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ABSTRACT 
The present paper deals with the analysis of boundary layer flow and heat transfer of a nanofluid over a stretching circular cylinder in the presence of 
non-uniform heat source/sink. The governing system of partial differential equations is converted to ordinary differential equations by using 
similarity transformations, which are then solved numerically using the Runge–Kutta–Fehlberg method with shooting technique. The solutions for 
the temperature and nanoparticle concentration distributions depend on six parameters, Prandtl number Pr, Lewis number Le, the Brownian motion 
parameter Nb, the thermophoresis parameter Nt, and non-uniform heat generation/absorption parameters A*, B*. Numerical results are presented both 
in tabular and graphical forms for ,10Pr7.0 ≤≤ ,301 ≤≤ Le  ,5.01.0 ≤≤ Nb and 5.01.0 ≤≤ Nt illustrating the effects of these parameters on thermal 
and concentration boundary layers. The results reveal that increasing the value of non-uniform heat generation/absorption parameter leads to 
deterioration in heat transfer rates at the stretching cylinder wall. However, it is found that increasing the value of non-uniform heat 
generation/absorption parameters results in enhancement the reduced Sherwood number. Moreover, for fixed Pr and Le, the reduced Nusselt number 
decreases but the reduced Sherwood number increases as the Brownian motion and thermophoresis effects become stronger.   
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1. INTRODUCTION 
During the last many years, the study of boundary layer flow and 

heat transfer over a stretching surface has achieved a lot of success 
because of its large number of applications such as extrusion, wire 
drawing, metal spinning, hot rolling, etc (Altan and Gegel, 1979; 
Tidmore and Klein, 1970). After the pioneering work by Sakiadis 
(1971), a large amount of literature is available on boundary layer flow 
both of Newtonian and non-Newtonian fluids over linear and nonlinear 
continuous moving surface (Liu, 2004; Khan et al., 2003; Nadeem et 
al., 2010; Dandapat et al., 2007; Mahantesh et al., 2011; Pal and 
Mondal, 2012; Nandeppanavar, 2010). However, only a limited 
attention has been paid to the study of stretching circular cylinder. 
Mention may be made to the works of Wang (1988), Chamkha et al. 
(2010), Ishak et al. (2008) and Joneidi et al. (2010). 

More recently, convective heat transfer in nanofluids is a topic of 
major contemporary interest both in sciences and engineering. The 
word “nanofluid” coined by Choi (1995) describes a liquid suspension 
containing ultra-fine particles (diameter less than 50 nm). The theory of 
nanofluids has presented several fundamental properties with the large 
enhancement in thermal conductivity as compared to the base fluid (Fan 
and Wang, 2011).  In fact, nanotechnology aims to manipulate the 
structure of the matter at the molecular level with the goal for 
innovation in virtually every industry and public endeavor including 
biological sciences, physical sciences, electronics cooling, 
transportation, the environment and national security. The literature on 
nanofluids has been reviewed by Trisaksri and Wongwises (2007), 

Wang and Mujumdar (2004), Eastman et al. (2006), and, among several 
others. Buongiorno (2006) and Kakac and Pramuanjaroenkij (2009) 
have investigated a comprehensive survey of convective transporting 
nanofluids. Khan and Pop (2010) studied the boundary layer flow of a 
nanofluid past a stretching sheet with a constant surface temperature. 
Following this work, Makinde and Aziz (2011) generalized their 
analysis to a convective boundary condition instead of an isothermal 
condition. Hassani et al. (2011) investigated the boundary layer flow of 
a nanofluid past a stretching sheet. Their solution depended on a Prandtl 
number Pr, a Lewis number Le, a Brownian motion number Nb and a 
thermophoresis is number Nt. The dependency of the local Nusselt and 
local Sherwood numbers on these four parameters was analytically 
investigated. They concluded that the reduced Nusselt number 
decreases with the increase in Prandtl number. Nadeem and Lee (2012) 
presented the HAM solution for the steady boundary layer flow of 
nanofluid over an exponentially stretching surface. They showed that 
boundary layer thickness reduces with the increase in Lewis number. 
Gorla et al. (2011) have studied the problem of a steady boundary-layer 
flow of a nanofluid on an isothermal stretching circular cylindrical 
surface. Kuznetsov and Nield (2010) have examined the influence of 
nanoparticles on the natural convection boundary layer flow past a 
vertical plate by using a model in which Brownian motion and 
thermophoresis are accounted for. They have assumed that both the 
temperature and the nanoparticle fraction are constant along the wall. 
Aziz and Khan (2012) investigated the natural convective flow of a 
nanofluid over a convectively heated vertical plate. They demonstrated 
that the dimensionless heat flow decreases as both the Brownian motion 
and thermophoresis parameters increase. Anbuchezhian et al. (2012) 
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studied the problem of laminar fluid flow, which results from the 
stretching of a vertical surface with variable stream conditions in a 
nanofluid due to solar energy. They presented that the impact of 
thermophoresis particle deposition with Brownian motion in the 
presence of thermal stratification has a substantial effect on the 
boundary layer flow field, and thus on the heat transfer and nanoparticle 
volume fraction rate from the sheet to the fluid. 

Motivated by the above studies we intend to investigate the steady 
boundary layer flow of a nanofluid on a circular cylindrical surface with 
taking into the account of non-uniform heat source/sink. The problem is 
formulated in such a manner that the partial differential equations 
governing the flow, temperature and concentration fields are reduced to 
ordinary differential equations, which are solved numerically using the 
Runge–Kutta–Fehlberg method with shooting technique. The effects of 
embedded parameters on fluid velocity, temperature and particle 
concentration have been shown graphically. The present analysis may 
be useful as a simple model in understanding more complicated 
applications to practical problems such as film cooling, polymer fiber 
coating, and coating of cylindrical wires. 

 
Fig. 1 Geometry of problem under investigation. 

2. PROBLEM FORMULATION 
Consider the steady flow of a nanofluid near the stretching circular 

cylinder of radius a moving at the linear velocity w=2cz, where c is a 
constant, as shown in Fig. 1. The physical properties of the fluid are 
assumed to be constant. Under such condition, the basic steady 
conservation of mass, momentum, thermal energy and nanoparticles 
equations for nanofluids can be written as (Buongiorno, 2006), 
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τ = is the ratio of the nanoparticle heat capacity and the 

base fluid heat capacity, q ′′′ is the space and temperature dependent 

internal heat generation/absorption (non-uniform heat source/sink) 
which can be expressed in simplest form as (Prasad et al., 2000), 
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where A* and B* are parameters of the space and temperature 
dependent internal heat generation/absorption. The case A* > 0 and B* 
> 0 corresponds to internal heat generation while A* < 0 and B* < 0 
correspond to internal absorption. 
The boundary conditions for this problem can be written as 

,C, C,  wT:  Tr
Ccz, C(z)U, wTa:  Tr www

∞∞ ===∞→
=====

0
,2
                                              (7) 

Introducing the similarity transformation: 
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After transformation we have: 
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The associated boundary conditions are 
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In the previous equations, the primes denote differentiation with respect 
to η and the six parameters are defined by, 
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where Pr, Le, Nb and Nt denote the Prandtl number, the Lewis number, 
the Brownian motion parameter and the thermophoresis parameter, 
respectively. It should be noted that this boundary layer problem 
reduces to the classical problem of flow and heat and mass transfer due 
to a stretching cylinder in a viscous fluid when Nb and Nt are zero. 

The local Nusselt number Nux and the local Sherwood number Shx 
can be written as (Gorla, et al., 2011), 
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where qw and qm are wall heat and mass flux rates, respectively. 

Table 1 Comparison of results for )1(f ′′− when 0== bt NN and 

0** == BA  

Rea Ishak et al. [13] Wang [11] Gorla et al. [26] Present Results 

0.5 0.8827 0.88220 0.88700 0.8825 

1.0 1.1781 1.17776 1.17923 1.17927 

2.0 1.5941 1.59390 1.59448 1.5962 

5.0 2.4175 2.41745 2.41755 2.4172 

10.0 3.3445 —— 3.34467 3.3451 
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3. NUMERICAL SOLUTION 
The system of coupled non-linear ordinary differential Eqs. (9)–

(11), subjected to boundary conditions, Eq. (12) were solved 
numerically by using the fourth-order Runge–Kutta scheme with a 
systematic guessing of   and  by the shooting method until the boundary 
conditions at infinity   and  decay exponentially to zero. The 
computations have been done by Maple. The step size   is used while 
obtaining the numerical solution with ηmax, and the accuracy to the fifth 
decimal place is sufficient for convergence. The value of η∞ is found 
to each iteration loop by the assignment statement.The maximum value 
of η=∞ is determined when the values of unknown boundary conditions 
at η=0 do not change to a successful loop with error less than 10-7. To 
check the accuracy of our numerical computations, we compare our 
results with those of other researchers in Tables 1-2. These results 
pertain to a circumstance when the Brownian and the thermophoresis 
effects are absent, that is, the fluid is a regular fluid with no 
nanoparticles and there is no heat source/sink. For all the Reynolds 
numbers listed in Table 1, the present results of   agree with the results 
of Wang [11], Ishak et al. [13] and Gorla et al. (2011). A comparison is 
also made for dimensionless temperature gradient for various values of 
Prandtl number with those reported by Chamkha et al. (2010), and 
Gorla et al. (2011). The comparison of our results with literature values 
indicates excellent agreement and therefore our results are highly 
accurate. 

Table 2 Comparison of results for )1(θ ′− when 0== bt NN , 3Re =  

and 0** == BA  

Pr Chamkha et al. [12] Gorla et al. [26] Present Results 

0.70 1.15053 1.15053 1.15051 

2.00 2.10655 2.10654 2.10654 

7.00 4.23743 4.23743 4.23645 

4. RESULTS AND DISCUSSION 
Numerical analysis is carried out for with employing the shooting 

technique with a fourth-order Runge–Kutta scheme. The parameters 
involved in the study are Prandtl number (Pr), Lewis number (Le), non-
uniform heat source/sink parameters (A*,B*), Brownian motion 
parameter (Nb) and thermophoresis parameter (Nt). The results are 
presented graphically in Figs. 2–8 and conclusions are drawn for flow 
field and other physical quantities of interest that have significant 
effects. 

The volume fraction of nanoparticles is a key parameter for 
studying the effect of nanoparticles on flow fields and temperature 
distributions. Thus, Figs. 2–3 are prepared to present the effect of the 
Brownian motion and thermophoresis effect on the temperature 
distribution and the volume fraction of nanoparticles. Fig. 2 shows the 
temperature distributions in the thermal boundary layer for different 
values of the Brownian motion and the thermophoresis parameters. As 
both Nb and Nt increase, the boundary layer thickens, the surface 
temperature increases, and the curves become less steep indicating a 
diminution of the reduced Nusselt number. It is interesting to note that 
the Brownian motion of nanoparticles, at molecular and nanoscale 
levels, is a key nanoscale mechanism governing their thermal 
behaviors. In nanofluid systems, due to the size of the nanoparticles, the 
Brownian motion takes place, which can affect the heat transfer 
properties. As the particle size scale approaches to the nanometer scale, 
the particle Brownian motion and its effect on the surrounding liquids 
play an important role in the heat transfer.  

While thermophoresis effect is important in natural convection of 
nanofluids, there are other parameters which may have effects and 

should be considered. These effects include the increase in effective 
viscosity of nanofluids due to the presence of nanoparticles and the 
density variation due to the variable volume fraction. Larger volume 
fraction of nanoparticles makes nanofluids more viscous and the 
mixture of convection becomes weaker, and thus decreases the natural 
convective Nusselt number due to high viscose fluid. On the other hand, 
it is showed that the separation factor for common nanofluids is positive 
and the density variation due to the variable volume fraction of 
nanoparticles, called particulate buoyancy force, helps nanofluids to 
have strong convection heat transfer. 
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Fig. 2 Effect of tN and bN on temperature profiles. 
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Fig. 3 Effect of Le on concentration profiles. 

The variation of nanoparticle concentration (volume fraction) for 
various Lewis numbers is shown in Fig. 3. It can be seen that the Lewis 
number significantly affects the concentration distribution. For a base 
fluid of certain kinematic viscosity ν, a higher Lewis number implies a 
lower Brownian diffusion coefficient DB which must result in a shorter 
penetration depth for the concentration boundary layer. In fact, this is 
exactly what we see in Fig. 3. 

Table 3 Effect of nanofluid on the rate of heat transfer 

 0== bt NN  1.0== bt NN  3.0== bt NN  5.0== bt NN 

)1(θ ′−  0.39161 0.33289 0.23715 0.16475 
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Fig. 4 Reduced local Nusselt number versus tN for various bN . 
 
The results of addition nanoparticles on heat transfer rate on the 

cylinder wall have been shown in the Table 3. It is found that nanofluid 
deteriorates the rate of heat transfer on the stretching cylinder surface. 
Fig. 4 indicates the effect of Nt and Nb on reduced Nusselt number. It 
seems that for fixed thermophoresis parameter Nt, the reduced Nusselt 
number decreases sharply with the increase in Brownian motion, that as 
Nb is increased from 0.1 to 0.5. As the Brownian motion intensifies, it 
impacts a larger extent of the fluid, causing the thermal boundary layer 
to thicken, which in turn decreases the reduced Nusselt number. On the 
other hand, the reduced Nusselt number decreases as the 
thermophoresis diffusion penetrates deeper into the fluid and causes the 
thermal boundary layer to thicken. These observations are consistent 
with the initial slopes of the temperature profiles, as discussed before.  
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Fig. 5 Reduced local Nusselt number versus tN for various Le . 

Figure 5 illustrates the effect of Lewis number on the reduced 
Nusselt number. It is found that when Pr, Re, Nb, A* and B* fixed at 1, 
1, 0.5, -0.05 and -0.05 respectively, an increase in Lewis number causes 
the reduced Nusselt number to decrease. We notice that, the effect of 
increasing the thermophoretic parameter Nt is limited to increasing 
slightly the wall slope of the nanoparticle volume fraction profiles, but 
decreasing the nanoparticle volume fraction. This is true only for small 
Lewis numbers for which the Brownian diffusion effect is large 
compared with the convection effect. However, for large Lewis 
numbers, the diffusion effect is minimal compared with the convection 

effect. Therefore, the thermophoretic parameter Nt is expected to alter 
the nanoparticle volume fraction boundary layer significantly. 
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Fig. 6 Reduced local Nusselt number versus tN for various **, BA . 

 

 
Fig. 7 Reduced local Sherwood number versus tN for various Le  

and bN . 

The influence of non-uniform heat source/sink parameters on 
reduced Nusselt number has been shown in fig. 6. It is pointed out from 
this figure that increasing the values of space-dependent heat 
source/sink parameter A* and temperature dependent heat source/sink 
parameter B* leads to a fall in the value of reduced Nusselt number. 

It can be seen from fig. 7 that mass transfer rates increase slightly 
with Nb, while it remains almost constant with variation of Nt. The 
mass transfer rate is also found to increase dramatically with increasing 
Lewis number. Fig. 8 describes the variation of mass transfer rate 
versus thermophoresis parameter Nt for different parameters namely 
Prandtl number and non-uniform heat source/sink parameters. It is 
anticipated that the change in Prandtl number from 1 to 10 results in 
considerable increase in the mass transfer rate. It is also seen that an 
increase in both the space-dependent heat source/sink parameter A* and 
temperature dependent heat source/sink parameter B* brings about 
augmentation of the Reduced local Sherwood number. However, this 
increase is more noticeable for lower Prandtl number. 
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Fig. 8 Reduced local Sherwood number versus tN for various 

Pr and **, BA . 

5. Conclusions 
A combined similarity-numerical approach was used to study the 

boundary layer flow in a nanofluid over a stretching cylinder in the 
presence of non-uniform heat source/sink. For the nanofluid, we 
employed a model that accounts for the mechanics of the 
nanoparticle/base fluid relative velocity by incorporating the effects of 
Brownian motion and thermophoresis into the governing equations. The 
influences of the significant parameters, namely Prandtl number Pr, 
Lewis number Le, Brownian motion parameter Nb, thermophoresis 
parameter Nt and non-uniform heat generation/absorption parameters 
A*&B*, on the flow and heat transfer characteristics have been 
examined. The results reveal that the rate of heat transfer )1(θ′−  
decreases as Brownian motion parameter and thermophoresis parameter 
go up, but there is an augmentation in heat transfer rate when the values 
of Lewis number and non-uniform heat generation/absorption 
parameters increase. Moreover, it was predicted that the reduced 
Sherwood number increases as the amount of Le, A*, B* and Pr 
intensify. By contrast, the Brownian motion parameter deteriorates the 
rate of mass transfer over the stretching cylinder especially for small 
Lewis number. Ultimately, we can draw the conclusion that the 
nanofluid parameters display a considerable effect on the rates of heat 
and mass transfer over a stretching cylinder. 

NOMENCLATURE 

A* space dependent heat source/sink 
B* temperature dependent heat source/sink 
C concentration, (kg/m3) 
Cf local skin-friction coefficient 
DB Brownian diffusion coefficient, (kg/m.s) 
DT  thermophoretic diffusion coefficient, (kg/m.s.K) 
f similarity function for stream function 
g gravitational acceleration, (m/s2) 
k thermal conductivity, (W/m.K) 
Le Lewis number 
Nb Brownian motion parameters 
Nt thermophoresis parameters 
Nu Nusselt number 
p pressure, (N/m2) 
Pr Prandtl number 
q wall heat flux, (W/m2) 

Re Reynolds number 
S shear stress, (N/m2) 
Shx local Sherwood number 
T temperature, (K) 
u, w velocity components along r and z direction, (m/s) 
 
Greek symbols 
α thermal diffusivity, (m2/s) 
η dimensionless distance 
θ dimensionless temperature 
ν Kinematic viscosity 
ρ density 
(ρc) effective heat capacity, (kg/m3.K) 
τ ratio between the effective heat capacity of the nanoparticle 
material and heat capacity of the fluid 
 
Subscripts  
f fluid 
p nanoparticle 
∞ ambient 
w wall 

REFERENCES 
Altan, T., Oh, S., Gegel, H. 1979, Metal Forming Fundamentals and 
Applications, 1st ed., American Society of Metals, Metals Park, OH. 

Anbuchezhian, N., Srinivasan, K., Chandrasekaran, K., Kandasamy, R., 
2012, “Thermophoresis and Brownian Motion Effects on Boundary 
Layer Flow of Nanofluid in Presence of Thermal Stratification due to 
Solar Energy,” Appl. Math. Mech, 33(6), 765–780. 
http://dx.doi.org/Doi:10.1007/s10483-012-1585-8. 

Aziz, A., Khan, W.A., 2012, “Natural Convective Boundary Layer 
Flow of a Nanofluid Past a Convectively Heated Vertical Plate,” 
International Journal of Thermal Sciences, 52, 83–90. 
 http://dx.doi.org/10.1016/j.ijthermalsci.2011.10.001. 

Buongiorno, J., 2006, “Convective Transport in Nanofluids,” ASME J. 
Heat Transfer, 128, 240–250.  
http://dx.doi.org/10.1115/1.2150834. 

Chamkha, A.J., Abd El-Aziz, M.M., Ahmed, S.E., 2010, “Effects of 
Thermal Stratification on Flow and Heat Transfer due to a Stretching 
Cylinder with Uniform Suction/Injection,” International Journal of 
Energy and Technology, 2, 1–7. 

Choi, S.U.S., 1995, “Enhancing Thermal Conductivity of Fluids with 
Nanoparticles,” Developments and Applications of Non-Newtonian 
Flows, 66, 99–105.  

Dandapat, B.S., Santra, B., Vajravelu, K., 2007, “The Effects of 
Variable Fluid Properties and Thermocapillarity on the Flow of a Thin 
Film on an Unsteady Stretching Sheet,” Int J Heat Mass Transf, 50, 
991-996.  
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.08.007. 

Eastman, J.A., Phillpot, S.R., Choi, S.U.S., Keblinski, P., “Thermal 
Transport in nNanofluids,” Annu. Rev. Mater. Res, 34, 219–246. 
http://dx.doi.org/10.1146/annurev.matsci.34.052803.090621. 

Fan, J., Wang, L., 2011, “Heat Conduction in Nanofluids: Structure-
Property Correlation,” Int J Heat Mass Transf, 54, 49–4359. 
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.05.009. 

Gorla, R., El-Kabeir, S.M.M., Rashad, A.M., 2011, “Boundary-Layer 
Heat Transfer from a Stretching Circular Cylinder in a Nanofluid,” 
Journal of thermophysics and heat transfer, 25, 183–185. 
http://dx.doi.org/doi:10.2514/1.51615. 



Frontiers in Heat and Mass Transfer (FHMT), 3, 043003 (2012)
DOI: 10.5098/hmt.v3.4.3003

Global Digital Central
ISSN: 2151-8629

    6 

Hassani, M., Mohammad Tabar, M., Nemati, H., Domairry, G., Noori, 
F., 2011, “An Analytical Solution for Boundary Layer Flow of a 
Nanofluid Past a Stretching Sheet,” International Journal of Thermal 
Sciences, 50, 2256–2263.  
http://dx.doi.org/10.1016/j.ijthermalsci.2011.05.015. 

Ishak, A., Nazar, R., Pop, I., 2008, “Uniform Suction/Blowing Effect 
on Flow and Heat Transfer due to a Stretching Cylinder,” Applied 
Mathematical Modelling, 32, 2059–2066.  
http://dx.doi.org/10.1016/j.apm.2007.06.036. 

Joneidi, A.A., Domairry, G., Babaelahi, M., Mozaffari, M., 2010, 
“Analytical Treatment on Magnetohydrodynamic (MHD) Flow and 
Heat Transfer due to a Stretching Hollow Cylinder,” Int. J. Numer. 
Meth. Fluids, 63, 548–563. 
http://dx.doi.org/doi:10.1002/fld.2087. 

Kakac, S., Pramuanjaroenkij, A., 2009, “Review of Convective Heat 
Transfer Enhancement with Nanofluids,” Int. J. Heat Mass Transfer, 
52, 3187–3196. 
 http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.006. 

Khan, S.K., Subhas Abel, M., Sonth Ravi, M., 2003, “Viscoelastic 
MHD Flow, Heat and Mass Transfer Over a Porous Stretching Sheet 
with Dissipation of Energy and Stress Work,” Int J Heat Mass Transf, 
40, 47-57.  
http://dx.doi.org/10.1007/s00231-003-0428-x 

Khan, W.A., Pop, I., 2010, “Boundary-Layer Flow of a Nanofluid Past 
a Stretching Sheet,” Int. J. Heat Mass Transf, 53, 2477–2483. 
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032. 

Kuznetsov, A.V., Nield, D.A., 2010, “Natural Convective Boundary 
Layer Flow of a Nanofluid Past a Vertical Plate,” International Journal 
of Thermal Sciences, 49(2), 243–247. 
 http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.015. 

Liu, I.C., 2004, “Flow and Heat Transfer of an Electrically Conducting 
Fluid of Second Grade Over A Stretching Sheet Subject to a Transverse 
Magnetic Field,” Int J Heat Mass Transf, 47, 4427-4437. 
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.03.029. 

Mahantesh, M., Nandeppanavar, K., Vajravelu, M., Subhas, M., Chiu-
On, N.g., 2011, “Heat Transfer over a Nonlinearly Stretching Sheet 
with Non-Uniform Heat Source and Variable Wall Temperature,” Int J 
Heat Mass Transf, 54, 4960–4965. 
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.009. 

Makinde, O.D., Aziz, A., 2011, “Boundary Layer Flow of a Nanofluid 
Past a Stretching Sheet with a Convective Boundary Condition,” 
International Journal of Thermal Sciences, 50, 1326–1332. 
http://dx.doi.org/10.1016/j.ijthermalsci.2011.02.019. 

Nadeem, S., Hussain, A., Khan, M., 2010, “HAM Solutions For 
Boundary Layer Flow In The Region Of The Stagnation Point Towards 
A Stretching Sheet,” Comm Nonlinear Sci Numer Simul, 15, 475-481. 
 

Nadeem, S., Lee, C., 2012, “Boundary Layer Flow of Nanofluid over 
an Exponentially Stretching Surface,” Nanoscale Research Letters, 7, 
94.  

http://dx.doi.org/10.1016/j.cnsns.2009.04.037  

http://dx.doi.org/doi:10.1186/1556-276X-7-94. 

Nandeppanavar, M., Subhas Abel, M., Tawade, J., 2010, “Heat Transfer 
in a Walter’s Liquid B Fluid over an Impermeable Stretching Sheet 
with Non-uniform Heat Source/sink and Elastic Deformation,” 
Commun Nonlinear Sci Numer Simulat, 15, 1791–1802. 
http://dx.doi.org/10.1016/j.cnsns.2009.07.009. 

Pal, D., Mondal, H., 2012, “Soret and Dufour Effects on MHD Non-
Darcian Mixed Convection Heat and Mass Transfer over a Stretching 
Sheet with Non-uniform Heat Source/sink,” Physica B, 407,642–665. 
http://dx.doi.org/10.1016/j.physb.2011.11.051. 

Prasad, K.V., Subhas Abel, M., Ambuja, J., 2000, “Oscillatory Motion 
of a Visco-elastic Fluid over a Stretching Sheet in Porous Media,” J. 
Porous Media, 3(1), 61. 

Sakiadis, B.C., 1971, “Boundary Layer Behavior on Continuous Solid 
Surfaces: I Boundary Layer Equations for Two Dimensional and 
Axisymmetric Flow,” AIChE 61, 26–34. 
 http://dx.doi.org/10.1002/aic.690070108. 

Tidmore, Z., Klein, I., 1970, Engineering Principles of Plasticating 
Extrusion, 2nd ed., Polymer Science and Engineering Series, Van 
Norstrand, New York. 

Trisaksri, V., Wongwises, S., 2007, “Critical Review of Heat Transfer 
Characteristics of Nanofluids,” Renew. Sust. Energ. Rev, 11,512–523. 
http://dx.doi.org/10.1016/j.rser.2005.01.010. 

Wang, C.Y., 1988, “Fluid Flow due to a Stretching Cylinder,” Physics 
of Fluids, 31,466–468. http://link.aip.org/link/doi/10.1063/1.866827. 

Wang, X.Q., Mujumdar, A.S., 2007, “Heat Transfer Characteristics of 
Nanofluids: a review,” Int. J. Therm. Sci, 46, 1–19.  
http://dx.doi.org/10.1016/j.ijthermalsci.2006.06.010. 

 


