, c2 micropolarity or coupling numbers
C non-dimensional micro-rotation in z-direction
dij components of the strain
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Fig. 18 Effect of c2 on Be for B = −0.3, Br = 0.2, c1 = 0.2, δ1 = 0.9,
Ha = 0.2, Re = 6, nβ = 0.9, nk = 1.1, nµ = 0.9, nσ = 1.1,
s1 = 6, s2 = 6, Ω = 1.
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Fig. 19 Effect of Ha on Be for B = −0.1, Br = 0.1, c1 = 0.5,
c2 = 0.5, δ1 = 0.9, Re = 2, nβ = 0.9, nk = 1, nµ = 0.9,
nσ = 1.1, s1 = 8, s2 = 8, Ω = 1.

D deformation tensor
E specific internal energy
~E electric field
Ek Eckert number
~f body forces per unit mass
ho induced magnetic field
~H total magnetic field
Ho applied magnetic field
Ha Hartmann number
2h height of the free channel
~h heat flux
J current density
j gyration coefficient
k1, k2 thermal conductivity of the fluid in zone-I,II
~̀ body couple per unit mass
mij couple stress tensor
Nfi entropy generation due to viscous dissipation
Nsi dimensionless total entropy generation number
Nyi entropy generation due to transverse conduction
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δ1 = 0.9, Ha = 0.1, Re = 10, nβ = 0.9, nk = 1.1, nµ = 0.9,
nσ = 1.1, s1 = 10, s2 = 10.

Nu Nusselt number
nβ ratio of couple stress viscosity coefficients(= β2

β1
)

nk ratio of thermal conductivities(= k2
k1

)
nµ ratio of viscosities(= µ2

µ1
)

nρ ratio of densities(= ρ2
ρ1

)
nσ ratio of electric conductivities(= σ2

σ1
)

p pressure
Pr Prandtl number
~q velocity vector
q1, q2 non-dimensional volumetric flow rates in zones
Re Reynolds number
s1, s2 couple stress parameters in zone I,II
(Si)G entropy generation rate
(Si)G,C characteristic entropy transfer rate
tij stress tensor
T1, T2 non-dimensional temperatures of the plates
u non-dimensional velocity in X-direction

GREEK SYMBOLS

α, β, γ gyration viscosity coefficients
δij kronecker delta
δ1 couplestress parameter (= β1

µ1h2 )

εijk Levi-Civita symbol or permutation symbol
~ν micro-rotation vector
Ω dimensionless temperature difference(= ∆T

To
)

Φ dissipation function
φ irreversibility ratio(= Nf

Ny
)

ρ density
θ non-dimensional temperature
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