
Frontiers in Heat and Mass Transfer (FHMT), 6, 6 (2015)
DOI: 10.5098/hmt.6.6

Global Digital Central
ISSN: 2151-8629

  1

 

THE EFFECT OF MELTING ON MIXED CONVECTION HEAT AND 

MASS TRANSFER IN NON-NEWTONIAN NANOFLUID SATURATED IN 

POROUS MEDIUM 

 R.R. Kairi a and Ch. RamReddyb, *  

a Department of Mathematics, Islampur College, Islampur, West Bengal,  India – 733 202 
b Department of Mathematics, National Institute of Technology Warangal, India – 506 004 

 

ABSTRACT 

In this paper, we investigated the influence of melting on mixed convection heat and mass transfer from the vertical flat plate in a non-Newtonian 

nanofluid saturated porous medium. The wall and the ambient medium are maintained at constant, but different, levels of temperature and 

concentration. The Ostwald–de Waele power-law model is used to characterize the non-Newtonian nanofluid behavior. A similarity solution for the 

transformed governing equations is obtained. The numerical computation is carried out for various values of the non-dimensional physical 

parameters. The variation of temperature, concentration, heat and mass transfer coefficients with the power-law index, mixed convection parameter, 

melting parameter, Brownian motion parameter, thermophoresis parameter, buoyancy ratio and Lewis number are discussed in a wide range of values 

of these parameters.  
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1. INTRODUCTION 

A nanofluid is a stable, uniform suspension of nanometer sized solid 

particles (< 100 nm) in conventional liquids such as water and ethylene 

glycol. An innovative procedure for improving heat transfer by using 

ultra fine solid particles in fluids has been used extensively during the 

last several years. For example, the thermal conductivity of copper 

oxide is about 100 times greater than that of water. Thus, the thermal 

conductivity of a suspension containing solid particles could be 

expected to be significantly greater than that of the base fluid. Xuan and 

and Roetzel (2000) proposed a homogeneous flow model where the 

convective transport equations of pure fluids are directly extended to 

nanofluids. The boundary layer flow in nanofluds has been analyzed 

recently by Nield and Kuznetsov (2009a, 2009b). Hojjat et al., (2011) 

experimentally investigated the laminar convective heat transfer of non-

Newtonian nanofluids with constant wall temperature. Gorla et al., 

(2011) also analyzed mixed convective boundary layer flow over a 

vertical wedge embedded in a porous medium saturated with a 

nanofluid. They conclude that thermophoresis and buoyancy ratio 

enhanced the heat transfer rate while the same reduced the mass transfer 

rate. Moreover, the Brownian motion parameter enhanced mass transfer 

rate whereas the heat transfer rate decreased with the same. The effects 

of viscous dissipation on mixed convection heat and mass transfer 

along a vertical plate embedded in a nanofluid-saturated non-Darcy 

porous medium have been investigated by Rashad et al. (2014).  

The study of melting phenomena in porous media has received 

much attention in recent years because of its important applications in 

casting, welding and magma solidification, permafrost melting and 

thawing of frozen ground etc. Epstein and Cho (1976) studied the 

melting heat transfer from a flat plate in a steady laminar case, while 

Kazmierczak et al., (1986, 1987) analyzed melting from a vertical flat 

plate embedded in a porous medium in both free and forced convection 

processes. The heat transfer at the melting surface in the laminar 

boundary layer by using Karman-Pohlhausen method was discussed by 

Pozvonkov et al., (1970). Bakier (1997) studied the melting effect on 

mixed convection from a vertical plate of arbitrary wall temperature 

both in aiding and opposing flows in a fluid saturated porous medium 

while Gorla et al., (1999) considered a similar study with uniform wall 

temperature conditions.  

 Non-Newtonian power-law fluids are so widespread in industrial 

processes and in the environment that it would be no exaggeration to 

affirm that Newtonian shear flows are the exception rather than the rule. 

Natural convection in a non-Newtonian fluid about a vertical wall and 

that around horizontal cylinder and sphere in a porous medium was 

presented by Chen and Chen (1988(a),1988(b)), respectively. 

Nakayama and Koyama (1991) analyzed the more general case of free 

convection over a non-isothermal body of arbitrary shape embedded in 

a porous medium. Poulikakos and Spatz (1988) analyzed the melting 

phenomena on free convection from a vertical front in a non-Newtonian 

fluid saturated porous matrix. Recently Kairi and Murthy (2012) 

explored the melting effect of a non-Newtonian fluid on mixed 

convection with Soret effects in a non-Darcy porous medium. The 

influence of yield stress on free convective boundary layer flow of non-

Newtonian nanofluids over a vertical plate in a porous medium was 

discussed by Hady et al., (2011). Rashad et al., (2011) investigated the 

boundary layer flow of a non-Newtonian nanofluid over a permeable 

vertical cone embedded in a porous medium. Since there are few 

investigations in the recent literature about the convective heat and 

mass transport in non-Newtonian nanofluids saturated with or without 

porous medium. This motivated us to investigate the significance of 

melting effect on mixed convection in a porous medium saturated with 

non-Newtonian nanofluids.  

The main purpose of the present investigation is to analyze the 

effect of melting in non-Newtonian nanofluids on mixed convection in 

porous medium. The effects of Brownian motion and thermophoresis 

are included. Using Matlab BVP solver bvp4c, which is a finite 

difference code that implements the 3-stage Lobatto IIIa formula, a 

numerical solution of the boundary layers equations is obtained.
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2.  Mathematical Formulation 
Consider the mixed convective heat and mass transfer from a vertical 

plate embedded in a Darcy porous medium saturated with a non-

Newtonian nanofluid. It is assumed that the plate constitutes the 

interface between the liquid phase and the solid phase during melting 

inside the porous matrix. The co-ordinate system and flow model are 

shown in the fig. 1.  

 
 

Fig. 1 Physical model and coordinate system (Kairi and Murthy 2012) 

 

The x - coordinate is taken along the plate, the y - coordinate is 

measured normal to the plate, while the origin of the reference system is 

taken at the leading edge of the plate. The plate is at a constant 

temperature 
mT  at which the material of the porous matrix melts. The 

liquid phase temperature is ( )mT T∞ > and the temperature of the solid 

far from the interface is ( )0 mT T< . The concentration at the wall is 
wC  

and the surrounding porous medium is maintained at constant 

concentration C∞ . The flow is steady, laminar and two dimensional. 

With the usual boundary layer and linear Boussinesq approximations, 

the governing equations, namely the equations of continuity, flow, 

energy and concentration for the isotropic and homogeneous porous 

medium may be written as 
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components along the x and y directions, T  and C  are the temperature 

and concentration, respectively, n is the power law index (n < 1, n = 1 

and n >1, respectively, Pseudoplastic, Newtonian and Dilatant fluids). 

The parameters fρ , µ  and β , respectively, are the density, viscosity 

and thermal expansion of the fluid while pρ  is the density of the particle, 

g is the acceleration due to gravity, the effective heat capacity 

is ( ) fcρ and effective thermal conductivity of the porous medium is k , 

BD is the Brownian diffusion coefficient and 
TD  is thermophoretic 

diffusion coefficient. 

The boundary conditions necessary to complete the problem 

formulation are written as 
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where L and 
sc  are latent heat of the solid and the specific heat capacity 

of the solid phase, respectively and U∞  is the uniform free stream 

velocity.  

 The boundary condition (5) at the interface states that the 

temperature of the plate is equal to the melting temperature of the 

material saturating the porous matrix and the other condition means that 

the heat conducted to the melting surface is equal to the sum of heat of 

melting and the sensible heat required to raise the temperature of the 

solid, 
0

T to its melting temperature
mT . It is important to note that eq. (5) 

is consistent with a coordinate system fixed to the melting surface, so 

that the interior of the solid appears to move towards the (stationary) 

melting surface with constant velocity equal to the melting velocity 

v(x,0). In the present formulation, transient effects in the solid have been 

neglected. This assumption is valid as long as the melting solid is large 

compared to its thermal boundary layer thickness [see Epstein and Cho 

(1976)]. 

The continuity equation is automatically satisfied by defining a 

stream function ( , )x yψ  such that  u
y
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The above transformation reduces the system of partial differential 

equations into the following system of non-linear ordinary differential 

equations:  
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The boundary conditions are  
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In the above equations
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is the buoyancy ratio, 
( ) ( )

( )

p T m

t

f

c D T T
N

c T

ε ρ

ρ α

∞

∞

−
=  is thermophoresis 

parameter and
( ) ( )

( )

p B w

b

f

c D C C
N

c

ε ρ

ρ α

∞−
=  is Brownian motion parameter. 

We note that 0χ =  corresponds to pure free convection and 

1χ = corresponds to pure forced convection processes.  
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    The local Nusselt number 
xNu  and Sherwood number 

xSh  are 

physical properties. The non-dimensional heat and mass transfer 

coefficients are defined as   
1 1/ 2 (0)

x x
Nu Peχ θ− ′=                                                                  (12) 

1 1/2 (0)
x x

Sh Peχ φ− ′= .                                                                 (13)  

 

3.  Results and discussion 

The resulting ordinary differential equations (7)-(9) along with the 

boundary conditions (10)-(11) are solved using Matlab BVP solver 

bvp4c, which is a finite difference code that implements the 3-stage 

Lobatto IIIa formula. The integration length η∞  varies with the 

parameter values and it has been suitably chosen each time such that the 

boundary conditions at the outer edge of the boundary layer are 

satisfied. The results obtained here are accurate up to the 4th  decimal 

place. At first, the accuracy of the numerical solution was tasted by 

accurately producing the findings of Cheng and Minkowycz (1977) for 

the case of a Newtonian fluid without melting ( 0, 1M n= = ), then the 

findings of  Chen and Chen (1988) for the case of natural convection of 

(i) a Pseudoplastic fluids without melting, (ii) a Newtonian fluids 

without melting, (iii) a Dilatant fluids without melting, and (iv) a 

Newtonian fluid with melting and they are shown in the Table (1). 

Also, the present results for the Nusselt and Sherwood numbers are 

compared with those obtained by Kairi and Murthy (2012) in the 

absence of Brownian motion and thermophoresis parameter and they 

are found to be good agreement, but the details are not shown here for 

brevity. The following values are considered for the parameters: 

0.5 1.5n≤ ≤ , 0 1χ≤ ≤ , 0 1M≤ ≤ , 0.1 0.5rN≤ ≤ , 0.0 1.0bN≤ ≤ , 

0.1 1tN≤ ≤ and 0.1 5Le≤ ≤ . It was reported that in case of non-

Newtonian fluids, heat and mass transfer coefficients decreased with 

increases in the melting parameter (Kairi and Murthy 2012). The effect 

of these parameters in power law nanofluids on the velocity, 

temperature heat and transfer coefficient is presented through some 

selected values of these parameters. Their combined effects on the heat 

and mass transfer coefficients are discussed. 

 

Table 1. Comparison of values of (0)θ ′−  for free convection along a 

vertical plate in Newtonian and non-Newtonian fluid saturated porous 

medium in the absence of Brownian motion and thermophoresis 

parameter with 0, 0rNχ = =  and 0Le = .  

S.No

. 

Fluid type with/ 

without melting 

effects 

Cheng and 

Minkowycz 

(1977) 

Chen and 

Chen(1988) 

Present 

(i) 0, 0.5M n= =  ----------- 0.3768 0.37682 

(ii) 0, 1M n= =  0.4440 0.4437 0.44370 

(iii) 0, 1.5M n= =  ----------- 0.4752 0.47525 

(iv) 1, 1M n= =  ----------- 0.2910 0.29103 

 

Figures 2 and 3 show that the variations of non-dimensional 

temperature θ  and concentration φ  against the similarity variable η   

for different values of thermophoresis parameter 
tN  and melting 

parameter M  with fixed values of 
rN , 

bN , Le  and χ . It is observed 

that as increasing in the thermopohoresis parameter, the temperature 

boundary layer thickness increases in the presence of melting parameter 

and  it is also noted that with influence of thermopnoresis parameter an 

increment in the values of melting parameter the temperature profile 

decreases for both pseudoplastic and dilatant fluids. Further, the 

concentration decreases with increase of melting and thermophoresis 

parameter for both pseudoplastic and dilatant fluids.  
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Fig. 2 Variation of temperature profiles for 0.5n =  and 1.5n = with   

           the similarity variable η varying
tN and M with fixed 0.5χ = ,    

           1rN = , 0.5bN = and 1Le = .  
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Fig. 3   Variation of concentration profiles for 0.5n =  and 1.5n = with  

             the similarity variable η  varying 
tN  and M with fixed      

            0.5χ = , 1rN = , 0.5bN = and 1Le = . 

 

The variations of the non-dimensional temperature θ  and 

concentration distribution φ  against the similarity variable η  for 

different values of 
bN and M  are shown in Figs. 4 and 5,  respectively. 

It is noted that for both pseudoplastic and dilatants fluids, the  

temperature and concentration boundary layer thicknesses increase as 

the value of 
bN  rises in the presence of melting parameter and the 

temperature and concentration decreases with increase of melting 

parameter with influence of Brownian motion.    
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 Fig. 4 Variation of temperature profiles for 0.5n =  and 1.5n = with  

            the similarity variable η  varying 
bN  and M with fixed   

          0.5χ = , 1rN = , 0.3tN = and 1Le = . 
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Fig. 5 Variation of concentration profiles for 0.5n =  and 1.5n = with 

the similarity variable η  varying 
bN  and M with fixed 

0.5χ = , 1rN = , 0.3tN = and 1Le = .  

 

          In figures 6 and 7, the variations of heat and mass transfer 

coefficients are plotted against χ  varying n and 
rN with fixed values 

of other parameters. It is seen that heat and mass transfer coefficients 

are decreasing with increasing buoyancy ratio,
rN  for pseudopastic, 

Newtonian and dilatants fluids. Similar results were reported by Kairi 

and Murthy (2012) while investigating the mixed convection heat and 

mass transfer of non-Newtonian fluids from a vertical surface 

embedded in porous medium.    
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 Fig. 6 Variation of heat transfer coefficient against χ varying  

                       n  and 
rN   with fixed  1Le = , 0.5bN = , 0.1tN =  and   

                       0.5M = . 
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 Fig. 7 Variation of mass transfer coefficient against χ   

varying  

                        n  and 
rN   with fixed 1Le = , 0.5bN = , 0.1tN =  and  

                        0.5M = . 

 

Figures 8 and 9 prepared to illustrate the variations of the Nusselt and 

Sherwood numbers against Le  for different values of M and 
tN  with 

fixed value of other parameters. It is observed that the with influence of 

melting parameter, the Nusselt number increases but, Sherwood number 

decreases with thermophoresis parameter, also it can be noted that the 

Nusselt and Sherwood number decrease with increase of melting 

parameter for both pseudoplastic and dilatant fluids. Moreover the 

thermophoresis effect on both heat and mass transfer rate is prominent 

for the pseudoplastics than that of dilatant nanofluids.             
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 Fig. 8 Variation of heat transfer coefficient against Le  varying  

                        n , M  and 
tN   with fixed 0.5bN = , 0.1rN =  and  

                       0.5χ = . 
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 Fig. 9  Variation of mass transfer coefficient against Le    

                         varying n , M and 
tN with fixed 0.5bN = , 0.1rN =    

                         and 0.5χ = . 

 

Figures 10 and 11 prepared to show that the variation of heat and mass 

transfer coefficients for pseudoplastic and dilatant fluids against Le  for 

varying M and
bN , and fixed value of other parameters. In the 

presence of melting parameter, the Nusselt and Sherwood number 

increases with increase of Brownian motion parameter
bN , and Lewis 

number Le  for all types of non-Newtonian nanofluids. On the other 

hand, Nusselt and Sherwood number decrease with increase of melting 

parameter in the presence of thermophoresis for larger values of Le . 

The influences of the Brownian motion parameter on Nusselt and 

Sherwood numbers are superior for the pseudoplastic nanofluids with 

compared to dilatant nanofluids saturated porous medium. 
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 Fig. 10 Variation of heat transfer coefficient against Le varying      

                          n , M  and 
bN   with fixed 0.3tN = , 0.1rN =  and  

                         0.5χ = . 
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 Fig. 11 Variation of mass transfer coefficient against Le    

                          varying n , M and 
bN with fixed 0.3tN = , 0.1rN =   

                          and 0.5χ = . 
4.  CONCLUSIONS 

In this study the effect of melting on mixed convection heat and mass 

transfer from a vertical flat plate in a porous medium saturated with 

non-Newtonian nanofluids is analyzed. It is noted that the temperature 

and concentration profiles as well as the heat and mass transfer 

coefficients are significantly affected by melting, thermophoresis and 

Brownian diffusion. The heat and mass transfer coefficients decrease 
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with increasing M in the whole range of mixed convection for all types 

of non-Newtonian nanofluids. It is also noted that heat transfer 

coefficients increases but, mass transfer coefficient decrease with 

increasing buoyancy ratio
rN  in the whole range of mixed convection 

for all types of non-Newtonian nanofluids. Finally, thermophoresis and 

Brownian motion effects on Nusselt and Sherwood numbers are 

prominent in pseudoplastic nanofluids when compared to dilatant 

nanofluids saturated porous medium.  
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NOMENCLATURE 

 fc  specific heat capacity of the convective fluid  

sc  specific heat capacity of the solid phase  

C  concentration 

wC  concentration at the plate 

C∞  concentration at the ambient medium 

BD  Brownian diffusion coefficient  

TD  thermophoretic diffusion coefficient  

f   dimensionless stream function 

g  acceleration due to gravity  

k  effective thermal conductivity  

K  permeability of the porous medium  

L  latent heat of the solid  

Le  Lewis number     

M  Melting parameter 

n  power law index 

rN  buoyancy ratio 

bN  Brownian motion parameter 

tN  thermophoresis parameter 

xNu  local Nusselt number 

xPe  local Peclet number 

xRa  local Rayleigh number 

xSh  local Sherwood number  

 T          temperature  

mT  melting temperature 

0T  temperature at the solid phase 

T∞  temperature at the ambient media 

,u v  average velocity components in x and y directions 

U∞  free stream velocity 

,x y  coordinates along and perpendicular to the wall 

Greek Symbols  

α  effective thermal diffusivity   

β  coefficient of thermal expansion  

χ  mixed convection parameter 

ε  porosity of the porous medium 

φ  dimensionless concentration 

η  similarity variable 

µ  fluid consistency of the inelastic non-Newtonian power –  

              law fluid  

θ  dimensionless temperature 

f
ρ  nanofluid density  

p
ρ  nano-particle mass density  

( ) pcρ  heat capacity of nano-particle  

( ) fcρ     heat capacity of fluid  

ψ           dimensionless stream function optical penetration depth  
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