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ABSTRACT

Disasters such as conflagration, toxic smoke, harmful gas or chemical leakage, and many other catastrophes in the
industrial environment caused by hazardous distance from the peril are frequent. The calamities are causing massive
fiscal and human life casualties. However, Wireless Sensors Network-based adroit monitoring and early warning
of these dangerous incidents will hamper fiscal and social fiasco. The authors have proposed an early fire detection
system uses machine and/or deep learning algorithms. The article presents an Intelligent Industrial Monitoring
System (IIMS) and introduces an Industrial Smart Social Agent (ISSA) in the Industrial SIoT (ISIoT) paradigm.
The proffered ISSA empowers smart surveillance objects to communicate autonomously with other devices. Every
Industrial IoT (IIoT) entity gets authorization from the ISSA to interact and work together to improve surveillance
in any industrial context. The ISSA uses machine and deep learning algorithms for fire-related incident detection
in the industrial environment. The authors have modeled a Convolutional Neural Network (CNN) and compared
it with the four existing models named, FireNet, Deep FireNet, Deep FireNet V2, and Efficient Net for identifying
the fire. To train our model, we used fire images and smoke sensor datasets. The image dataset contains fire, smoke,
and no fire images. For evaluation, the proposed and existing models have been tested on the same. According to
the comparative analysis, our CNN model outperforms other state-of-the-art models significantly.
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1 Introduction

IoT reformed as a mature field that promises extensive connections to the Internet. The
researcher’s passion is transforming every real-world object into a smart one. So, the unification
of social networks, mobile communication, and the Internet has brought a revolution in information
technology, and it is widely accepted as Social IoT (SIoT). Ultimately, IoT has entrusted an inspiring
collocation to build a vehement industrial system and recently installed massive industrial IoT (IIoT)
and its applications. For example, automobile’s locations, oversee their odyssey, and predict their
approaching neighborhood and traffic conditions [1–3] are easily trackable by the administration
using intelligent transportation system (ITS) with the assistance of IoT. The primary goal of IoT
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is to establish secure autonomous connections between intelligent devices and applications for data
exchange. However, searching for information within such a complex network can be challenging
due to issues such as time complexity, redundant information, and unwanted data. To mitigate these
issues, researchers have proposed a model named an individual’s small-world, which reduces network
complexity and enables efficient and precise information retrieval [4–6]. Our previous work proposes
a system for monitoring and detecting events early in an industrial setting that combines the social
IoT paradigm with a small-world network. This system leverages the collaboration of all IoT devices
with a Smart Social Agent (SSA) [7–10].

The early identification and prevention of fires, which can have catastrophic effects on both human
life and the environment, is a critical component of industrial safety. Traditional fire detection systems
have showed potential, especially those that use computer vision techniques like Convolutional Neural
Networks (CNNs) [11], but they still have challenges including manual feature selection, a lot of
computation, and slow detection speed [12]. A trustworthy algorithm that can accurately identify fires,
automate feature selection, and ultimately save lives and save the environment is therefore urgently
needed [13].

Natural disasters like fires are incredibly harmful because of the havoc they can wreak on human
life and the natural world. The detection of fires in open areas has recently emerged as a critical issue
regarding human life safety and a formidable challenge. Australia’s bushfires, which started in 2019 and
continued through March 2020, were just one of many wide-ranging wildfires also called forest fires
that broke out worldwide that year. Approximately 500 million animals perished in the fire. “Wildfires
in 2020” [14] refers to an article about a similar, deadly fire in California, a state in the United States.
There has been a growing focus on the importance of fire detection systems in recent years, and these
systems have proven invaluable in preventing fires and saving lives and property. Sensor detection
systems can detect fire signs like light, heat, and smoke [15].

To protect people, detecting fires in the open air has become a challenging and essential task.
According to data gathered worldwide, fires significantly threaten manufactured structures, large
gatherings, and densely populated areas. Property loss, environmental damage, and the threat to
human and animal life are all possible results of such events. The environment, financial systems,
and lives are all put at risk due to these occurrences. The damage caused by such events can be
reduced significantly if measures are taken quickly. Automated systems based on vision are beneficial
in spotting these kinds of occurrences. To address the requirement for early detection and prevention of
industrial accidents, with a specific focus on fire detection, this study proposes a thorough framework
for an Intelligent Industrial Monitoring System. To provide safety and security in industrial settings,
the suggested system incorporates IIoT devices, such as sensors, actuators, cameras, unmanned aerial
vehicles (UAVs), and industrial robots. These gadgets communicate socially with the Industrial SSA
(ISSA), facilitating smart cooperation and communication in urgent circumstances. CNN models
based on deep learning are used by the IIMS’ intelligent layer to identify fires with a high degree of
recall and accuracy. The ISSA reduces false alarms and verifies fire events by activating all surveillance
equipment in urgent situations. After verification, the system creates alerts, notifies the appropriate
authorities, and launches UAVs and industrial robots to monitor and evacuate the impacted area. The
cloud infrastructure facilitates a communication route between the intelligent layer and the application
layer, which provides real-time data. The SSA maintains the emergency report on the cloud and uses
machine learning techniques to identify distinct situations.
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In order to fill in research gaps and advance the field of early detection and prevention of industrial
accidents, particularly in fire detection, the proposed Intelligent Industrial Monitoring System (IIMS)
makes several significant contributions. The following are our work’s main contributions:

• Development of an Intelligent Industrial Monitoring System (IIMS) that integrates Industrial
Internet of Things (IIoT) devices, including sensors, actuators, cameras, Unmanned Aerial
Vehicles (UAVs), and industrial robots, to ensure safety and security in industrial settings.

• Introduction of a Smart Social Agent (SSA) that facilitates intelligent communication and
collaboration among IoT devices during critical situations, enhancing the efficiency and
effectiveness of the monitoring system.

• Utilization of deep learning-based Convolutional Neural Networks (CNNs) in the intelligent
layer of the IIMS to achieve high accuracy and recall in fire detection, addressing the limitations
of manual feature selection, computation requirements, and detection speed.

• Establishment of a robust communication channel between the intelligent layer and the applica-
tion layer through cloud infrastructure, enabling real-time information sharing and facilitating
timely decision-making.

• Mitigation of false alarms through the collaborative behavior of IoT devices, where nearby
sensors, devices, cameras, and UAVs are activated to sense the environment instead of generating
unnecessary alarms.

• Generation of warnings, notifications, and emergency reports on the cloud, enabling seamless
communication with concerned authorities such as fire brigades, police, and ambulance services.

• Activation of industrial robots and UAVs for evacuation and monitoring of affected areas,
leveraging the capabilities of automation to enhance emergency response and safety measures.

The proposed architecture has several advantages, including:

• The social behavior of IoT devices provides in-depth surveillance. For example, if smoke, heat,
or light sensors sense a value higher than the threshold, nearby sensors, devices, cameras, and
UAVs will be activated to sense the environment instead of generating an alarm. Devices send
perceived and captured data to the intelligent layer for validation.

• The intelligent layer receives data and uses CNN models to detect and validate fire incidents. If
two or more surveillance devices detect the fire, ISSA activates actuators and robots for first aid.

• ISSA updates the emergency report on the cloud and alerts concerned authorities such as the
fire brigade, police, and ambulance.

The manuscript is organized into several sections to present a clear and systematic account of
the research. Specifically, Section 2 offers an overview of the related literature. Section 3 presents
the proposed methodology for the Industrial Internet of Things (IIoT), while Section 4 details the
experimental setup. The findings of the study are then discussed in Section 5. Finally, Section 6
provides a conclusion that summarizes the key findings and their implications in a concise and
professional manner.

2 Related Work

The essential technology for IoT is Radio-Frequency Identification (RFID) innovation. It enables
microchips to transfer the identification info of a visitor through wireless communication. It uses
interconnected smart sensors to sense and monitor. Wireless Sensors Network (WSN) and RFID
have contributed substantially to the advancement of IoT [16]. As a result, IoT has gained pop-
ularity in numerous industries, including logistics, manufacturing, retailing, and medicine [17–21].
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Additionally, it also influences new Information & Communication Technologies (ICT) and venture
systems innovations. Compatibility, effectivity and interoperability achieved in IoT by following
standardization procedures at global scale [22–24]. Several countries and organizations can bring
incredible financial benefits due to the amelioration of IoT standards. Organizations such as the
International Telecommunication Union (ITU), International Electro-technical Commission (IEC),
China Electronics Standardization Institute (CESI), the American National Standards Institute
(ANSI) and several other are working for fulfilling IoT requirements [25].

Many companies are thriving in the enrichment of IoT criteria. Solid coordination among
standardization companies is fundamental need to collaborate between international, national, and
regional organizations. Mutually accepted programs and requirements, customers can apply for IoT
applications and solutions. It will be deployed and utilized while conserving development and upkeep
costs effectively in future perspective. IIoT technology will flourish with innovation by following the
standard procedures set by ISO and it will be used in all walks of life. Schlumberger monitors subsea
conditions by taking the trip of oceans for gathering relevant information up to many years without
using the human force with the help of UAVs. Moreover, mining markets may also get benefit with the
advancement of IIoT in terms of remote tracking and sensing as it will reduce the risk of accidents. A
leading mining company of Australia, Rio Tinto, which plans to remove human resources for mining
purpose by following autonomous mining procedures [26].

Despite the pledge, numerous obstacles in realizing the chances supplied by IIoT define future
research. The essential difficulties stem from the need for energy-efficient operation and real-time
performance in vibrant settings. As per the statistics shared by The International Labor Organization
(ILO), “151 employees face work-related injuries in every 15 s”. The IoT has addressed safety and
security problems and conserved $220 billion yearly in injuries and health problem prices. RFID cards
issued to all works of different industries including gas, oil and coal mining, and transportation sector
which collect the live time location data as well as it monitor the heart beat rate, galvanic skin action,
skin temperature, and other specifications. The collected data will be evaluated in the cloud compared
to the contextual information. Any irregular behavior detection in the body generates an alert and
avoids mishaps [26,27].

The automatic detection of fire using deep learning models and computer vision techniques has
opened multiple research avenues for several academic communities due to the similarities between
fire and other natural phenomena, such as sunlight and artificial lighting [28]. Although methods such
as [29] show promise, there is a better solution for image-based problems. Deep learning techniques
played pivotal role for problem solving for computer vision [30]. The use of deep learning has become
pervasive across a range of real-time applications, including image and video object recognition
and classification, speech recognition, natural language processing, and more. This technique has
proven highly effective in enabling these applications to recognize and classify data in real-time with
remarkable accuracy [31]. Therefore, this research article provides the comprehensive overview and
authenticate the visual analysis-based early fire detection systems.

Computer vision and deep neural networks based models like CNNs employed for fire detection,
which yielded promising results in this proposed research article. Therefore, CNNs models have gain
the interest of few researchers, as they believe that CNNs could improve fire detection performance.
Current literature mentions a variety of shapes, colors, textures, and motion attributes as potential
solutions for fire detection systems. By analyzing the kinetic properties of smoke, reference [32] created
an algorithm for smoke detection. CNN was used to generate suspect features using a machine
learning-based strategy; the approach taken was background dynamic update, and the methodology
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used was a dark channel prior algorithm; the result could be implemented with relative ease and was
widely applicable.

3 Intelligent Industrial Surveillance System

Certainly! Fig. 1 illustrates the sub-architecture of the fire detection system in a format of
hardware-based block diagram. This diagram consists of three major modules, which are:

• Surveillance Area Module: This module monitors the environment for potential fire hazards.
It includes various sensors and cameras that detect smoke, heat, and other fire signs. The data
from these sensors is then fed into the next module.

• IoT Fire System Module: This module receives data from the Surveillance Area Module and
processes it using IoT technologies. The IoT Fire System Module could include hardware such
as microcontrollers or IoT gateways communicating with the cloud or other remote servers. This
module could also include software algorithms that analyze the data and determine whether a
fire has started or is likely to begin soon. This module can alert the third module if a fire is
detected.

• Responders Module: This module is responsible for dispatching responders such as firefighters,
ambulances, or police to the location of the fire. The Responders Module receives alerts from
the IoT Fire System Module and can use various communication channels such as mobile
phones, two-way radios, or other wireless devices to alert and coordinate the responders. The
Responders Module could also include GPS technology to help responders navigate to the
location of the fire.

Figure 1: Hardware-based block diagram

Overall, this flow diagram represents a robust fire detection system that utilizes a hardware-based
approach to quickly and effectively respond to fire emergencies. The three modules work together
seamlessly to detect fires, analyze data, and dispatch responders to the scene. With this system in
place, it is possible to reduce the damage caused by fires and protect human life and property.

The IIoT paradigm is crucial in various industries by monitoring industrial environments and
preventing monetary and social damage. The architectural design aims to minimize damage by
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providing attentive surveillance planning and monitoring of the surrounding environment. In case
of an emergency, all devices in the ISIoT paradigm communicate with each other, and the ISSA
validates the event using machine learning-based algorithms to prevent false alarms. The IIMS archi-
tecture comprises various components such as architectural style, intelligent objects, communication
systems, cloud services, Intelligent layers, and application interfaces. The architecture emphasizes the
importance of expandability, scalability, modularity, and interoperability to support intelligent objects
critical to industrial environments. The industrial settings require a flexible architecture to support
continuously moving or interacting intelligent objects. The distributed and diverse nature of the SIoT
necessitates an event-driven architecture that is capable of achieving interoperability among various
devices.

3.1 Hardware Layer

The SIoT is a network of socially allied smart devices in terms of co-workers, co-location, co-
ownership, etc., in which objects may interact to conduct environmental monitoring as a team. We
introduced a 5-layered surveillance architecture for IIoT, shown in Fig. 2.

Figure 2: Intelligent industrial surveillance system

In the first layer, called the “hardware layer,” electronic devices such as cameras, drones, and other
sensors are activated for perceiving the environment and transmitting data. Nowadays, almost all
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firms use these clever devices for several purposes. RFIDs are widely used to track and count items,
while sensors are crucial in sensing the surroundings. In addition to detecting fires, poisonous gases,
and suspicious movements, these surveillance systems monitor manufacturing quality, count goods,
preserve energy, manage household and irrigation water, assess agricultural land, etc. Closed-circuit
television (CCTV) and a surveillance drone have significantly improved or bolstered the monitoring
system. CCTV offers visual monitoring, while surveillance drones and unmanned aerial vehicles
(UAVs) monitor locations where it is impossible to place static cameras or sensors. In addition,
industrial robots and actuators have been suggested for this design. By functioning autonomously
in crisis scenarios, these self-governing devices safeguard the ecosystem from massive harm.

3.2 Communication Layer

Communication solutions between edge devices or between edge devices and clouds allow intelli-
gent device connectivity and data exchange. The communication layer helps by linking all smart things
and enabling them to exchange data with other connected devices. Additionally, the communication
layer may collect data from existing IT infrastructures (e.g., agriculture, healthcare, and so on). The
Internet of Things encompasses various electrical equipment, mobile devices, and industrial machines.
Each device has its own set of capabilities for data processing, communication, networking, data
storage, and transmission. Smartwatches and smartphones, for example, serve different purposes.
Effective communication and networking technologies are essential for enabling intelligent devices to
interact with each other seamlessly. Smart objects can utilize either wired or wireless connections for
this purpose. In the IoT realm, wireless communication technologies and protocols have recently seen
significant advancements. Communication protocols such as 5G, Wi-Fi, LTE, HSPA, UMTS, ZigBee,
BLE, Lo-Ra, RFID, NFC, and LoWPAN have contributed immensely to data transmission between
connected devices. As technology evolves, the IoT is expected to play an increasingly important role
in developing wireless communication technologies and protocols.

3.3 Intelligent Layer

The Intelligent Layer, which establishes the Industrial Smart Internet of Things (ISIoT) paradigm
and integrates the Social Smart Agent (SSA) into an industrial context, is the central element of
the proposed architecture. The management of the surveillance system and facilitation of seamless
communication between the connected devices are the primary goals of the Intelligent Layer. In order
to ensure vigilant event detection, avoid damage, and reduce false alarms, the SSA is crucial. The
layer is made up of a number of parts, such as sensors, closed-circuit television (CCTV) cameras,
and unmanned aerial vehicles (UAVs), which constantly monitor the environment and send the data
they collect to the cloud. The SSA starts a notification process among nearby devices when an incident
occurs to see if other devices have also noticed the event. The SSA verifies the occurrence of an incident
by comparing sensor values against a predetermined threshold. As a result, it produces an emergency
alarm, turns on actuators to secure the incident site, and notifies the appropriate authorities right away.
In parallel, the surveillance drone is used to record in-depth footage of the incident scene, minimizing
interference with daily life. Convolutional neural networks (CNNs) are then used to detect fires using
the drone images that were collected. To manage industrial surveillance and avert potential risks, the
Intelligent Layer’s architecture should put a strong emphasis on effective event detection, dependable
communication, sound decision-making, and coordinated actions.
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Convolutional neural networks

One type of deep neural network that draws inspiration from biology is the convolutional neural
network [33]. Applications of deep convolutional neural networks (CNNs) in computer vision, such as
image restoration, classification, localization [34–37], segmentation [38,39], and detection [40,41], are
highly effective and efficient. The core idea behind CNN is to continuously break down the problem
into smaller chunks until a solution is found. By training the model from a raw pixel value to a classifier,
we can avoid the complex preprocessing steps common in ML. An elementary model of CNN is a
multi-layered feedforward network with stacked convolutional and subsampling layers. The deepest
layers of CNNs are used for classification based on extensive reasoning. Here is a breakdown of what
each layer entails.

Convolution layers

In convolutional layers, the image (input) undergoes a convolutional operation, and then the
resulting data is passed to the following layer. Each node in the convolutional layer comprises receptive
fields built from the units in the layers below it. The neurons in these fields derive fundamental visual
features, such as corners, endpoints, and oriented edges. Multiple features can be extracted from the
many feature maps in this layer. All units on a given feature map share the same biases and weights,
ensuring that the features detected apply equally to all input locations. Researchers commonly use the
expression [42] to describe the shape of a convolution layer, see Eq. (1).

X l
j = f

⎡
⎣∑

i∈Mj

xl−1
i ∗ kl

ij + bl
i

⎤
⎦ (1)

In convolutional layers, the input maps collection is denoted by Mj, where k is the kernel size
determining the extent of convolution applied to the image. Additionally, b represents a bias, and X l

j

denotes the output as the jth feature map of that convolutional layer.

Subsampling layers

The pooling and subsampling layer plays a crucial role in reducing the complexity of the
feature map’s resolution by performing sub-sampling and local averaging. This layer is responsible
for downsampling the convolutional layer’s output, which reduces the computation required for
subsequent layers.

In addition to this, it takes away the sensitivity of the output. The representation of a sub-sampling
layer looks like this [42], see Eq. (2).

X l
j = f

[
β l

jdown (xl−1
i ) + bl

i

]
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where (down) refers to a process that is known as sub-sampling. In most cases, the sub-sampling (down)
function will offer an n-by-n block to calculate the final output in the input picture. This will result in
a normalized output and n times smaller than the original. Where b represents the additive bias and
represents the multiplicative bias. We recommend using the following CNN model:

Proposed CNN model

The CNN model utilized in this study was based on the design of AlexNet [43], with a few minor
modifications tailored to our specific problem. To reduce complexity, we limited the number of output
neurons to just two. Our model consists of ten layers, including five convolutional layers, five max-
pooling layers, and two fully connected layers, each comprising a total of 4096 vertices. When presented
with an input image x of dimensions H × W × C, where H, W, and C represent the image’s height,
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width, and depth, respectively, a filter (also known as a kernel) w of dimensions h × w × c is applied
to extract local features from the image.

A feature map y of dimension (H − h + 1) × (W − w + 1) × F is produced by the following
mathematical operation presented in Eq. (3):

yi,j,f =
h−1∑
k=0

w−1∑
l=0

c−1∑
m=0

xi+k,j+l,m · wk,l,m,f (3)

Here, i indicates the height index of a feature map, the width index is indicated by j, whereas, f is
used for depth. Similarly, the index of height, width, and depth for the filter is represented by k, l, m,
respectively.

In addition, we switch the order of the max-pooling and normalizing layers, which were previously
located between the first and second convolutional layers, and move them to the fifth position. Max
pooling is a downsampling operation that reduces the spatial dimensions of the feature map while
retaining the most important features. Pooling filter of dimension h x w is applied to accomplish the
Max pooling with a stride of s over a feature map y of dimension (H × W × F) to retain the max
value of every region. The Eq. (4) is the mathematical formulation of Max pooling.

yi,j,f = maxh−1
k=0 maxw−1

l=0 yi · s+k, j ·s+l, f (4)

Here, i indicates the height index of a feature map after pooling, the width index is indicated
by j whereas, f is used for depth. Similarly, the index of height, width, and depth for the pooling
filter is represented by k, l, m, respectively. In the last layer of our classification system, we used the
SoftMax classifier to make high-reason determinations. The addition of non-linearity is essential for
neural networks, and this is achieved through the use of activation functions. One such function is
the rectified linear unit (ReLu), which has been widely used due to its effectiveness. Another variation
of ReLu is the leaky ReLu activation function, which introduces a small positive slope for negative
inputs, thereby addressing the problem of “dead neurons” that can occur with ReLu. Mathematically,
the leaky ReLu activation function can be expressed as following operation in Eq. (5) that defines the
function.

f (x) =
{

x if x > 0
ax if x ≤ 0

(5)

where x is the input to the activation function, y is the output, and a is a small positive slope for
negative inputs.

The final part of the CNN is the fully connected layers, which perform the final classification of
the input image. Given an input x of size n, a fully connected layer is a matrix multiplication of the
input and a weight matrix w of size x × m followed by an activation function. The operation that
defines a fully connected layer can be expressed mathematically as Eq. (6):

y = f (w · x + b) (6)

where f is the activation function, b is the bias term, and y is the output of the fully connected
layer. Common activation functions in fully connected layers include the sigmoid, ReLu, and softmax
functions. The activation functions in a convolutional neural network (CNN) play a crucial role in
determining the output of the network. The sigmoid function is commonly used to map input values
to a range between 0 and 1, while the ReLu function is used to transform negative input values to 0 and
positive input values to their original value. The softmax function is used in the final layer of a CNN



2298 CMC, 2023, vol.77, no.2

to classify the input image by computing the exponential of each input value and then normalizing
the result to produce a probability distribution over the classes. The class with the highest probability
is considered as the final output of the CNN.

In Fig. 3, the architecture of our model is presented, which involves resizing the input image to
256 pixels in width, 256 pixels in height, and 3 pixels in depth using our CNN model. The 1st layer
applies a filter with 96 kernels of size 11 × 11 × 3 and a stride of 4 pixels. The outcome of this layer
undergoes pooling, which reduces the data’s complexity and dimensionality. Next, the 2nd layer applies
256 kernels of size 5 × 5 × 64 with a stride of 2, followed by pooling. The 3rd layer employs 384 kernels
of size 3 × 3 × 256, without a pooling procedure. The rest of the layers use filters with kernels of 384
and 256, respectively, with a stride of 1. After the 5th layer, the pooling layer uses 3 × 3 filters. Finally,
the last classification step is performed on two fully connected layers, each with 4096 neurons, and the
output layer has two neurons that classify the final output as either a picture of fire or no fire.

Figure 3: Convolutional neural network framework

3.4 Cloud Layer

Every second, billion of IoT devices create vast amounts of data. Researchers from all over the
world are utilizing data for various objectives. The volume of data is expanding exponentially over
time, making ordinary computer systems incapable of handling it. Cloud services like data storage,
processing, and sharing are critical to coping with this vast volume of data. Since the previous decade,
the IoT business has grown fast, and all industries are using IoT infrastructure. An increasing number
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of IoT devices are being installed by companies, which are continuously generating data. The cloud
layer maintains the generated data for further analysis and processing. Monitoring architecture is
paramount for high-speed computing systems that can analyze data in microseconds, aid in emergency
detection, and safeguard the environment.

3.5 Service Layer

For real-time surveillance, SSA constantly updates the data in the cloud, and all service centers get
updates from the cloud. When an emergency occurs, the service provider receives the alert and sends a
service provider to the affected area. A brief event-based service selection scenario is shown in Fig. 4.

Figure 4: Event-based service search scenario by exploiting social IoT in industrial environment

In the suggested architecture; we recommend both human and artificial intelligence service
providers (e.g., robots). Control room and service providers contacted by ISSA as well as it activates
robots and industrial actuators simultaneously and generates an alert in case of an emergency. The
suggested paradigm intends to prevent environmental degradation without extreme measures. Leaving
the building during an emergency alert is usually recommended to protect ourselves. Therefore,
determining the afflicted area and circumstances is usually a challenging attempt. The SIoT paradigm
allows IoT devices to connect and interact with one another to detect an event and ascertain the precise
position and the affected place. UAVs, actuators, and industrial robots play a pivotal role in dealing
with this problem, as well as UAVs generates constant visual reports, which minimizes the load of
service providers and save the lives of service providers from hazards.

4 Experimental Work

To evaluate the proposed model, we performed an experiment using the Foggia video fire data
set [44], the Chino smoke data set [45], and additional gas and heat datasets [46]. In the field of fire
detection, the Foggia video fire dataset [44] is a frequently used benchmark dataset. It is made up of
video clips that were taken in a variety of settings with various fire scenarios. A realistic representation
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of fire incidents, including various fire sizes, types, and intensities, is provided by the dataset. The
training and assessment of fire detection models are made possible by the annotation of each video
sequence with ground truth labels indicating the presence of fire. The Chino smoke dataset [45] is
dedicated to the detection of smoke. It includes pictures that were taken under various smoke-presence
conditions. The dataset offers a wide variety of smoke patterns, densities, and lighting situations that
mimic real-world smoke scenarios. The Chino dataset is annotated with ground truth labels for smoke
presence, much like the Foggia dataset, making it easier to train and test smoke detection models. To
improve the model’s capacity to identify gas leaks and unusual heat patterns, gas and heat datasets
[46] were added. These datasets most likely include temperature readings, sensor readings, or other
pertinent information gathered from industrial settings.

We implemented the proposed CNN model in python programming language using TensorFlow
and Keras libraries. Following are the specifications of the machine we used for training the model:
Intel® Core i5-3570 CPU @ 3.40 GHz or 3.80 GHz, with a Windows operating system and GTX 1080
graphics card. Table 1 presents the system specifications in tabular form.

Table 1: Detailed environment parameters used for implementation

Sr. No. Name Experiment environment parameter

1 Operating system Windows 10
2 CPU Intel Core i5-3570 CPU @ 3.40 GHZ 3.80 GHz
3 GPU NVIDIA GeForce GTX1080
4 Memory 24 GB
5 Development tool Python 3.6
6 Library TensorFlow, Keras

We have trained our CNN model with 70% of the data, while the remaining 30% is used for
validating and testing the model. We used 43,376 photos for training, 19,251 for validation, and the
remaining 1,543 for testing, from a total of 64,170 images. The training consisted of 80,000 iterations
with 128 batch sizes. Initially, the learning rate was 0.01, but because of the step-decay learning process,
it decreases by a factor of 0.5 every 1000 iterations. After 40,000 iterations, our model’s learning
rate is locked at 0.001 percent. In addition, we set the momentum to 0.9. Accuracy, Precision, and
Recall are just a few of the parameters that CNN-based models utilize to gauge their performance.
Recall indicates how accurate predictions were made to the actual data, whereas Precision reflects the
percentage of accurate predictions. Precision and Recall are calculated using the following equations,
see Eqs. (7) and (8):

Precision = TruePositive
TruePositive + FalsePositive

(7)

Recall = TruePositive
TruePositive + FalseNegative

(8)

• True Positive = True proposals predicted as true labeled class.
• True Negative = Background proposal predicted as background.
• False Positive = Background proposal predicted as true labeled class.
• False Negative = True Proposals predicted as background.
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5 Results and Discussion

Fire images and smoke sensor datasets were used for training and testing the model. The dataset
contains fire, no-fire, and smoke images. We used 70% of the data for training the model, 20% for
validation, and 10% for evaluation. Two libraries, TensorFlow and Keras, were used to implement the
model in Python. While implementing the model, we used the Leaky ReLu activation function and the
step decay algorithm for training with the Adam optimizer. Initially, we applied data preprocessing and
resized our images to fit the model input. Similarly, we enforced data preprocessing for sensor data,
which went through various filters like normalization, redundancy filtering, irrelevance filtering, and
data cleaning. The proposed CNN and other existing models used the Leaky ReLu activation function
in their hidden layers.

The detailed analysis of the models efficiency was carried out by visualization of the learning
curves of all models and the combined learning curve after adding the last fully connected layer.
The learning curve helps to analyze the model’s performance over numerous epochs of training data.
Thorough analysis of the learning curve enabled us to deduce whether the model is learning new
knowledge from the input or merely memorizing it. It is evident that, high learning-rate, bias, and
the learning-curve may be skewed in training and testing that indicates model’s incompetency to learn
from its errors. Likewise, a big difference in errors (training and testing errors) reveals higher variation.
The model needs to improve in both directions, resulting in erroneous generalizations. Overfitting
is a phenomenon that occurs when the training error is very less but presents more testing error. It
shows that the model remembers rather than learning. As a result, it is challenging to extrapolate
from the model in these cases. In addition, overfitting is avoidable by using the dropout approach and
terminating learning early.

By training and testing, we calculated the accuracy of the proposed and existing models. Fig. 5a
shows the training loss, while Fig. 5b accuracy curves for the CNN models. Fig. 6 shows the CNN
model’s Receiver Operating Characteristics (ROC) curve. The model uses 10% of the data that contains
fire, smoke, no fire, and blurry images for testing. In our test dataset, some scenic views contain
multiple substances that look like fire and smoke but are not actual fire and smoke. Therefore other-
based techniques create a false alarm on the images that give the impression of fire. Our model
performed very efficiently during testing. Fig. 7 presents the performance of the proposed architecture
on testing images.

Figure 5: Training and validation loss vs. accuracy of proposed CNN model
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Figure 6: ROC curve of proposed CNN model

Figure 7: Model performance on testing data

We compared the novel CNN architecture with existing advanced fire detection methods. Our
CNN architecture is a shallow network as well as contains less number of trainable parameters, which
highly contribute to its strength: only 7.45 MB (646,818) space utilized on disk. It is important to note
that other, higher-performing fire detection solutions can be found in published works. The degree
to which something performs better depends on the tools, and the data set used to train it. To give
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just a few examples, already advanced CNN models have a capability of detection around 4–5 frames
per second with utilization of more space on the disk with low-cost embedded hardware. However,
the proposed model’s superior fire detection capabilities stem from the fact that it was trained on a
much more varied dataset and was created expressly for this purpose. At up to 24 frames per second,
the Proposed CNN model’s real-time fire detection feature is nearly as fast as human visual cognition
thanks to this powerful combination. Fig. 8 shows the comparative analysis of the proposed model
with state-of-the-art methods using the loss curve. Meanwhile, Fig. 9 compares the Proposed CNN
model with existing models on Accuracy and Precision. The figure clearly shows that the proposed
model’s performance is better than others. Table 2 compares the proposed model with existing models
using different matrices, i.e., Accuracy, Precision, Recall, False Positive, and False Negative.

Figure 8: Training loss comparison of proposed and existing models

Figure 9: Accuracy and precision comparison of proposed and existing models
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Table 2: Comparison of different state-of-the-art methods using accuracy, precision, recall, false
positive and false negative

Model Accuracy Precision Recall False positive False negative

FireNet 91.56% 0.80 0.84 6.93% 4.03%
Deep FireNet 92.86% 0.81 0.86 7.04% 3.12%
Deep FireNet V2 93.46% 0.82 0.89 7.54% 3.29%
EfficientNet 93.67% 0.84 0.92 7.69% 3.42%
Proposed model 94.50% 0.86 0.97 8.87% 2.12%

As we can see from Table 2, the proposed model achieved the highest accuracy (94.5%) and recall
(0.97) among all the models evaluated. It also had a relatively low false positive rate (8.87%) and a
false negative rate (2.12%). The results suggest that the proposed model is more effective at detecting
fires than the other models evaluated in this study.

6 Conclusion and Future Scope

The use of industrial IoT technology is crucial for disaster prevention in industrial settings, but
its effectiveness is limited. Industrial accidents such as fires, toxic gas leaks, chemical spills, and
unsafe working conditions can result in significant financial losses and loss of human life. Early
detection and swift action are critical to mitigating the impact of such disasters. This study presents
an innovative approach using an “industrial smart social agent” (ISSA) that utilizes both IIoT and
modern AI techniques to enhance surveillance and detect fire hazards. The proposed CNN-based
model, implemented in Python, outperforms four existing fire detection models in detecting fires.
Upon detection of the fire, ISSA triggers an alarm and sends alerts to relevant authorities for swift
action. The proposed system effectively detects events early, minimizes financial and human losses,
and outperforms existing state-of-the-art methods.
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