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ABSTRACT

According to the multi-time-scale characteristics of power generation and demand-side response (DR) resources,
as well as the improvement of prediction accuracy along with the approaching operating point, a rolling peak
shaving optimization model consisting of three different time scales has been proposed. The proposed peak shaving
optimization model considers not only the generation resources of two different response speeds but also the two
different DR resources and determines each unit combination, generation power, and demand response strategy
on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast
response characteristics of the concentrating solar power (CSP). At the same time, in order to improve the accuracy
of the scheduling results, the combination of the day-ahead peak shaving phase with scenario-based stochastic
programming can further reduce the influence of wind power prediction errors on scheduling results. The testing
results have shown that by optimizing the allocation of scheduling resources in each phase, it can effectively reduce
the number of starts and stops of thermal power units and improve the economic efficiency of system operation.
The spinning reserve capacity is reduced, and the effectiveness of the peak shaving strategy is verified.
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Nomenclature

CSP Concentrating solar power
DR Demand-side response
SSP Scenario-based stochastic programming
PDR Price-based demand response
IDR Incentive-based demand response
CCP Chance-constrained programming

1 Introduction

With the continuous access of new energy sources such as wind power, the safety and economy of
power system operations are facing new challenges. Due to its strong intermittency and uncertainty,
wind power exhibits strong anti-peak shaving characteristics after being connected to the power
system, which causes certain difficulties in dispatching and operating the power system [1]. In order to
cope with the impact of wind power’s reverse peak regulation characteristics on the operation of the
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power system and to better utilize and absorb wind power, corresponding peak regulation strategies
need to be formulated. At present, peak shaving tasks in the power system are mainly undertaken
by conventional thermal power units and hydropower units. However, when thermal power units
participate in peak shaving, the operating economy of the units will be affected. Especially when
deep peak shaving is performed, not only the economy but also the operation security and stability
of the units are threatened. Although the hydropower unit has a good peak shaving capacity, due
to its storage capacity and the limitation of the incoming water volume, it only participates in the
system peak shaving in dry seasons and uses the full-load power generation method to avoid water
abandonment in wet seasons, which means it has certain seasonal restrictions.

In recent years, another form of new energy power generation—solar thermal power generation—
has been rapidly developed. Equipped with a large-capacity heat storage system, it can achieve
24-h continuous power generation, thus making this type of solar power generation overcome the
phenomenon of traditional photovoltaic power generation stopping at day and night, but with more
stability [2]. In addition, the CSP generator set can quickly adjust its own output up to 20% per minute
at the fastest, far higher than that of ordinary thermal power generators, to provide certain climbing
support for the system’s peak shaving. It takes a very short time from the stop state to the full power
state during the operation process, so it can also be quickly started and stopped peaking [3]. Therefore,
CSPs participating in power system peak shaving can well alleviate the pressure of system peak shaving
and realize the replacement of one new energy source with another.

With the development of smart grids, the operation and dispatch of the power system have
gradually changed from the traditional single generation-side resource dispatching to joint generation-
side resource dispatching, where DR is also developed on this basis. By calling demand-side resources,
users can interact with power companies in two directions, so that traditional rigid loads have a certain
degree of flexibility, which is conducive to the safe and economic operation of the power grid.

Shi et al. [4] studied the dispatch model of CSP plant grid-connected operation and analyze the
benefits of CSP plant grid-connected operation. Ying et al. [5] studied the multi-day self-dispatch
model of CSP plants in power systems and analyze different predicted time scales for dispatch results.
Du et al. [6] established a day-ahead dispatch and operation simulation model with consideration of
demand-side response under large-scale wind power grid connections. Usaola et al. [7] studied the
effect of electricity price-based demand response resources on unit commitment and wind power
grid integration. Chen et al. [8] proposed an optimal dispatch method that takes into account
the uncertainty of wind power and demand response and adopts the phase-robust mixed integer
programming method to solve the model. Li et al. [9] established a SCUC model based on stochastic
programming and respond to wind power on the demand side.

However, the above-mentioned literature mostly focuses on the day-ahead scheduling model for
each generation-side resource and demand response resource without giving further consideration
to its multi-timescale. For power generation resources, the start-up and shutdown costs of the unit
account for a large proportion of the total unit operating cost. Therefore, reasonable arrangements for
the unit’s start-up and shutdown are the primary prerequisites for the economic operation of the unit.
The minimum start-stop time of the unit ranges from a few hours to tens of hours and is related to the
operating conditions of other units, the load level over a longer period, and other factors. Therefore,
the plan for starting and stopping peak shaving units should be formulated on a larger time scale to
ensure the rationality of the start-stop program. When arranging the output of the generating units,
considering that the forecast errors of wind power decrease with the shortening of the time scale, it
is necessary to optimize the arrangement of unit output on a relatively shorter time scale as much as
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possible. In addition, due to the wide variety of demand response resources involved in system peak
shaving and their response capabilities, some (such as temperature-controllable loads) can respond to
dispatch signals immediately, while others (such as motors) need to be arranged before the scheduled
date. Generally speaking, the accuracy of wind power forecasting tends to increase significantly with
the shortening of the forecast time scale. Therefore, the peak shaving optimization model is in line
with the principle of “looking ahead into the future and back into the past” to rationalize the start
and stop, output, and demand response resources of each unit. If all of them are incorporated into
the day-ahead scheduling model for unified optimization, it will be difficult to give full play to the
adjustment capabilities of various scheduling resources at different time scales.

Jin et al. [10] and Wang et al. [11], according to the idea of hierarchical refinement, proposed a
multi-time-scale scheduling model based on four-time scales of “day ahead, day within 1 h, day within
15 min, and real-time” to provide a useful reference for optimally scheduling power systems based
on multiple time scales. However, the dispatch model established in reference [12] only considered the
adjustments of the power of each unit and the demand-side response and does not discuss the total cost
of system operation, the combination of each unit, or the output. Although reference [13] considered
the above factors, the scheduling model established is still based on the day-ahead scheduling model
architecture, making it relatively simple to consider the in-day and real-time parts.

Based on the comprehensive consideration of the multi-time-scale characteristics of power gener-
ation and demand-side resources, this paper establishes a multi-time-scale peak shaving optimization
model with three levels of “week”, “day ahead” and “in-day”, which not only optimizes the demand
response resources at different time scales by layers, but also formulates the start-stop and output
scheme of each unite at different scales on the basis of considering the operation characteristics of
power generation resources such as solar thermal units and conventional units. In the day-ahead peak
shaving optimization model, based on the characteristics of the fast start and stop of CSP units, SSP is
put forward to deal with the influence of wind power forecast uncertainty on the optimization results.
Finally, the validity of the model is verified by a calculation example.

2 The Basic Architecture of a Multi-Time-Scale Peak Shaving Optimization Model

With the gradually increasing proportion of wind power connected to the grid, new requirements
are put forward for the peak shaving of the power system. On the one hand, due to the strong
correlation between wind power prediction accuracy and time scale, in order to overcome the impact
of wind power uncertainty in power system dispatch, all kinds of resources should be optimized in
a short time as much as possible. On the other hand, the various resources involved in system peak
shaving have multi-time-scale characteristics, and a single day-ahead scheduling model is bound to
make it difficult to coordinate the various scheduling resources. Therefore, it is necessary to establish
a peak shaving optimization model that carefully considers various resources and multiple time scales
and reasonably schedules various scheduling resources.

Based on the above considerations, this paper establishes a CSP peak-shaving optimization model
based on multiple time scales and taking into account the demand-side response. The model mainly
includes the following schedulable resources:

(1) Resources on the power generation side According to the difference between the minimum
start-stop times, the units are divided into conventional units and CSP ones. Conventional units
take a long time to start and stop. The start and stop plans of the units need to be determined
in the weekly peak shaving plan to ensure their rationality, while the CSP units can start and
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stop quickly within a very short time, so the start and stop plans can be Confirmed in the peak
shaving plan a few days ago.

(2) Demand-side resources. Demand-side resources can be roughly divided into two types: price-
based PDR and IDR. When demand-side resources participate in system peak shaving, PDR
needs to be determined in the day-ahead peak shaving optimization mode. IDR can be
scheduled in real-time in the in-day peak shaving optimization model.

In order to reasonably schedule resources with different time-scale characteristics, this paper pro-
poses a rolling peak shaving optimization model containing three levels of week, day ahead, and in-day
with multi-time-scale characteristics in reference [14]. Therefore, corresponding scheduling schemes
can be determined at different levels and on different time scales. Among them, the optimization result
determined in the upper-level scheduling model can be used as the input of the following model; that
is, it can be regarded as a known quantity in the following model:

(1) Weekly peak shaving plan: execute once a week (with a resolution of 2 h). The task of week-
peak regulation is to determine the unit composition of conventional units.

(2) Day-ahead rolling peak shaving plan: execute every 1 h (with a resolution of 1 h). The task of
day-ahead peak shaving is to determine the unit combination of CSP units and the day-ahead
PDR response strategy.

(3) In-day rolling peak shaving plan within the day: execute once every 15 min (with a resolution
of 15 min). The task of peak shaving within the day is to determine the output of all units and
the IDR response strategy.

3 Establishment of a Multi-Time-Scale Peak Shaving Optimization Model

After determining the peak shaving optimization model structure, three different time scales are
supposed to be modeled and solved separately. In view of the uncertainties in the forecasting process
of wind power, the traditional day-ahead dispatch model can no longer adapt to the peak shaving
and dispatching requirements of modern power systems, so targeted modeling methods are needed.
At present, for the randomness of wind power forecasting, the modeling method based on stochastic
programming is mainly adopted. Stochastic programming can be divided into several branches, which
can be generally classified into the following two types: CCP [15,16] and SSP [17–20]. The core idea of
the CCP method is to set a certain confidence level for the constraint condition, and the probability of
the constraint condition being established is not less than the confidence level. This method actually
relaxes the constraint condition to a certain extent so that the search can be carried out over a wider
range. The core idea of the SSP method is to use a certain method (such as Monte Carlo sampling) to
generate a variety of possible scenarios based on the distribution law of uncertain resources (such
as wind energy, solar energy, etc.), and then compare the similarities among these scenarios. The
scenes are reduced, and a number of representative scenes left are fitted in the scheduling model for
optimization and solution, so that the decision variables can be adapted to any of the scenes. As a
result, the group with the lowest expected cost is taken to be the optimal solution. In this paper, given
the impact of the uncertainty of wind power forecasting on peak shaving, SSP is adopted in day-
ahead scheduling to improve the robustness of the start-stop strategy and PDR response strategy of
CSP units.
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3.1 Weekly Peak Shaving Optimization Model
3.1.1 Objective Function

The main purpose of the weekly peak shaving plan is to determine the unit composition of the
conventional units. Therefore, a weekly peak shaving optimization model takes the minimum total
system operating cost as the objective function, as in Eqs. (1) and (2).

min OC (1)

OC =
N∑
i

T∑
t=1

(
C

(
Pi,t

) + ui,tGi,t

) +
T∑

t=1

(
λloss

t Dloss
t

) +
T∑

t=1

(
λWcurt

t W curt
t

)
(2)

where N is the number of conventional units; T is the duration of the dispatching cycle; Pi,t and C
(
Pi,t

)
are the power generation and cost of the conventional unit at time t, respectively; Gi,t is the start-up
and shutdown cost of the conventional unit; ui,t is the start-stop state variables of unit i at time t,
where 1 indicates that the unit is in the start-up state, and 0 indicates that the unit is in shutdown
state; Dloss

t , W curt
t are the load shedding power and abandonment power of the system at t, respectively;

λloss
t , λWcurt

t are the load shedding penalty cost of the system at t and wind curtailment costs,which is
500–CNY/MWh.

3.1.2 Constraints

(1) Active power balance constraint as in Eq. (3).
N∑

i=1

Pi,t +
(
Wt − W curt

t

) +
M∑

j=1

PCSP
i,t = Dt − Dloss

t (3)

where Wt is the predicted value of wind power at time t; M is the number of CSP units in the system;
PCSP

i,t is the power generation of the CSP generator set at time t; Dt is the predicted value of system load
at time t; Dloss

t is the value of system load shedding at time t.

(2) The upper and lower limits of the active power of conventional generators as in Eq. (4).

ui,tPmin
i ≤ Pi,t ≤ ui,tPmax

i (4)

where Pmin
i , Pmax

i are the upper and lower limits of the active power output of the conventional unit.

(3) Climbing constraints of a conventional generator as in Eq. (5).

−RDi ≤ Pi,t − Pi,t−1 ≤ RUi (5)

where RUi, −RDi are the up and down ramp rate limits of conventional generator sets, respectively.

(4) The upper and lower limits of the active power of the CSP generator as in Eq. (6).

PCSP,min
j ≤ PCSP

j,t ≤ PCSP,max
j (6)

where PCSP,min
j and PCSP,max

j are the upper and lower limits of the active output of the j-th CSP unit.

(5) Start and stop constraints of the conventional generator as in Eq. (7).{(
ui,t−1 − ui,t

) + (
ui,t+τ − ui,t+τ−1

) ≤ 1, ∀τ ∈ [1, · · · , Di − 1](
ui,t − ui,t−1

) + (
ui,t+τ−1 − ui,t+τ

) ≤ 1, ∀τ ∈ [1, · · · , Oi − 1]
(7)

where Di, Oi are the minimum shutdown and start-up time of the unit, respectively.
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3.1.3 Optimized Results

In this paper, the widely used commercial optimization software CPLEX is employed for modeling
and solving so as to determine the unit composition of conventional units within a week. The result
will be directly substituted into the day-ahead and in-day peak shaving models as a known quantity
to solve other unknowns.

3.2 Day-Ahead Rolling Peak Shaving Optimization Model
3.2.1 Objective Function

In the day-ahead peak shaving optimization model, electricity price needs to be considered,
making maximum total social welfare the objective function for optimization as in Eq. (8).

max GS − OC (8)

where GS is consumer surplus and OC is total production cost as in Eq. (9), both of which can be
expressed as in Eq. (10).
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where ρt is the electricity price at time t; PDRt is the PDR response power at time t; NS is the number
of wind power prediction scenarios; πs is the probability of occurrence of the s-th scenario; Pi,s,t is
the generation power of the conventional unit at time t under scenario s; λloss

s,t and λWcurt
s,t are the load

shedding penalty cost and wind abandonment cost of the system at time t in the s scenario, respectively;
and Dloss

s,t , W Wcurt
s,t respectively are the load shedding power and abandon wind power of the system at

time t and in the s scenario.

3.2.2 Main Constraints

(1) Active power balance constraint as in Eq. (11).
N∑

i=1

Pi,s,t +
M∑

j=1

PCSP
j,s,t + (

Ws,t − W Wcurt
s,t

) = Ds,t + PDRt − Dloss
s,t (11)

where PCSP
j,s,t is the generating power of the CSP generator set at time t under scene s; Ds,t is the original

load at time t under scene s; Dloss
s,t is the value of system load shedding at time t under scene s.

(2) Constraints on the active output of CSP generators as in Eq. (12).

xj,tPCSP,min
j,t ≤ PCSP

j,s,t ≤ xj,tPCSP,max
j,t (12)

where xj,t is the start-stop state variable of the CSP unit at time t, for which 1 indicates the start-up
and running state of the unit, while 0 means shutdown, respectively; PCSP,max

j,t and PCSP,min
j,t are the upper

and lower limits active output of the CSP unit at time t.

(3) Climbing constraints of CSP generator units as in Eq. (13).

−RDCSP
j ≤ PCSP

j,s,t − PCSP
j,s,t−1 ≤ RUCSP

j (13)

where RUCSP
j and −RDCSP

j are the up and down climbing rate limits of the CSP generator set,
respectively.
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(4) Start-stop restriction of CSP generator as in Eq. (14).{(
xj,t−1 − xj,t

) + (
xj,t+τ − xj,t+τ−1

) ≤ 1, ∀τ ∈ [
1, · · · , DCSP

j − 1
]

(
xj,t − xj,t−1

) + (
xj,t+τ−1 − xj,t+τ

) ≤ 1, ∀τ ∈ [
1, · · · , OCSP

j − 1
] (14)

where DCSP
j , OCSP

j are the minimum shut-down and start-up time of the unit, respectively.

(5) Constraints on the flexible adjustment capability of the unit as in Eq. (15).{∣∣Pi,s,t − Pi,bs,t

∣∣ ≤ �i∣∣PCSP
j,s,t − PCSP

j,bs,t

∣∣ ≤ �CSP
j

(15)

where Pi,bs,t, PCSP
j,bs,t are the optimized output results of conventional units and CSP units in the baseline

scenario, respectively. �i and �CSP
j are the flexible adjustment capabilities of the two types of units. This

constraint can ensure the conversion of the unit’s active output between any two scenarios without
exceeding the limit.

(6) PDR response constraints

Also, since electricity price demand-side resource PDR was added to the day-a-day peak shaving
optimization model, such resources should be limited to make sure that scheduling is done in a sensible
way, as shown in Eqs. (16)–(18).

PDRmin
t ≤ PDRt ≤ PDRmax

t (16)

T∑
t=1

PDRt = 0 (17)

ρt ≥ Ce (18)

where PDRmin
t and PDRmax

t are the upper and lower limits of the PDR’s response capacity at the time
t, representing the unit power cost. Among them, Eq. (16) can ensure that the net load adjustment
amount of the demand side resources participating in the system peak shaving in one day is zero, that
is, only the user’s power consumption time is adjusted, the user load is not reduced.

3.2.3 Optimization Results

After modeling and solving the day-ahead rolling peak shaving optimization model with CPLEX,
the following optimization results for the decision variable can be obtained:

(1) CSP generator unit combination;
(2) Day-ahead PDR response strategy.

These values will be input into the lower in-day rolling peak shaving optimization model together
with the results obtained in the upper weekly peak shaving optimization model as known quantities
to solve other unknowns.

3.3 In-Day Rolling Peak Shaving Optimization Model
3.3.1 Objective Function

In the in-day peak shaving optimization model, it is necessary to determine the output of each
unit and the IDR response strategy, so the minimum system operating cost is the objective function as
in Eqs. (19) and (20).
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min OC (19)
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)
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where λIDR is the incentive demand response compensation price; IDRt is the system incentive load
response power at time t.

3.3.2 Main Constraints

(1) Active power balance constraint as in Eq. (21).
N∑

i=1

Pi,t +
M∑

j=1

PCSP
j,t + (

Wt − W curt
t

) = Dt + PDRt + IDRt − Dloss
t (21)

where IDRt is the incentive load response at time t.

(2) Constraints on the active output of each unit as in Eq. (22).{
ui,tPmin

i ≤ Pi,t ≤ ui,tPmax
i

xj,tPCSP,min
j ≤ PCSP

j,t ≤ xj,tPCSP,max
j

(22)

where the value ui,t and xj,t are determined in the weekly peak shaving and day-ahead peak shaving
plan, which is the fixed value.

(3) Climbing constraints of each unit as in Eq. (23).{−RDi ≤ Pi,t − Pi,t−1 ≤ RUi

−RDCSP
j ≤ PCSP

j,t − PCSP
j,t−1 ≤ RUCSP

j

(23)

(4) IDR constraint as in Eq. (24).

IDRmin ≤ IDRt ≤ IDRmax (24)

where IDRmax and IDRmin represent the maximum and minimum values of the incentive load response
at time t, respectively.

3.3.3 Optimization Results

Through modeling and solving the in-day peak shaving optimization model using CPLEX, the
following optimization results of decision variables can be determined:

(1) Output of the CSP;
(2) Output of conventional units;
(3) IDR response strategy.

4 Example Analysis
4.1 Overview of the Model

Based on the actual power supply ratio structure of the actual power system in a certain area in the
northwest, Fig. 1 is the schematic diagram of the actual power system structure. This paper simulates
the addition of CSP stations to design calculation examples, thus further simulating and verifying the
proposed dispatching model. The model consists of four conventional power-generating units, three
CSP-generating units, and a wind farm. The PDR response capacity in the system is 10% of the total
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load, while the IDR response capacity is not more than 5% of the total load. The model is solved by
the currently advanced commercial optimization software, CPLEX, in which the specific parameters
of each unit are shown in Tables 1 and 2. The PDR price is shown in Table 3.

G1

G2

G3

Wind Power

G4

CSP1

CSP2

CSP3

Load

Load

Load

Load

Figure 1: Schematic diagram of actual power system structure

Table 1: Parameters of conventional units

Generator Pmax
i (MW) Pmin

i (MW) Di/Oi (h) Gi,t (CNY) RUi/RDi (MW/min)

G1 455 150 8 59605 4.55 MW/min
G2 455 150 8 59605 4.55 MW/min
G3 200 30 6 26200 2 MW/min
G4 130 20 6 26200 1.3 MW/min

Table 2: Parameters of CSP

Generator PCSP,max
j (MW) PCSP,max

j (MW) DCSP
j /OCSP

j (h) TSS (TES) RUCSP
j /ROCSP

j (MW/min)

CSP1 50 5 1 15 5 MW/min
CSP2 80 8 2 15 8 MW/min
CSP3 150 20 2 15 15 MW/min

Table 3: Price of PDR

Time Price (CNY/kWh)

00:00–07:00 0.399
08:00–11:00 0.536
12:00–18:00 0.652
19:00–21:00
22:00–23:00

0.536
0.399
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Fig. 2 shows the forecast curves of load and wind power at different time scales, and Fig. 3 shows
the predicted values of direct normal irradiance (DNI) within a week. Assuming that the weekly
prediction error of wind power is 35%, then the weekly prediction curve of wind power can be obtained
by adding white noise with an expectation of 0 and a standard deviation of 0.35 to the actual wind
power curve. Similarly, assuming that the forecast errors of wind power forecast before and during the
day are 20% and 5%, and the forecast errors of the load during the week, day ahead, and in-day are
5%, 3%, and 1%, respectively, then the corresponding forecast curve can be obtained by adding the
corresponding white noise on the basis of the actual curve. In addition, five working days (heavy-load
days) and two rest days (small-load days) are considered in the weekly load, and two consecutive cloudy
days (Thursday and Friday) are considered in the in-week DNI forecast. The subsequent calculation
examples are all carried out on the basis of the above prediction curve.
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Figure 2: Wind power and load prediction curves under different time scales
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Figure 3: DNI prediction in one week

4.2 Analysis of the Results of Resource Scheduling
In order to study the utilization of all scheduling resources, the calculation examples were used

to solve the weekly, day-ahead, and in-day peak shaving plans. First, the weekly peak shaving plan is
calculated, and then the day-ahead and in-day peak shaving plans are respectively solved in a rolling
way. Finally, continuous week-day-day rolling peak-shaving optimization results can be obtained by
connecting the optimization results of each period. In the example, the day-ahead scheduling model
uses the SSP-based stochastic planning model, with the number of scenarios being 5.
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4.2.1 Analysis of Weekly Peak-Shaving Results

By solving the weekly peak shaving optimization model, the combination of conventional units
within a week can be obtained, as shown in Fig. 4. It can be seen that for conventional thermal power
units, in order to ensure the economic performance of the system and the stability of unit operation,
the small unit (unit 4 in the figure) should be started first when the load level is low. As the load
continues to rise, other units will be started gradually (such as unit 3 in the figure), and only when the
load has risen to a certain level, that is, when the small unit can no longer meet the load demand, will
the large units get started (e.g., units 1 and 2 in the figure). Once the large-scale units are turned on,
they will mainly bear the base load and waist load of the system for a period of time in the future, so
as to minimize the number of starts and stops and avoid the high operating cost caused by frequent
starts and stops. It can also be seen from the figure that the number of start and stop times of the two
large units in a week is significantly less than that of the other two small units.
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Figure 4: Conventional units commitment in one week

4.2.2 Result Analysis of Day-Ahead Peak Shaving Scheduling

Using the results of the conventional unit combination in the weekly peak shaving plan as the input
data of the day-ahead peak-shaving model, and combined with SSP (a total of 5 wind power scenarios
are considered), the day-ahead peak shaving optimization model can be solved to further determine
the CSP unit combination PDR response strategy. Fig. 5 shows the day-ahead unit combination of
conventional units (in this example, Monday is taken as an example), and Fig. 6 shows the five wind
power scenarios selected in this article.
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Figure 6: Wind power scenarios

By solving the day-ahead peak shaving optimization model, the day-ahead PDR response strategy
and CSP combination can be obtained, as shown in Figs. 7 and 8. It can be seen from Fig. 7 that by
optimizing the electricity price for each time period, the PDR can be guided to appropriately transfer
the load according to different electricity prices, that is, to arrange the load power consumption and
increase the load level during the low electricity price period (load low period: 01:00–08:00, 14:00–
18:00, 22:00–24:00) as much as possible. In the peak electricity price period (peak load period: 08:00–
14:00, 18:00–22:00), the load is reduced by the same amount to decrease the load demand during
this period, which is equivalent to shifting the peak period load to the trough period while ensuring
the user’s overall power consumption remains unchanged, thereby effectively reducing the peak-valley
difference of the system. Fig. 8 shows the start-stop plan of CSP units determined a few days ago,
from which we can see that in order to ensure the economy of system operation, CSP units carry
out frequent start-stop peak shaving within a day, greatly reducing the load pressure for conventional
thermal power units. At the same time, in order to ensure the power generation of large CSP units
(such as CSP3), the frequency of start-stops is significantly less than that of small units.
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Figure 7: The response strategy of PDR

4.3 Analysis of the Results of In-Day Peak Shaving Scheduling
As can be seen from Figs. 9 and 10, in the daytime, due to the high system load level and the

relatively sufficient peak shaving capacity of the system, the wind power volatility has little impact
on the system. At this time, to ensure the solar thermal power generation capacity, the three solar
thermal units are all at full capacity, and conventional units are responsible for daily peak shaving
tasks. At night, due to the low load level, some conventional units are in a shutdown state, and the
night is a period with heavy winds and strong volatility, resulting in a serious shortage of adjustable
capacity. At this time, CSP uses the energy stored in the heat storage system during the day for peak
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shaving, frequently adjusts its own output to cope with wind power, and provides a certain peak shaving
capacity for the system. In addition, it can be seen from Fig. 11 that during system operation, IDR
can be regarded as a system spinning reserve. When wind power changes drastically, IDR provides a
certain peaking capacity for the system by adjusting its own load power, thereby undertaking part of
the drastic changes in wind power.
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In the in-day rolling peak shaving, the conventional and CSP unit combination and PDR response
are used as the inputs, and the scheduling period is 2 h with a resolution of 15 min. The optimization
is carried out point by point, and the IDR response is considered to determine the output and IDR of
each unit. The response strategy is shown in Figs. 11–13.
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Figure 12: Comparison of conventional units commitment

4.4 Comparison with Traditional Scheduling Methods
In order to conduct a comparative study, traditional day-ahead scheduling methods are also

considered in the following calculation examples. To ensure fairness in comparison, the proportions
of PDR and IDR in the day-ahead scheduling model are the same as those mentioned in this
paper. Wind power and load forecast power follow the previous forecast curve in this article. In the
scheduling process, only the day-ahead scheduling model is used to coordinate and optimize various
resources within 24 h, which means that not only the conventional unit combination and the CSP unit
combination but also the output of each unit and the PDR and IDR responses are determined the day
before.

As shown in Fig. 12, the conventional unit startup and shutdown schemes obtained under two
different models are shown. It can be seen from the figure that under the traditional day-ahead
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scheduling model, G1 and G2 units start and stop 10 times, G3 units start and stop 18 times, and
G4 units start and stop 20 times. Under the model proposed in this article, the number of starts and
stops for G1 and G2 units is reduced to 8, and the number of starts and stops for G3 and G4 units is
reduced to 16.

Therefore, compared with the traditional day-ahead scheduling model, the multi-time scale rolling
optimization model proposed in this paper effectively reduces the number of starts and stops of
conventional units, among which G1, G2, and G3 units are reduced twice, and G4 units are reduced
four times. Reduce startup and shutdown costs by approximately 124,100 CNY.

As shown in Fig. 13, the startup and shutdown schemes of the CSP unit are obtained under two
different models. It can be seen from the figure that under the traditional day-ahead scheduling model,
the number of CSP1 starts and stops is 4, the number of CSP2 starts and stops is 2, and the number
of CSP3 starts and stops is 3.
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Figure 13: Comparison of CSP units commitment

In the model proposed in this article, CSP1 has 6 start-stop times, CSP2 has 4 start-stop times,
and CSP3 has 3 start-stop times.

Compared with the traditional day-ahead scheduling model, under the multi-time scale rolling
optimization model proposed in this paper, the solar thermal units give full play to the characteristics
of CSP rapid startup and shutdown to provide peak shaving support for the system, and their startup
and shutdown times are significantly higher than the traditional model, which effectively alleviates
the peak shaving pressure of the system and reduces the startup and shutdown times of conventional
units.

Figs. 14 and 15 show the system’s PDR and IDR responses in the two modes. From the figure, it
can be seen that the system PDR responses in the two modes are basically the same, while the IDR
response is quite different: The IDR called for by the traditional day-ahead scheduling model in the
peak shaving process is much higher than the model proposed in this article. As the IDR response of
the model mentioned in this article is determined during the in-day dispatch phase and the accuracy
of in-day wind power and load forecasting is higher than the previous forecast, only a small amount
of the higher-cost IDR can meet the system’s peak shaving requirements. However, in the traditional
day-ahead scheduling model, all schedulable resources are determined in the day-ahead scheduling
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stage, and the accuracy of day-ahead wind power and load forecasting is low. Therefore, in order to
ensure the required system reserve capacity, a large number of IDRs with higher costs are needed as
spare capacity to compensate for the uncertainty of wind power, which also increases the cost of system
peak shaving.
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4.5 Peak-Shaving Utility Analysis
By comparing the results of the two scheduling modes, it can be found that when the traditional

day-ahead peak shaving model is used, the total spinning reserve required by the system is about
85.98 MW. When the multi-time-scale rolling peak shaving model proposed in this paper is used, the
total spinning reserve required by the system is about 8.69 MW, which only accounts for 10.1% of the
peak shaving model. Moreover, the operating costs of the system under the two models are shown in
Table 4.

Table 4: Operation cost under two modes

Running mode Total cost/10,000
CNY

Unit operating
cost/10,000 CNY

Start and stop
cost/10,000 CNY

IDR cost/
10,000 CNY

Traditional mode 742.76 667.66 37.23 37.87
Multi-time scale model 673.28 633.33 24.82 15.16
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5 Conclusion

This paper proposes a CSP peak-shaving strategy based on multiple time scales and taking into
account the demand-side response. The model fully considers the multi-time-scale characteristics of
conventional units, CSP units, and various demand-side resources. The CSP rolling peak shaving
optimization model of a three-time scales-week, day-ahead, and in-day—realizes the interaction
between peak shaving between the power generation side and the demand side. The calculation results
show that:

The peak shaving optimization model based on multiple time scales can make full use of
the characteristics of the power generation and demand-side resources in the system on different
time scales for peak shaving. Among them, for the unit composition and output arrangements of
conventional units and CSP units, the model optimizes them on different time scales, which not only
effectively reduces the start-up and shutdown costs of conventional units in operation but also makes
full use of CSP units’ feature of rapid start-stop to improve the flexibility of CSP units participating
in power system peak shaving. In addition, the model also optimizes it separately in the day-ahead
and in-day stages according to the different response speeds on the demand side, so that not only the
PDR with a slower response speed participates in the peak and valley filling of the system, but also
the IDR with a faster response speed is employed as part of the system’s spinning reserve to smooth
out short-term fluctuations in wind power.

The rolling peak shaving model can, according to the characteristics of wind power and load
forecasting accuracy be gradually improved as the time scale shrinks, effectively utilizing the wind
power and load forecast results at each time scale, thereby improving the accuracy of the dispatch
results. Compared with the day-ahead scheduling model, the rolling model proposed in this paper
requires less spinning reserve capacity, which can effectively reduce the system operating cost and the
impact of wind power uncertainty on system operation. In addition, this article also combines SSP, so
as to improve the reliability of system operation.

It can be seen from the calculation results that when the traditional peak shaving model is used,
the total operating cost of the system reaches about 7,427,600 CNY, but when the multi-time scale
model is used, the total operating cost of the system is only 6,732,800 CNY, saving about 9.4% of
the total cost. Among them, the start-stop cost in this mode is about 248,200 CNY, which is 33.3%
lower than the traditional mode. And the IDR call cost is about 151,600 CNY, 59.9% lower than the
traditional mode.

At the same time, the research in this paper still has shortcomings; for example, the economic
benefits of the CSP plant are not considered in the model in this paper. Therefore, in the follow-up
research process, the department will carry out a special study on this.
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