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ABSTRACT 

A numerical investigation was conducted to study the heat transfer in an aircraft cabin and the effects of air distribution under different angle and 

inlet velocity conditions. The Reynolds-averaged Navier–Stokes equations and the low Reynolds number turbulence model were used to simulate the 

airflow in the cabin. Mathematical statistics was used to process the relevant data, and statistical results revealed that different inlet angles and 

velocities significantly affect air temperature and flow field. The study also determined a set of optimum matching inlet vane angles and inlet 

velocities that result in an environment which meets standard requirements and is energy saving. Additional studies were also conducted on the 

thermal comfort in cabin environments under optimal conditions. The conclusions of this thesis are scientific and feasible, and they can be used to 

improve the comfortableness of cabin environments. 
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1. INTRODUCTION 

Ensuring flight security, increasing energy conservation, and improving 

the thermal comfort of passengers and pilots during flight are vital 

considerations in aircraft design (Shou et al., 2004; Zhang et al., 2007; 

Zhang et al., 2009). Pressure, temperature, velocity, and humidity are 

the main factors that influence comfortableness in aircraft cabins. Flow 

field, temperature field, and air quality in the cabin are related to 

relevant boundary conditions, such as inlet temperature, inlet velocity, 

inlet angle and position, and air humidity. As such, a comfortable cabin 

environment is realized under reasonable boundary conditions. 

Previous studies have conducted numerical analyses on the heat 

and mass transfer involved in the internal fluid flow in aircraft cabins. J 

Günther et al. (2006) studied the airflow in an aircraft cabin using a 

combination of numerical simulation and experimentation by particle 

image velocimetry (PIV). Previous studies (Bosbach et al., 2006) have 

proven that the higher-order low Reynolds number turbulence model 

precisely fits the actual situation in simulating the flow in an aircraft 

cabin. Literature (Günther et al., 2006) also studied the flow of fresh air 

in the vicinity of a luggage compartment by building a cabin mock-up. 

Wang et al. (2008) and Yan et al. (2009) studied the unsteady airborne 

pollutant transport mechanism in an aircraft cabin mock-up without 

considering the heat source. Nevertheless, the results of their numerical 

simulation were in good agreement with those of the experiment. 

Bianco et al. (2009) established two- and three-dimensional simulation 

models of an executive aircraft cabin and investigated the thermal and 

velocity fields from the perspective of the external environment and 

fuselage material. The two-dimensional results were in agreement with 

the three-dimensional results. Kühn et al. (2009) studied the forced and 

mixed convection and received temperature field in the cabin mock-up 

of a passenger aircraft using PIV. Proper parameters are crucial in 

designing the air-conditioning of a passenger aircraft to ensure the 

thermal comfort of cabin passengers. 

At the other end of the research spectrum, literatures (Poussou et 

al., 2010; Mazumdar et al., 2011; Mazumdar and Chen, 2007) 

investigated the influences of a moving human body on the airflow and 

contaminant transport in an aircraft cabin and measured the flow field 

and contaminant transport using planar laser-induced fluorescence and 

the techniques of particle image velocimetry. These experimental data 

were used to validate a Computational Fluid Dynamic (CFD) model. 

The results demonstrated that the CFD model effectively captures the 

characteristic flow features and contaminant transport observed in a 

small-scale model. Aakash and Chen (2012) developed a CFD model to 

predict the ozone distribution in an aircraft cabin. The agreement 

between the CFD results and available experimental data was generally 

good. The ozone concentration at the breathing zone in the cabin 

environment can effectively be used to assess the health risk to 

passengers and develop strategies that ensure a healthy cabin 

environment. Liu et al. (2012) studied pesticide concentrations and 

depositions after spraying part of an aircraft cabin. Furthermore, 

literatures (Isukapalli et al., 2013; You and Zhao, 2013) proposed a 

simplified method of quickly assessing the particle deposition rate in 

aircraft cabins and found that the influence of occupancy on the particle 

deposition rate of the cabin may be negligible. 

The thermal comfort of the environment for passenger movement 

has also been increasingly investigated (Zhang, 2003; Maidment et al., 

2004; Wang, 2009). Thermal comfort is a neither hot nor cold state to 

the environment, which is used to describe the degree of satisfaction on 

thermal environment. The referred research in the field of thermal 

comfort was carried out by Fanger in the 1970s, in which he developed 

an empirical model named predicted mean vote - predicted percentage 

dissatisfied (PMV-PPD) and the equations. He also pointed out that six 
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factors affected thermal sensation: four physical variables (air 

temperature, air velocity, relative humidity, mean radiant temperature), 

and two personal variables (clothing insulation and activity level) 
(Fanger, 1967). The PMV index represents the overwhelming number 

of people who feel hot or cold in the same environment. As such, the 

PMV index can be used to predict the thermal response of the human 

body to a thermal environment. And then, the results of the PMV 

equation are divided into seven levels to obtain PMV thermal sensation 

scale, from cold (-3) to hot (+3) in Table 1 (Charles, 2003). Although 

most people are satisfied with the thermal environment, some remain 

dissatisfied because of physiological differences. The PPD index 

represents the percentage of people who are dissatisfied with the 

thermal environment. The PMV-PPD standards were prescribed by the 

International Standardization Organization (ISO 7730) in1984 (Fanger, 

1984). 

Table 1 PMV thermal sensation scale. 

PMV value -3 -2 -1 0 1 2 3 

Thermal 

sensation 
Cold Cool 

Slightly 

cool 
Neutral 

Slightly 

warm 
Warm Hot 

Several studies have also been conducted on the thermal comfort 

of indoor environments. Yao and Chen (1997) simulated and analyzed 

indoor climates and the thermal comfort in rooms with natural 

ventilation and buried pipe ventilation systems using thermal dynamic 

simulation and CFD techniques in conjunction with the thermal comfort 

PMV/PPD model. The buried pipe ventilation system can improve 

indoor thermal comfort in hot climates. Yu and Zhang (2008) simulated 

flow and humidity fields at the peak of the indoor cooling load in 

isothermal and nonisothermal air supply with different floor 

temperatures. The parametric change in the air-conditioning system that 

satisfies the thermal comfort of the human body can be achieved using 

the PMV–PPD thermal comfort index. Schellen et al. (2013) proposed a 

new indoor thermophysiological model and simulation of the indoor 

environment around the human body’s thermal sensation. The results 

show that the thermophysiological model combined with the thermal 

comfort model serves an important role in the effective evaluation of 

complex daily thermal environments. Buratti et al. (2013) studied the 

effect of glazing systems on the thermal comfort of a lecture room and 

determined the optimum glazing system that results in a comfortable 

environment. 

The engineering context of the present study is composed of the 

thermal environment of a double-service aircraft that carries passengers 

and goods. This study focuses on the interior heat source and mixture of 

airflow; it considers the thermal radiation along the solid walls in the 

cabin as negligible. The landing stage is the most difficult task because 

it is not an independent stage in the actual processes of a flight. This 

study employs FLUENT to analyze the temperature and flow fields in 

an airliner cabin during the landing process. A set of optimum matching 

inlet vane angles and velocities that generate a comfortable 

environment are determined. Additional studies on thermal comfort 

using the PMV–PPD index verify that the conclusions of the present 

study are scientific and feasible, two qualities that have been typically 

disregarded in previous studies. In conclusion, the study of heat and 

mass transfer in aircraft cabins improves not only flight safety but also 

the energy-saving equipment and the comfort of passengers.  

2. MATHEMATICAL MODELS 

2.1 Turbulence Models 

The actual situation of the heat and mass transfer in the workplace in an 

aircraft is quite complex. Thus, heat and mass transfer models should be 

simplified to obtain the gas state–space mathematical models in the 

cabin. This study is premised on the following assumptions:  

• Air is an incompressible fluid that conforms to the 

Boussinesq hypothesis. 

• The turbulent flow of the working medium in the cabin is 

steady. 

• The thermal radiation around the solid walls and human body 

in the cabin can be neglected. 

• The heat dissipation caused by the viscous force can be 

neglected because of the incompressible airflow at low speed. 

The speed of airflow in the aircraft cabin is quite low, and the 

viscosity of the turbulence near the wall is slight. This study adopts the 

k–ɛ turbulence model that belongs to the Launder–Sharma low 

Reynolds number flow in the aircraft cabin (Zhai et al., 2007; Zhang et 

al., 2007). 

2.2 Governing Equations 

The continuity, Navier–Stokes, energy, and k–ɛ turbulence model 

equations were used to calculate the airflow. In the Cartesian coordinate 

space, three-dimensional governing equations (Shen and Yuan, 2009; 

Fan, 2008) in tensor forms were used to solve the problems of steady-

state and incompressible turbulent flow. These equations are as follows: 
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The turbulent kinetic energy k equation and the dissipation rate ɛ 

equation in the k–ɛ model are calculated as follows: 
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where ρ , p and T are the air density ( 3kg m ), static pressure (
aP ), and 

air temperature ( K ), respectively;
iu is the velocity along the

ix     

direction ( m s ); 
rP is the Prandtl number; µ and

lµ are the laminar 

and turbulent dissipation rates, respectively;
TS is the source term; 

kG is the turbulent kinetic energy caused by the average flow velocity 

gradient; 
bG is the turbulent kinetic energy caused by buoyancy; and 

MY is the effect of the compressible turbulent flow pulsation expansion 

on the total dissipation rate. The viscosities of the turbulence coefficient 

are as follows: 2

l C kµµ ρ ε= , 
1 1.44C ε = , 

2 1.92C ε = , and 

1 0.09C ε = . 

2.3 Thermal Comfort Index 

The PMV–PPD method is based on the heat balance equation for 

human body and the PMV–PPD index (Yang and Chen, 2002; Liu, 

2007; Xu, 2005), calculated as follows: 

 

8 4 4

[0.303exp( 0.036 ) 0.028]{

3.05[5.73 0.07( ) ] 0.0173 (5.87 )

0.0014 (34 ) 0.42( 58)

3.96 *10 [( 273) ( 273) ] ( )}

a a

a

d d r d c d a

PMV M M W

M W P M P

M t M W

f t t f a t t−

= − + −

− − − − − −

− − − − −

− + − + − −

 (6) 

4 2
100 95exp[ (0.03353 0.2179 )]PPD PMV PMV= − − +   (7) 
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where M is the body’s metabolic heat production rate (W/m2), W is the 

body’s external power ( 2W m ), 
aP is the partial pressure of the water 

vapor in the air (
akP ), 

at is the air temperature of the surroundings (°C), 

rt is the mean radiant temperature of the surroundings (°C), 
dt is the 

surface temperature of the clothes (°C), 
df is the clothing area 

coefficient, and 
ca is the convective heat transfer coefficient. 

The following assumptions are taken: 
rat t= , 270M W m= , 

0W = , and 12.1
c

a ν= . Fanger pointed out that the climate formula 

should be multiplied by 0.5 to 1.0 in various countries and 0.7 in China 

as correction coefficients because the PMV test subjects are westerners 

(Ji et al., 2003). 

3. NUMERICAL ANALYSIS 

The velocity field, temperature field, and thermal comfort of the 

internal environment in the passenger and cargo aircraft cabins are 

analyzed below. Figure 1 shows the structure sketch of the aircraft 

cabin. 

 

Fig. 1 The structure sketch of the aircraft cabin. 

3.1 Boundary Conditions 

The air inlet is based on boundary conditions, which assume an air inlet 

speed of 1 m/s to 9 m/s (Zhang and Ang, 2002). The magnitude of 

Reynolds numbers is between 105 and 106. And the inlet temperature is 

20°C; this model sets two symmetrical air inlets. The flow field in the 

cabin is examined under inlet angle conditions of 30°, 45°, 60°, 75°, 

and 90°. Figure 2 shows various inlet angles of inlet1 and inlet2. 

 
Fig. 2 Various inlet angles of inlet1 and inlet2. 

The solid walls in the aircraft cabin are all set under non-slip 

conditions, and the speed is assumed as negligible. In this model, the 

internal walls of the cabin release heat outward. The human body is 

regarded as a source of heat, and the front and rear boundaries are set as 

planes of symmetry.  

3.2 Analysis of Flow and Temperature Fields 

The flow of air admission is controlled by changing the air inlet 

velocity. The final data are analyzed using the method of mathematical 

statistics. The influence of air distribution under different inlet air 

angles and velocities is also investigated. The inlet velocities of 3 and 6 

m/s are selected as the examples here because of the large number of 

images. For being convenient to study and analyze, cutting a center 

longitudinal section is a section, at the same time cutting a center 

horizontal section is b section, as shown in Figure 1. Figure 3 shows the 

velocity field of the vertical section under different inlet angles. Figure 

4 shows the velocity field of the horizontal section under different inlet 

angles. Figure 5 shows the velocity variance of different inlet velocities 

under different inlet angles (z section for the vertical section and y 

section for the horizontal section). Figures 3, 4, and 5 show the 

relatively obvious effects of the inlet angle and velocity on the flow 

field in the cabin.   

Figure 6 shows the temperature field of the vertical section under 

different inlet angles. Figure 7 shows the temperature field of the 

horizontal section close to the walls under different inlet angles. Figure 

8 shows the temperature variance of the different inlet velocities under 

different inlet angles. Figures 6, 7, and 8 show the relatively obvious 

effects of the inlet angle and velocity on the temperature field in the 

cabin. 
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(a) 30°: v=3 m/s                (b) 30°: v =6 m/s  
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(c) 45°: v=3 m/s                (d) 45°: v=6 m/s  
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(e) 60°: v=3 m/s                (f) 60°: v=6 m/s 

0
.1 0.1

0
.1

0.
1

0
.1

0
.1

0
.1

0
.1

0
.1

0.1

0
.1

0
.1

0
.1

0.
1

0
.1

0
.10.1

0.1

0.2

0
. 2

0
.20.

2

0.
2

0
.2

0
.2

0.2

0.
2

0
.2

0
.2

0.2

0.
2

0.2

0.2

0
.2

0.2

0
.2

0.3

0.3

0
.3

0
.3

0.3

0.3

0.3

0
.3

0.3

0
.3

0.
3

0.3

0.3

0
.3

0.3

0
.4

0.4
0.4

0.4

0
. 4

0.4

0
.4

0
.4

0
.4

0
.4

0.4

0.5

0
.5

0.5

0
.5

0.5

0
.5

0
. 5

0
.5

0
.5

0
.6

0
.6

0.6

0
.60.6

0.
6

0
.6

0.6

0
.6

0
.7

0
.7

0
.7

0.7

0
.7

0.7

0.8

0
. 8

0
.8

0
.8

0
.9

0
.9

0
. 9 0.9

1

1

1

1

1
.11
.3

0.2

0
.2

0.2

0.2

0
.2

0
. 2

0.2

0
.2

0
.2

0
.2

0.2 0.2

0
.2

0
.2

0
.2

0
.2

0.2

0.4

0
.4

0.4

0.4

0
.4

0
.4

0
.4

0
. 4

0
.4

0.4

0.4

0
.4

0.4

0.4

0.4

0.4

0.4

0
.4

0.4

0
.6

0.6

0
.6

0.6

0.
6

0.6

0
. 6

0.6

0
.6

0
.6

0
.6

0.60.60.6

0
.6

0.
8

0
.8

0.8

0.8

0.
8

0.8

0
.8

0.8

0
.8

0.8

1

1

1

1

1

1

1

1

1

1
.2

1
.2

1.2
1.2

1.2

1
.2

1
.2

1.4

1
. 4

1
.4

1.4

1.
4

1.4

1.6

1
.6

1
.6

1
.6

1.61.
6

1
.81

.8

1.8

2

2

2.
6 2

.6

 
(g) 75°: v=3 m/s                 (h) 75°: v=6 m/s 
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      (i) 90°: v=3 m/s                (j) 90°: v=6 m/s 

Fig. 3 Flow field of the center longitudinal section under different air 

inlet velocities. 
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(a) 30°: v=3 m/s             (b) 30°: v=6 m/s  
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(c) 45°: v=3 m/s             (d) 45°: v=6 m/s 
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(e) 60°: v=3 m/s             (f) 60°: v=6 m/s    
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(i) 90°: v=3 m/s             (j) 90°: v=6 m/s 

Fig. 4 Flow field of the center horizontal section under different air 

inlet velocities. 

Several swirls occur in Figures 3 and 4 because of the blocking 

effect of the walls and objects in the cabin, which can lead to an 

increasingly balanced flow field. However, these swirls negatively 

influence the renewal of air from the perspective of mass transfer. In 

addition, the original inlet velocity at the inlet port rapidly decreases 

because of the effects of cabin air resistance and wall frictions. The 

velocity gradient of most parts of the cabin, excluding the inlet port, is 

lower than 2 m/s when the inlet velocity increases from 1 m/s to 9 m/s. 

Although the air velocity in the cabin increases along with the inlet 

velocity, the former increases only by approximately 0.2 m/s to 0.4 m/s, 

whereas the latter increases by 3 m/s. 
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(c) y3 section               (d) z1 section 
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Fig. 5 Variance of velocity under different velocities according to the 

air inlet angles. 

 

Figure 5 shows that noticeable changes occur in velocity variances 

under different velocities and similar variation rules in each section. In 

addition, the magnitude of the overall variance is small, and a relatively 

small variance around the 60° inlet angle is detected. The velocity 

variance increases slightly as the inlet velocity increases. The slower 

the inlet velocity, the smaller the percentage of speed variation, and the 

more uniform the flow field, from the perspective of flow field 

uniformity. Based on mass transfer, an increase in inlet velocity 

improves the gas flow inside and outside, which in turn positively 

influences the renewal of the working medium. Hence, a smaller inlet 

velocity is not always better. 
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(c) 45°: v=3 m/s                (d) 45°: v=6 m/s 

265

2
6

5

270

270

2
7

0

270

2
7

5

275

2
7

5

275

2
7

5

2
8

0

2
8

0

2
8
0

2
8

0

280

2
8

0
2

8
0

28
5

2
8

5

285

2
85

285

2
8

5
2

8
5

2
8

5

289

289

2
8

9

289

289

2
8

9

2
8

9

289

2
9

0

2
9
0

290

2
9

0

2
9

0

290

2
9

0290

2
9
0

2
9

0

2
9

0

2
9

0
.5

290.5

290.5

29
0.5

29
0.

5

2
9

0
.5

290.5

2
9

0
.5

2
9

0
.5

29
0.5

291

2
9

1

291

2
9

1

291

2
9

1

29
1

2
9

1

2
9

2

27627
8

278

2
7

8
27

8 280280 280

2
8

2
2

8
2

282

2
8

2

2
8

2

284

2
8
4

2
8
4

2
8

4

2
8

6

2
8

6

286

2
8

6

286

2
8

6

2
8
8

2
8

8

2
8
8

288288

2
8

8

2
8

8

2
8

8

2
9

0

2
9

0
2

9
0

290

2
9
0

290

2
9

0

2
9

0

291

29
1

2
9

1

2
9

1

291

2
9

1

291

2
9

1

291.6
291

.6

2
9

1
.6

2
9

1
.6

2
9

1
.6

2
9

1
.6

291.6

2
9

1
. 6

2
9

1
.6

29
1.

6

2
9

1
.6

2
9

1
.6

2
9

2
2

9
2

292

2
9

2

2
9

2
2

9
2

292

2
9
2

29
2.

3

2
9

2
.3

2
9

2
.3

292.5

 
(e) 60°: v=3 m/s                 (f) 60°: v=6 m/s 
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(j) 90°: v=3 m/s                 (i) 90°: v=6 m/s  

Fig. 6 Temperature field of the center longitudinal section under 

different air inlet velocities. 

Figures 6 and 7 show that the temperature within a small distance 

from the wall changes dramatically because of heat dissipation, whereas 

the center temperature tends to be uniform. The temperature field in the 

entire cabin is inferior to the preceding temperature field with larger 

inlet flow rate. The effect of improving temperature comfort by 

increasing the inlet airflow is not significant when the temperature in 

the cabin is increased to a certain degree. In addition, the wall 

temperature improves and the temperature gradient slows down with 

the inlet velocity increasing. 

Figure 8 shows that the temperature variance in the cabin becomes 

small because of the increase in the inlet velocity. The trend of the 

decrease in temperature variance is significant when the velocity 

increases from 1 m/s to 3 m/s, but relatively insignificant when the 

velocity increases from 3 m/s to 9 m/s. The order of magnitude of the 

temperature variance is relatively larger than that of the velocity 

variance. The previous analysis suggests that the temperature 

  
(a) 30°: v=3 m/s            (b) 30°: v=6 m/s 

  
(c) 45°: v=3 m/s            (d) 45°: v=6 m/s 

  
(e) 60°: v=3 m/s            (f) 60°: v=6 m/s 

  
(g) 75°: v=3 m/s            (h) 75°: v=6 m/s 

   
(i) 90°: v=3 m/s            (j) 90°: v=6 m/s 

Fig. 7 Isothermal diagram of the center cross section near the wall 

under different inlet velocities. 
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(a) y1 section               (b) y2 section 
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(c) y3 section                (d) z1 section 
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(e) z2 section                (f) z3 section 

Fig. 8 Variance of temperature under different velocities according to 

the air inlet angles. 
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fluctuation in the cabin does not conform to the principle of comfort 

when velocity is relatively small. Moreover, the effect of an 

improvement in temperature comfort caused by an increase in velocity 

is not obvious when the velocity of the cabin is relatively large. Figure 

5 shows that the velocity fluctuation is fortified by an increase in the 

inlet velocity. Therefore, an inlet velocity with a mid-range value is the 

optimal velocity. 

Table 2 Inlet mass flow corresponding to different inlet velocities. 

v(m/s) 1 2 3 4 5 6 7 8 9 

S(kg/s) 2.3 4.7 7.1 9.4 11.8 14.2 16.6 18.9 21.3 
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Fig. 9 The difference between maximum temperature and minimum 

temperature corresponding to different inlet velocities. 

Table 2 shows inlet flow rate increase with the inlet velocity 

increasing and more energy will be consumed to produce the required 

flow rate. However, energy consumption increases and temperature 

difference decreases as the inlet flow increases, as shown in Figure 9. 

On the premise of satisfying occupant comfort, It is hope to save energy. 

According to aviation medicine, the normal comfort temperature region 

should be between 15 and 26°C and the temperature field should be 

uniform. Furthermore, The deviation of the cabin temperature along the 

vertical and horizontal directions from regulations should not be too 

large. The difference between maximum temperature and minimum 

temperature should be within the range of 6°C. The temperature of the 

cabin wall, floor, and top wall should be consistent with the cabin 

temperature. Otherwise, the passengers will feel uncomfortable because 

of the influence of thermal radiation and convection. Consequently, the 

comfort demand can be satisfied basically, when the air inlet velocity is 

not less than 3 m/s ; and the energy consumption can be reduced to the 

extent possible, when the air inlet velocity is between 3 and 6 m/s. 

3.3 Analysis of PMV–PPD 

The air thermal comfort in the cabin is discussed here based on the 

previous results. The PMV field of air comfort in the cabin and the PPD 

were obtained through a simulation under inlet angle conditions of 30° 

and 45° and inlet velocity of 1 m/s to 9 m/s. The inlet velocities of 3 

and 6 m/s are selected as the examples here because of the large number 

of images. Figure 9 shows the PMV and PPD fields of a cross section.  

The PMV in the cabin is a function of air temperature and air 

speed (other parameters have constant values), and PPD is a function of 

PMV. Figure 10 shows that the PMV field is similar to the velocity 

distribution law in the cabin, given that the temperature gradient in the 

cabin is small and the speed rate is large. Moreover, the PMV gradient 

is large near the cabin walls and the objects in the cabin because of the 

fast speed rate and the intense temperature changes. PPD field changes 

depending only on PMV.  

 

-1.5-1

-0
.6

-0
. 6

-0
.6

-0.6
-0.6

-0.6

-0
. 6

- 0
.6

-0.6

-0.6

-0
.6

-0.6

-0
.6

-0.6

-0
.6

-0
.5

-0.5

-0
.5

-0
.5

-0
.5

-0
.5

-0
.5

-0.5-0.5
-0.5

-0.5

-0
.5-0

.5

-0
.5

-0.5

-0.5

-0.5 -0.5

-0
.4

-0
.4

-0
.4

-0
.4 -0

. 4

-0.4

-0
.4

-0.4
-0.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0.4
-0.4

-0.4 -0
.4

-0
.4

-0
.3-0

.3

- 0
. 3

-0
.3

-0
.3

-0.3

-0.3

-0
.3

-0.3

-0
.3

-0
.3

-0
.3

-0
.3

-0.3

-0.3

-0.3

-0
.3

-0
.3

-0.3

-0
.3

-0
.3

-0.3

-0.3

-0
.3-0

.3

-0
.3

-0.2

- 0
.2

-0
.2

-0
.2

-0.2

-0.2

-0
.2

-0
.2

-0
.2

-0
.2

-0.2

-0
.2

-0.2

-0.2

-0
.2

-0.2

-0
. 2

-0
.2

-0.2-0.2

-0
.2

-0
.2

-0.2

-0
. 2

-0
.2

-0
.2

-0
.2

-0
.2

-0
.2

-0
.2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0
.2

0.2

0
.2

0
.2

0.2

0
.2

0.20.2

0.2

0
.2

0.2

0
.2

0.3

0
.3

0.3

0.3

0.
3

0
.3

0.3

0.30.3

0.30.3

0.3
0.3

0.4

0
.4

0
.4

0
.4

0
.4

0.4

0.40.4

0.4

0
.4

0.5

0
.5

0
.50

.5

0
.5

0.5

0
.6

0
. 6

0.6

0
.6

0.6

0.6

6

6

6

6

6

6

6

6 6

6

6

6 6
6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

7
7

7

7

7
7

7

7

7

7

7

7

7

7
7 7

7

7

7

7

7

7

7

7

7

7

7

7

7

77

77

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8 8

8

8

8

8

8

8

8

8

8

8

8

8

88

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9
10

1
0

10

10

1
0

1
0

10

1
0

1010

10

1
0

1
0

1
0

10

1
0

10

1
0

1
0

1
0

1
0

1
0

10

1010

11

1
1

1
1

1
1

1
1

11

1
1

1
1

111111

11

1
1

1
1

1
1

1
1

11

11

1
1

1
1

11
11

1
1

12

1
2

1
2

12

12

1
2

1212
12

12

1
2

1
2

1
21

2

1
2

12

12

12

12

12

15

1
5

15

15

1
5

15

1
5

15

1
5

1515

1
5

15

2
0

20

20

20

2
0

2
0

 
(a) 30°:3 m/s  PMV            (b) 30°:3 m/s   PPD 

-0
.8

-0.8 -0.8-0.8
-0.8

-0
.8

-0
. 8 -0

. 8

-0
.6

-0
.6

-0
.6

-0.6

-0.6

-0.6

-0.6

-0
.6

-0.6

-0.6

-0
.6

-0
.6

-0.6

-0
.4

-0
.4

-0
.4

-0
.4

-0.4

-0
.4

-0.4

-0.4

-0
.4

-0
.4

-0.4

-0
.4

-0
.4

-0
.4

-0.4

-0
.4

-0
.4

-0.4-0
.4

-0.4

-0
.4

-0
. 4

- 0
.4

-0
.4

-0.2

-0
.2

-0
.2

-0.2

-0
.2

-0.2

-0
.2

- 0
.2

-0
.2

-0
.2

-0
.2

-0
.2

-0.2

-0
.2

-0.2

-0.2

-0
.2

-0
.2

-0
.2

-0
.2

- 0
.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0
.2

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0
.2

0
.2

0
.2

0
.2

0
.2

0.
2

0
.2

0
.2

0
.2

0
.2

0
.2

0
.2

0.2

0.2

0
.40

.4

0
.40.4

0
.40

.4

0
.4

0
.4

0.4

0
.4

0
.4

0
.6

0
.6

0
.6

0
.6

0
.6

0.60.6

0
.8

0
.8

0.
8

0.8

0.8

1

1

1

1

6

66

6

6

6
6

6
6

6

6

6

6

6

6

6

66

6

6

8

8
8

8

8

8

8

8

8

8

8

8

8

88

8

8
8

8

8

8

8

1
0

10

1
0

1
0

10

1
0

1
0

10

1
0

1
0

1
0

1
0

10
10

10

1
0

10

10

10

1
0

12

12

12

12

12

1
2

1
2

12

12

1
2

12
12

12

1
2

12

1
4

1
4

14

1
4

14

14

14

14

1
4

14

1
4

14

1
4

14

14
14

1
6

1
6

16

1
6

16

1616

1
6

1
6

16

1
6

16 1
6

16

1
8

1
8

18

1
8

18

18
18

18

18

18

2
0

2
0

20

2
0

20
20

2
2

2
22

2

2
2

22

24

2
4

24

24

24 26

26

26

2
6

26

2
8

2
8

28

2830

30

30

3
0

32

32

32

3
2
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(e) 45°:3 m/s   PMV           (f) 45°:3 m/s   PPD 
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Fig. 10 PMV and PPD fields of a cross section. 

 

Table 3 PMV range under different inlet velocities in the cabin. 

PMV 30°(min) 30°(max) 45°(min) 45°(max) 

1m/s -2.31 0.75 -2.51 0.82 

2m/s -1.63 1.03 -1.76 1.07 

3m/s -1.24 1.14 -1.3 1.17 

4m/s -1.14 1.2 -1.17 1.22 

5m/s -1.1 1.22 -1.02 1.25 

6m/s -0.94 1.23 -0.99 1.27 

7m/s -0.93 1.25 -0.98 1.28 

8m/s -0.92 1.27 -0.96 1.29 

9m/s -0.9 1.28 -0.92 1.29 

According to the Code for Design of Heating Ventilation and Air 

Conditioning, the thermal comfort of heating and air-conditioning in a 

room should follow the PMV and PPD index determination of moderate 

thermal environment and the regulations of thermal comfort conditions 

(Hua et al., 2011). It must also have the average PMV and PPD. The 

ideal PMV and PPD index values are as follows: the PMV index is 

between -1 and + 1, and the PPD index is not greater than 27%. Figure 

10 and Table 3 show that the PMV index is between -1.3 and + 1.3 with 

a velocity not lower than 3 m/s and that the PMV in most cabin regions 

is not beyond the range of -1 to 1. The PPD in most cabin regions is not 

greater than 20%, and the PPD index near the wall surface exceeds 20%. 

Hence, the conclusions meet the criteria of thermal comfort.  
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4. CONCLUSIONS 

Pressure, temperature, velocity, and humidity are the main factors that 

influence comfortableness in an aircraft cabin. Flow field, temperature 

field and air quality in the cabin are related to relevant boundary 

conditions, such as inlet temperature, inlet velocity, inlet angle and 

position, and air humidity. A comfortable cabin environment is realized 

under reasonable boundary conditions. The average Reynolds equation 

and the low Reynolds number turbulence model were used to simulate 

the cabin airflow. A numerical investigation was conducted on the heat 

transfer in a cabin to investigate the effects of air distribution under 

different angle and inlet velocity conditions. Additional studies were 

also conducted on the thermal comfort of the cabin environment under 

these inlet conditions.   

The results of the analysis are as follows:  

• The velocity variance is at the minimum level, and the 

temperature variance is at the maximum level, when the air 

inlet angle is 60°. The temperature difference between the 

wall and human body is too large and does not satisfy the 

comfort requirement. As such, the comfort demand of 

passengers is satisfied when the air inlet angle in the region is 

between 35° and 45°. 

• The velocity variance in the cabin increases (i.e., the increase 

in velocity fluctuation) as the inlet flow increases, and the 

order of magnitude for the variance is relatively small. 

• The temperature variance in the cabin decreases (i.e., an 

increasingly uniform temperature field) as the inlet flow 

increases. The trend of the decrease in temperature variance is 

significant when the velocity increases from 1 m/s to 3 m/s, 

but relatively insignificant when the velocity increases from 3 

m/s to 9 m/s. 

• Both energy consumption and velocity fluctuation increase as 

the inlet flow increases and the temperature distribution 

becomes increasingly uniform. Consequently, the comfort 

demand can be satisfied, and the energy consumption can be 

reduced to the extent possible, when the air inlet velocity is 

between 3 and 6 m/s. 

• These conclusions prove that the PMV–PPD index of the 

cabin environment of comfort can satisfy the human body’s 

basic thermal comfort demand using small inlet angles and 

reasonable inlet velocities 

This study provides a mathematical model that reflects the actual 

situation for future research and optimization design of control system 

for comfortable cabin environments. 
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