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ABSTRACT 

A theoretical study of thermal radiation effects on unsteady MHD natural convection flow of an electrically conducting fluid past a vertical plate with 

variable temperature is considered. It is supposed that the temperature of the plate decays exponentially with time. Exact solutions to the non-

dimensionalised coupled linear partial differential equations representing the flow problem are obtained using Laplace transform technique. Effects 

of different physical parameters involved in the temperature and velocity profiles are investigated, shown graphically and discussed. Skin friction and 

Nusselt number are also derived and their variations with respect to the parameters are investigated.  
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1. INTRODUCTION 

Natural convection MHD flow of a viscous incompressible electrically 

conducting fluid with simultaneous effects of radiation has been 

drawing considerable attention due to its significant effects on the 

boundary layer flow control. Numerous studies have been carried out 

in this field by many researchers under different flow situations. In 

contrast to the mechanism of heat transfer in fluids, the importance of 

electromagnetic radiation can never be neglected. Accordingly, in 

recent years, progress has been considerably made in the study of heat 

transfer with simultaneous effects of radiation. Radiation and on the 

optical properties of the emitter, with its internal energy being 

converted to, is the process of heat propagation by means of 

electromagnetic waves. Radiative convective flows are encountered in 

countless industrial and environmental processes, particularly in 

astrophysical phenomenon and technologies in space dynamics. In 

space technology applications and at higher operating temperatures, 

effect of radiations is quite significant. Several investigations have 

been done which are concerned with radiative MHD flows past flat 

plate considering different flow situations. Hossain and Takhar (1996) 

investigated radiation effects on mixed convection along vertical plate 

with uniform surface temperature. Das et al. (1996) studied radiation 

effects on flow past impulsively started vertical plate. Later on, 

Muthucumaraswamy and Kumar (2004) observed the heat and mass 

transfer effects on moving vertical plate in presence of thermal 

radiation.  

In case of electrically conducting fluid flows, it has been 

observed that the effect of transversely applied magnetic field plays 

pronounced role over radiation in the whole flow characteristics. In 

recent years,  more  analytical  and  numerical results on unsteady free 
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convection flow past semi-infinite vertical plate were presented by a 

good numbers of researchers. Ibrahim et al. (2008) observed the 

influences of viscous dissipation and radiation on unsteady MHD 

mixed convection flows of micro-polar fluids, while Mahmoud 

Mustafa (2007) investigated the flow of fluids with variable viscosity 

past a moving vertical plate with simultaneous effects of transverse 

magnetic field and radiation. Ramachandra et al. (2007) studied 

radiation and mass transfer effects on an unsteady MHD free 

convective flow past a heated vertical plate in porous medium with 

viscous dissipation. Studies on flow past plate with variable 

temperature have been receiving quite remarkable attention by 

researchers since long back. Temperature variations at the plate may 

occur with different modes with respect to the source responsible for 

heating the surface bounding the fluid. Nature of a flow obviously 

depends on how temperature of the plate varies. Realizing the 

importance of such flows some researchers had made their 

investigations on this topic. Das et al. (1999) investigated transient free 

convection flow past an infinite vertical plate with periodic 

temperature variation. Pal and Chatterjee (2010) studied heat and mass 

transfer in MHD non-Darcian flow of a micro-polar fluid over a 

stretching sheet embedded in a porous medium with non-uniform heat 

source and thermal radiation. 

In the present study we have studied the radiative heat transfer 

MHD flow past a vertical plate with exponentially decaying plate 

temperature. Closed form solutions of the flow problem are obtained 

by using Laplace transform technique. Nusselt number and skin 

friction are also derived and the effects of different parameters on the 

flow characteristics are investigated and presented graphically.  
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2. MATHEMATICAL FORMULATION 

Here we have considered a laminar MHD free convection flow of a 

viscous, incompressible fluid past an infinite vertical plate with 

thermal radiation. The physical model of the problem is shown in 

Fig.1. Here the x′ - axis is taken along the plate in the vertically 

upward direction and y′ -axis is taken normal to the plate. Initially, at 

0≤′t , the plate and the fluid is at the same temperature ∞
′T . It is 

assumed that at time 0>′t  the plate temperature is raised to 

( ) ( )'ctExpTTT w −+′−′+′ ∞∞ . The viscous dissipation is assumed to be 

negligible in the energy equation as the motion is due to free 

convection only. Under these assumptions with usual Boussinesq’s 

approximation the governing boundary layer equations are:  
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with initial and boundary conditions as: 
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Fig. 1 The physical model and coordinate system. 

Here u' is the fluid velocity in x'- direction, T' the temperature, Tw 

the temperature at the plate, T∞ the temperature far away from the 

plate, B0 the magnetic field strength, qr the radiative flux, Cp the 

specific heat at constant pressure, t' the time, c is any constant, σ the 

electrical conductivity, ρ the density, β the coefficient of volume 

expansion, g the acceleration due to gravity, ν the kinetic viscosity and 

κ the thermal conductivity. 

The term 
y

qr

′∂

∂
 in equation (2) represents the change in the 

radiative flux with the distance normal to the plate. 

For an optically thin gray gas, the local radiant is given by, 
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If we assume that the temperature difference within the flow is 

sufficiently small, so that 4T ′ may be expressed as a linear function of 

the temperature. This facilitates to expand 4T ′ by Taylor’s series 

about ∞
′T . Neglecting the higher order terms in the expansion, we get 
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Using (4) and (5) in (2) we get 
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On introducing the following non dimensional quantities, 
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equations (1) and (6) respectively become,  

MuG
y

u

t

u
−+

∂

∂
=

∂

∂
θ

2

2

                  (8) 

θ
θθ

F
yt

−
∂

∂
=

∂

∂
2

2

Pr                  (9) 

and the corresponding initial and boundary conditions are,  
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where u, θ and t represents the dimensionless velocity, temperature and 

time respectively; U0 is the reference velocity, Pr the Prandtl number G 

is the Grashof number, F the radiation parameter, M the Hartmann 

number and q the decay parameter.  
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3. ANALYTICAL SOLUTION 

To solve the unsteady linear governing equations (8) and (9) subject to 

initial and boundary conditions (10), we apply Laplace transform 

technique. Accordingly we get, 

( ) 0
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d
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Solutions of the coupled equations (11) and (12) subject to the Laplace 

transformations of boundary conditions (10) give the velocity and 

temperature profiles as [using Hetnarski  (1964) and Hetnarski (1975)] 
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      Fig. 2 Magnetic field effect on velocity profile against y. 
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and        
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       Fig. 3 Effect of q on velocity profile against y. 
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        Fig. 4 Effects of F and Gr on velocity against y. 

3.1  Skin Friction 

The non-dimensional skin-friction 

0y
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dy
τ

=

= −  obtained from 

expression of velocity profile as, 
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3.2   Nusselt number 

The non-dimensional Nusselt number 
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d
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=

= −  obtained from 

the expression of temperature profile (14) as,  
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Fig. 5 Effects of F and q on velocity profile against t.  

4. RESULTS AND DISCUSSIONS 

In this section we try to grasp the problem physically. To make the 

physical interpretation of the flow characteristics, figures are plotted 

for temperature, velocity, Nusselt number and skin friction, showing 

the effects of different parameters involved in the problem. Fig. 2 

shows the effect of transverse magnetic field on velocity against y. It is 

seen that magnitude of velocity goes down as the strength of the 

transverse magnetic field is increased. Lorentz’s force, which grows up 

as the magnitude of M increases is responsible for this. In fact, 

Lorentz’s force acts as a resisting force on the motion. Velocity 

profiles against y for different values of q are displayed in Fig. 3. In the 

figure it is seen that magnitude of velocity gets declined as q increases. 

A combined effect of Grashof number (Gr) and radiation parameter 

(F) on the flow can be observed from Fig. 4. Grashof number is 

responsible for the enhancement of buoyancy force. Buoyancy force 

increases as magnitude of Gr increases and as such velocity goes up. 

The same figure shows that magnitude of velocity gets reduced as F 

increases. 
Velocity profile against time under the influences of F and q is 

displayed in Fig. 5. Observation shows that magnitude of velocity 

decreases under the effect of both the parameters. In case of q, it is 

interesting to observe that although magnitude of velocity initially 

suffers a fall for larger value of q, as time increases, it is seen that q 

cannot sustain its effect on the velocity for longer period, as we see in 

the figure that all the three curves (for q =1, 1.5, 2.5) nearly get merged 

at t = 5. 
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Fig. 7  Effect of radiation on temperature against y. 
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Temperature profiles versus y for different values of q are 

demonstrated in Fig. 6 and it is seen that q affects adversely on 

temperature. Similar effect is also observed in Fig. 7, where effect of 

radiation (F) on temperature is displayed. Time dependent temperature 

profile effected by q, shown in Fig. 8 indicates that at the vicinity of 

the plate, effect of q is quite significant, but as time increases the 

temperature profiles get closer and closer and finally between t = 3 and 

t = 4 each graph attains the ambient temperature. Whereas a different 

variation  is  seen  in  the  same  figure,  when  effect  of   radiation   on 

temperature is considered. It is witnessed that effect of radiation 
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remains quite significant till the fluid mass is far away from the plate. 

Thus variation of radiation creates a long-term effect on temperature. 

Skin friction on the plate varying with F and q can be observed in 

Fig. 9. Skin friction at the plate increases with q, of course it becomes 

steady after some time. Secondly skin friction at the plate significantly 

grows as F increases. Further Fig. 10 demonstrates that skin friction at 

the plate is very low in absence of the transverse magnetic field (M=0), 

but it develops in a drastic manner as soon as the transverse magnetic 

field is imposed and goes on increasing with increasing values of M. 

Considering the Nusselt number profile for different values of q and F, 

in Fig. 11, observe that Nusselt number (rate of heat transfer) at the 

plate is enhanced due to the increase of both q and F. 
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Fig. 9  Skin friction profiles for different values of F and q 
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Fig. 10 Effect of magnetic field on skin friction. 
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Fig. 11  Variation of Nusselt number profiles with respect to F and q 

 

5. Conclusions 

On the basis of our present study and graphical analysis we summarize 

the conclusions as follows: 

i. Fluid velocity is adversely affected by transversely applied 

magnetic field as well as radiation.  

ii. Temperature of the fluid decreases with the increase in 

radiation parameter. 

iii. Magnitude of skin friction and Nusselt number are enhanced 

due to the increase in the radiation parameter. 
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