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ABSTRACT 
In the present study, conductive cooling of a disc is done by means of incomplete constant and variable cross-section highly conductive inserts 
embedded in radial and tributary configurations. Variational calculus is invoked to determine the optimum shape of the cross-sections of the inserts. 
Firstly, it is tried to derive an equation for thermal resistance of the disc for radial configuration of inserts based on the procedure used in constructal 
studies. This is done by implementing the optimized thermal resistances of elemental sectors. Then, the computed elemental sectors are put together 
so that they make branching configuration of inserts in the disc. Out of the comparison between the obtained thermal resistances of the disc with 
constant and variable cross-sections, it is concluded that using variable cross-sections reduces thermal resistance, but this effect differs in radial and 
tributary configurations, i.e., increasing the complexity of tributary patterns does not always reduce the thermal resistance more effectively in 
comparison with radial configurations. 
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1. INTRODUCTION 
In today’s high-performance microelectronics, one can say for sure 
that heat dissipation is among the important factors that need special 
attention as in some cases it acts as a bottleneck which dictates the 
performance of the system. Moreover, as the length scale of these 
devices continues to diminish, convective cooling of the component 
may not be viable due to technical issues. Therefore, conduction of 
the heat by means of highly conductive inserts emerges as a tool to 
transfer the generated heat to the edge or the center of the device 
where attached heat sink can be used to remove this heat. This 
method is used in this paper for cooling a disc shape body based on 
constructal theory. 

Constructal theory attempts to explain the evolvement of finite-
size flow systems through time and it says this evolvement is based 
on a simple law: for a finite size flow system to survive in time, it 
should evolve in such a way that it provides easier access to the flow 
that goes through it. Knowing this law, one not only can explain 
natural systems but also he can implement it into man-made devices 
as an attempt to reach to the designs that are more natural, keeping in 
mind that nature has the answer to lots of our problems. Here, it 
should be noted that even the natural systems are not duly perfect. 
Hence, the future does not belong to the perfect, or the ideal, but it 
belongs to the imperfect designs that are the least imperfect possible 
(Bejan and Lorente, 2008). This has been the time arrow of design 
evolution in technology, biology, geomorphology, and social 
organization in the past years (Bejan, 2000, 2008, 2010; Bejan et al., 
2000; Bejan and Lorente, 2006; Bejan and Merkx, 2007).  

Pure conductive cooling of electronic components by using 
highly conductive inserts implemented in low conductive domain is 
one applicable area of constructal theory which many aspects of it are 
investigated until now. Ledezma et al. (Ledezma et al., 1997) 
constructed a cooling network for a rectangular domain with constant 

volumetric heat generation. They concluded that a tree-shaped 
network of highly conductive material should be an optimum design. 
Dan and Bejan (Dan and Bejan, 1998) looked into the problem from 
a different angle and by changing the geometry of flow path, they 
tried to minimize the time needed to discharge a volume to a sink by 
means of a constructal tree network. Almogbel and Bejan (Almogbel 
and Bejan, 2001) used non-uniform distribution of highly conductive 
material. By this configuration, they could achieve a significant 
improvement in global performance. Mathieu-Potvin and Gosselin 
(Mathieu-Potvin and Gosselin, 2007) proposed an evolutionary 
algorithm to optimize the thermal resistance and by comparing their 
results to those predicted previously by constructal theory, they 
showed several similarities in term of performances and geometries. 
Gosselin and Bejan (Gosselin and Bejan, 2004) studied tree 
configuration of highly conductive materials at micro and nano scales 
and stated that at such a small scale, thermal conductivities vary with 
the shape and dimension of the system. All of the above works were 
done for a rectangular domain; however, there are also some 
investigations for circular (Rocha et al., 2002, 2006) and triangular 
(Ghodoossi and Egrican, 2004) domains. An analytical solution for 
radial and bifurcation configuration of highly conductive inserts 
embedded in a disc was presented by Rocha et al. (Rocha et al., 
2002). They believed that highly conductive material inserts can 
change the direction of heat flux into two perpendicular directions. A 
later work by Rocha et al. (Rocha et al., 2006) was devoted to a 
different construction by adding loops to the configuration.  

There is a series of studies in which the widths of inserts are 
optimized using variational calculus. Ledezma et al. (Ledezma et al., 
1997) used cross-sectional optimized inserts to minimize resistance 
of the tree network. Then Rocha et al. (Rocha et al., 2002) utilized 
this method to optimize the width of radial inserts distributed in a 
disc domain and further compared thermal resistance and other 
geometric parameters related to this case to a constant-D assumption. 
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Optimizing of variable cross-section highly conductive insert was 
developed in refs. (Wei et al., 2009; Wei et al., 2010; Zhou et al., 
2007) for a rectangular domain. In these investigations based on 
constructal theory, the thermal resistance was optimized through 
assembling the constructs in several times using the results of the 
simpler elemental constructs. Comparison of the results was done in 
each step by comparing them with simpler architectures with fewer 
assemblies (Zhou et al., 2007) and also with constant cross-section 
configurations (Wei et al., 2009). Mentioned results revealed that 
increasing the complexity of the configuration cannot always 
decrease the thermal resistance.  However it is mentioned that the 
optimized minimum thermal resistance of variable cross-section 
cases is smaller than that of constant cross-section. The recent study 
performed by using constructal entransy dissipation rate 
minimization method based on discrete variable cross-section highly 
conductive insert (Wei et al., 2010) showed that as the assembly’s 
order increases, i.e. complexity of the architecture, the minimum 
mean temperature difference on elemental area with variable cross-
section highly conductive insert increases whereas for the case of 
constant cross-section highly conductive insert, this parameter 
decreases and for both of them, it approaches a constant as the 
assembly’s order increases.  

In the present study, the work on incomplete inserts extending 
outward from center to a specific distance in a disc (Fig. 1) is further 
developed by giving another degree of freedom to the geometry; that 
is, the cross-section change of inserts. By using variational calculus, 
the incomplete variable cross-section highly conductive inserts in 
radial and branching configurations used for cooling a disc-shaped 
body are investigated. Hence, the optimized thermal resistance is 
determined and compared to the constant cross-section highly 
conductive insert case. The results showed that for the case under 
study here, decrease of thermal resistance can be achieved from the 
case with constant cross section inserts. Moreover, under some 
circumstances which will be illustrated, the thermal resistance of the 
disc with incomplete inserts surpasses the complete insert structure. 
Also by increasing the complexity of the network from radial to 
branching configurations, there is less decrease in optimized thermal 
resistance. That means increasing the complexity of the system will 
diminish the effect of varying cross-section on thermal resistance. 
However, it should be noted that this is an achievement itself as the 
price of highly conductive material is a determining factor. 
 

2. DESCRIPTION OF THE PROBLEM 
Designing a disc-shaped electronic component is considered in this 
study, Fig. 1. In an analogy to constructal studies, we should define 
the constraints as well as degrees of freedom; these two will compete 
against each other to shape the geometry. Usually, global constraint 
is the volume occupied by the device and in this way, installing as 
much circuitry as possible in this volume should be the objective of 
the design. Since from the thermal design point of view, the pure 
effect of these components is the heat generation, the objective 
simply means as much heat generation as possible in this specified 
volume. The local constraint is to prevent the highest temperature of 
the package, Tmax, exceeding a specified value. It is obvious that if 
Tmax goes beyond this allowable amount, the function of the local 
component is threatened. Without any major effect on the generality 
of the problem and just for the sake of simplicity, it is considered that 
there is a uniform distribution of heat generation throughout the 
adiabatic wall bounded disc. To gather heat, highly conductive 
inserts with the thickness of 𝐷 are implemented which their 
material’s conductivity, kp, is considerably higher than the disc’s 
material with conductivity of k0 such that 𝑘� = 𝑘𝑝/𝑘0 ≫ 1. This 

network of highly conductive inserts then derives the heat to the 
center of the disc where a heat sink exists to gather that heat. Figure 1 
shows a radial configuration of the inserts. The composition of the 
two-material composite is fixed which is accounted for by defining 
volume fraction 𝜙 as the volume of kp material to total volume. 

 

 
Fig. 1 Incomplete radial configuration of highly conductive inserts 
embedded in a uniform heat generating disc. 
 

3. MATHEMATIC FORMULATION 
In this part, using variational calculus, cross-section of the highly 
conductive insert for radial configuration is optimized and then 
considering the calculated cross-section shape, it is tried to optimize 
the thermal resistance. Similarly, the same procedure is implemented 
for the fractal network. Also, the relation of constant cross-section 
highly conductive insert is compared with that of variable cross-
section highly conductive insert.  
 
3.1. Radial pattern 
A radial configuration is maybe the simplest structure to design a 
conductive network to cool a disc. The disc with radial inserts, Fig. 1, 
is composed of 𝑁 sectors which are shown in Fig. 2.  

 

 
Fig. 2 A sector of the disc with radial variable cross section 
configuration of highly conductive material. 

𝑞′′′𝑡,𝑘0 

↲ 𝑘𝑝 
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It is assumed that there are many radial inserts so that the sectors are 
slender enough to be approximated by an isosceles triangles of base 
2𝐻 and height 𝑅. 

20BAt first, based on the constructal theory, one of these sectors is 
considered as the elemental volume. Then, its thermal resistance is 
determined and optimized due to various aspect ratios. The 
corresponding thermal resistance of the entire disc can be calculated 
by assembling the sectors together. 

21BAs the inserts are considered incomplete, there is a region in the 
disc where there is no highly conductive insert in it. Thus, the domain 
can be divided into two regions: the outer region without highly 
conductive inserts and the central part with the cooling inserts. 

 
22B3.1.1. Region without highly conductive material    
23BFirstly, bear in mind that there is no difference in formulating thermal 
resistance between constant and variable cross-section highly 
conductive insert for the outer region where there is no cooling insert. 
Two-dimensional conduction equation in cylindrical format can be 
written as, 
𝜕2𝑇
𝜕𝑟2 +

1
𝑟
𝜕𝑇
𝜕𝑟 +

1
𝑟2
𝜕2𝑇
𝜕𝜃2 +

𝑞′′′

𝑘0
= 0 (1) 

24BIn order to solve the above equation, boundary conditions 
should be specified. As the disc is adiabatic, there is no heat 
conduction at the edge and (𝜕𝑇

𝜕𝑟
)(𝑟=𝑅2,𝜃) = 0, also ( 1

𝑟
𝜕𝑇
𝜕𝜃

)(𝑟,𝜃=0) = 0 

and ( 1
𝑟
𝜕𝑇
𝜕𝜃

)(𝑟,𝜃=𝛼) = 0 due to symmetry of the problem where 𝜃0 is 
the sectional degree. Since highly conductive material is responsible 
for the main part of the heat flux conduction, it is approximated that 
the direction of the heat flux at 𝑟 ≤ 𝑅1 is perpendicular to the insert. 
Thus, 𝑇(𝑟 = 𝑅1,𝜃) ≈ 𝑓(𝜃) is the fourth boundary condition. It 
should be noted that this assumption is also implemented in (Rocha 
et al., 2002) to obtain the temperature difference between the heat 
sink and the highly conductive inserts connected to the rim of the 
disc. Moreover, in section 4.3, consistency of this assumption is 
checked by solving the problem numerically in a 2D format. 
Comparing the results of numerical and analytical solutions, similar 
behavior and acceptable agreement between them are observed. 

25BWith the above boundary conditions, using change of variables 
to homogenize the equation, then separating variables  and finally 
nondimensionalizing the maximum temperature difference,  it can be 
concluded that, 

𝑇�1 =
Tmax − T0
q′′′A1/k0

=
1
3
𝐻1
𝑅1

−  

�
4(−1)𝑛

(𝑛𝜋)2 [
(𝑅2/𝑅1)𝜆𝑛

1 + (𝑅2/𝑅1)2𝜆𝑛
]
𝐻1
𝑅1

∞

𝑛=1

−
1
4 ��

𝑅2
𝑅1
�
2
− 1�

𝑅1
𝐻1

  

+
1
2 �
𝑅2
𝑅1
�
2
𝑙𝑛 �

𝑅2
𝑅1
�
𝑅1
𝐻1

 (2) 

26Bwhere 𝐴1 = 𝐻1𝑅1 and 𝜆𝑛 = 𝑛𝜋/𝛼 are the characteristic values. 
 
27B3.1.2. Region with highly conductive material 
28BIn order to analyze conduction along the kp blade in this region, first 
notice that the heat current which flows toward the center increases 
from 𝑞 = 0 at 𝑟 = 𝑅2 to the total current of 𝑞 = 𝑞′′′𝑡𝐴 at 𝑟 = 0; 
where 𝑞′′′ is the volumetric heat generation, 𝐴 is the total area of the 
disc and 𝑡 is the thickness of the disc. The increase experienced by 𝑞 
at an intermediate position, 𝑟, is, 
−𝑑(𝑞) = ℎ 𝑞′′′ 𝑡 𝑑𝑟 (3) 

29BWhere ℎ 𝑞′′′ 𝑡 is the amount of heat current gathered over the 
vertical surface ℎ𝑡 and ℎ = (𝐻1/𝑅1)𝑟 considering an isosceles 

triangle to represent the sector. The relation between heat and local 
temperature gradient is, 

𝑞 = 𝑘𝑝
𝐷
2 𝑡

𝑑𝑇
𝑑𝑟  (4) 

30BEliminating 𝑞 between Eqs. (3) and (4) we encounter a second 
order differential equation with following boundary conditions, 
𝑇 = 𝑇0   𝑎𝑡   𝑟 = 0 (5) 
𝑞′′′𝜋(𝑅22 − 𝑅12)𝑡

2𝑁 = 𝑘𝑝
𝐷
2 𝑡

𝑑𝑇
𝑑𝑟    𝑎𝑡   𝑟 = 𝑅1 (6) 

31BNow two different cases can be pursued: constant and variable 
cross-section inserts. For the constant cross-section, D = cte, the 
resultant second order differential equation can be integrated twice 
and by invoking boundary conditions, Eqs. (5) and (6), specifying 
𝑇 = 𝑇𝑅1 at 𝑟 = 𝑅1 and nondimensionalizing the temperature 
difference between 𝑇𝑅1and 𝑇0 , it can be concluded that, 

𝑇�2(𝑐𝑡𝑒)  =
𝑇𝑅1 − 𝑇0
𝑞′′′𝐴1/𝑘0

=
1
𝑘�𝜙

�
𝑅1
𝑅2
�
2
�
𝑅1
𝐻1
� ��

𝑅2
𝑅1
�
2
−

1
3� 

(7) 

32BFor the variable cross-section highly conductive insert, 
𝐷 = 𝐷(𝑟), by integrating twice from the differential equation: 

𝑇𝑅1 − 𝑇0 = �
𝐴

𝐷(𝑟)𝑑𝑟   
𝑅1

0
 (8) 

33Bwhere  

𝐴 =
−2
𝑘𝑝

�𝑞′′′
𝑟2

2
𝐻1
𝑅1

+ 𝑐1�  𝑤ℎ𝑒𝑟𝑒 𝑐1:  

𝑐1 =  −�
𝑞′′′𝜋(𝑅22 − 𝑅12)

2𝑁 +
𝑞′′′(𝐻1𝑅1)

2 � (9) 

34BAlso the volume fraction of highly conductive material to the 
whole sector is, 

𝜙 =
1

𝐻2𝑅2
� 𝐷(𝑟)
𝑅1

0
 𝑑𝑟 (10) 

35BIt is noted that 𝜙 is the constraint of the problem. Using 
variational calculus, function of 𝐷(𝑟) can be determined with respect 
to this constraint, Eq. (10), such that Eq. (8) is optimized, 

𝐷(𝑟) = 𝑐[(𝑅1)2 − (𝑟)2]
1
2 (11) 

36BSubstituting Eq.(11) into constraint (10), the constant factor 𝑐 
can be computed and we will have, 

𝐷(𝑟) =
2𝜙1𝐻1(𝑅1/𝑅2)2

�(𝑅1/𝑅2)�1 − (𝑅1/𝑅2)2 + sin−1(𝑅1/𝑅2)�
  

× [(𝑅2/𝑅1)2 − (𝑟/𝑅1)2]
1
2 (12) 

37BWhich 𝜙 = 𝑁 𝐷 𝑅1
𝜋𝑅22

= 𝜙1  �𝑅1
𝑅2
�
2
and when 𝑅1/𝑅2 approaches to 

unity, i.e. a complete insert, the result will become equal the one 
reported in [14] as, 

�𝐷(𝑟)�𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛𝑠𝑒𝑟𝑡 =
4
𝜋𝜙𝐻

[1 − (𝑟/𝑅)2]
1
2 (13) 

38BSimilar to the procedure implemented for constant-D 
assumption, The thermal resistance is calculated by substituting Eq. 
(12) into Eq. (8) and nondimensionalizing it, 

𝑇�2(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) =
T𝑅1 − T0

q′′′A1/k0
=

1
4𝑘�𝜙1

�
𝑅2
𝑅1
�
4
�
𝑅1
𝐻1
�  

× ��
𝑅1
𝑅2
��1 − �

𝑅1
𝑅2
�
2

+ sin−1 �
𝑅1
𝑅2
��

2

 (14) 

39BIn section 4.1, it is shown that the total thermal resistance which 
is determined by Eq. (2) plus Eq. (7) for constant cross-section and 
Eq. (2) plus (14) for variable one, has an optimum point due to 
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(𝐻1/𝑅1) provided other parameters are kept constant. Thus, 
 (𝐻1/𝑅1)𝑜𝑝𝑡 is the value at which optimum thermal resistance occurs. 

Finally, The corresponding thermal resistance of the entire disc 
is obtained by using 𝐴𝑑𝑖𝑠𝑐 instead of 𝐴1 in Eqs.(2) and (7),  

𝑇�𝐺𝑅,𝑜𝑝𝑡 =
𝑇𝑚𝑎𝑥 − 𝑇0
𝑞′′′𝜋𝑅22/𝑘0

= �
𝑇�
𝜋� �

𝑅1
𝑅2
�
2
�
𝐻1
𝑅1
�
𝑜𝑝𝑡

 (15) 

 
3.2. Fractal pattern 
Now, we consider the elemental construct of a fractal network of 
highly conductive structure as shown in Fig. 3. To design tree-shaped 
incomplete inserts, the results derived for radial configuration will be 
benefited from. It is noticeable that as the boundary conditions for the 
stem are different, the result of section 3.1 cannot be used directly for 
the total fractal configuration. Thus, the domain should be divided 
into two major parts: the most outer region where there is no highly 
conductive insert plus the region where tributaries are embedded in 
and the central part where the insert’s configuration is radial. Fig. 3 
shows these three regions with three concentric circle slices. 

 

 
Fig. 3 A sector of the disc with branching variable cross section 
configuration of highly conductive material. 

 
3.2.1. Outer region 
As was mentioned previously, derived formula for calculating 
thermal resistance for radial configuration can be used for this region. 
Only keep in mind that some notations need to be changed as the 
region boundaries are different in this case. Thus, to express the 
thermal resistance of outer region using the radial configuration 
result, beneath changes are to be done in the notations, 
𝑅1(𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3.1) → 𝐿1(ℎ𝑒𝑟𝑒), 𝐷/2 → 𝐷1/2, 𝑇0 → 𝑇𝑐, 
𝑅2 → (𝑅2 − 𝑅1 + 𝐿1) (16) 

Thus, (H1/R1) is replaced by (H1/L1), and the following relations 
for the portion between L0 and R2 can be used, 

�
𝐻1
𝐿1
� = �

𝐻1
𝐿1
�
𝑜𝑝𝑡

(𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 3.1),   

𝜙1 =
𝐷1
𝐻1

,𝐴1 = 𝐻1𝐿1 (17) 

As the result, 𝐷1(𝑟) would be, 

𝐷1(𝑟) =
2𝜙1𝐻1(𝐿1/𝑀)2

�(𝐿1/𝑀)�1− (𝐿1/𝑀)2 + sin−1(𝐿1/𝑀)�
  

[(𝑀/𝐿1)2 − (𝑟/𝐿1)2]
1
2 (18) 

where 𝑀 ≡ 𝑅2 − 𝑅1 + 𝐿1, and (𝑀/𝐿1) is, 

�
𝑀
𝐿1
� = 1 + �

𝑅2
𝐿1
� − �

𝑅1
𝐿1
�  

          = 1 + 𝑅�1 �
𝐻1
𝐿1
�
𝑜𝑝𝑡

1
2

��
𝑅2
𝑅1
� − 1� (19) 

Applying above notations in the equation derived previously in 
section 3.1, the thermal resistances corresponding to both regions, the 
one without highly conductive inserts plus region with tributary part, 
for constant and variable cross-section inserts are expressed by Eqs. 
(20) and (21), respectively. 

𝑇�1(𝑐𝑡𝑒) =
𝑇𝑚𝑎𝑥 − 𝑇𝑐
𝑞′′′𝐴1/𝑘0

=  

 
1
3
𝐻1
𝐿1

−�
4(−1)𝑛

(𝑛𝜋)2 [
(𝑀/𝐿1)𝜆𝑛

1 + (𝑀/𝐿1)2𝜆𝑛
]
𝐻1
𝐿1

∞

𝑛=1

 
 

 −
1
4 ��

𝑀
𝐿1
�
2
− 1�

𝐿1
𝐻1

+
1
2 �

𝑀
𝐿1
�
2 𝐿1
𝐻1

𝑙𝑛 �
𝑀
𝐿1
� 

 

+
1
𝑘�𝜙1

�
𝐿1
𝐻1
� ��

𝑀
𝐿1
�
2
−

1
3� 

(20) 

  

𝑇�1(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) =
𝑇𝑚𝑎𝑥 − 𝑇𝑐
𝑞′′′𝐴1/𝑘0

= 
 

1
3
𝐻1
𝐿1

−�
4(−1)𝑛

(𝑛𝜋)2 [
(𝑀/𝐿1)𝜆𝑛

1 + (𝑀/𝐿1)𝜆𝑛
]
𝐻1
𝐿1

∞

𝑛=1

 
 

−
1
4 ��

𝑀
𝐿1
�
2
− 1�

𝐿1
𝐻1

+
1
2 �

𝑀
𝐿1
�
2 𝐿1
𝐻1

𝑙𝑛 �
𝑀
𝐿1
� 

 

+
1

4𝑘�𝜙1
�
𝐿1
𝐻1
� �
𝑀
𝐿1
�
4
 

 

× ��sin−1 �
𝐿1
𝑀�� + �

𝐿1
𝑀� (1 − �

𝐿1
𝑀�

2
)1/2�

2

 (21) 

 
3.2.2. Central part 
As the boundary conditions for this part are different, we cannot use 
(𝐻1/𝐿1 )𝑜𝑝𝑡 for the (𝐻0/𝐿0 ) obtained from section 3.1; instead, it 
can be written as,  

�
𝐻0
𝐿0
� ≅ �

𝛼
2� ,        𝐴0 = 𝐻0𝐿0 (22) 

where 𝛼 is the tip angle (Fig. 2) which is the function of other 
geometric parameters, i.e. the number of 𝐿1 or 𝐴1 elements, N, and 
the number of branches 𝐿1 which is connected to the radial inserts, n. 
thus, 

𝛼 =
2𝜋𝑛
𝑁 =

2𝜋𝑛
2𝜋𝑅1/2𝐻1

=
2𝑛
𝑅�1

�
𝐻1
𝐿1
�
𝑜𝑝𝑡

1/2
 (23) 

In Eq. (23), 𝑅�1 ≡ 𝑅1/𝐴1
1/2 and the area 𝐴0 of the central sector is, 

𝐴0 ≅ 𝑛𝑅�1 �
𝐻1
𝐿1
�
𝑜𝑝𝑡

1/2
𝐴1 �1 −

1
𝑅�1
�
𝐻1
𝐿1
�
𝑜𝑝𝑡

−1/2
�
2

 (24) 

Again, two scenarios can be considered for the cross-section, i.e. 
variable and constant. In the case that 𝐷0 and 𝐷1 are assumed 
constant, the temperature difference between 𝑇𝑐 and 𝑇0 is determined 
by eliminating q between Eqs. (3) and (4), then integrating twice 
from the resultant differential equation, invoking 𝑇 = 𝑇0 at 𝑟 = 0 and 
another boundary condition from the radial pattern which is, 

𝑘𝑝𝐷0(𝐿0)𝑡 �
𝑑𝑇
𝑑𝑟�𝑟=𝐿0

 
 

                             ≅ 𝑞′′′𝑡 �𝑛𝐴1 + �
𝛼
2�

(𝑅22 − 𝑅12)� (25) 
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This boundary condition expresses that the heat generated in the 
outer region is gathered and transformed to the heat sink in the center 
by means of stem embedded in the central region. The temperature 
difference for constant-D assumption is then nondimensionalized and 
as specified before, 𝑇 = 𝑇𝑐 at = 𝑅1; hence, 

𝑇�2(𝑐𝑡𝑒) =
𝑇𝑐 − 𝑇0
𝑞′′′𝐴1/𝑘0

=
�𝑅�1 − �𝐿1𝐻1

�
𝑜𝑝𝑡

1/2
�

𝑘�𝜙1𝐷�
�
𝐿1
𝐻1
�
𝑜𝑝𝑡

1/2
  

× [
2
3𝑛𝑅

�1 �
𝐻1
𝐿1
�
𝑜𝑝𝑡

1/2
�1 −

(𝐿1/𝐻1)𝑜𝑝𝑡
1/2

𝑅�1
�

2

+ 𝑛 + 𝑛𝑅�1 �
𝐻1
𝐿1
�
𝑜𝑝𝑡

1/2
  

× ��
𝑅2
𝑅1
�
2
− 1�] (26) 

For variable cross-section highly conductive insert, after 
integrating twice from the differential equation and invoking above 
boundary conditions, we have, 

𝑇(𝑟) − 𝑇0 = �
−1

𝑘𝑝𝐷0(𝑟) ��
𝐻0
𝐿0
� 𝑞′′′𝑟2 + 𝑐1� 𝑑𝑟

𝑟

0
,   

𝑐1 = −𝑞′′′ ��
𝐻0
𝐿0
� (𝑅22 − 𝑅12) + 𝑛𝐴1 + 𝐴0� (27) 

Again, volume fraction is the constraint, 

𝜙 =
𝐴𝑝
𝜋𝑅22

  

=
1
𝜋𝑅22

�𝑁� 𝐷1(𝑟)
𝐿1

0
𝑑𝑟 + (𝑁/𝑛)� 𝐷0(𝑟)𝑑𝑟

𝐿0

0
� (28) 

Relation for 𝜙 can be improved further as,   

𝜙 = �
𝐿1
𝐻1
�
1/2

𝑅�1
(−1) �

𝑅1
𝑅2
�
2
𝜙1  

+ �
𝐿1
𝐻1
�
1/2

𝑅�1 �
1
𝑛𝑅22

�� 𝐷0(𝑟)𝑑𝑟,
𝐿0

0
  

𝜙1 =
1

𝐻1𝐿1
� 𝐷1(𝑟)
𝐿1

0
 𝑑𝑟 (29) 

Now, optimizing Eq. (27) regarding to Eq. (29), we have, 
𝐷0(𝑟) =  

           �
2

𝐶1𝐶2
��
𝑅2
𝑅1
�
2 (𝜙 − 𝐶3𝜙1)𝐻0

𝐶42
�𝐶42 − �

𝑟
𝐿0
�
2
�
1/2

 (30) 

where  
𝐶1 = sin−1(1/𝐶4) + (1/𝐶4)�1 − (1/𝐶4)2,   

𝐶2 = �1−
1
𝑅�1
�
𝐿1
𝐻1
�
1/2
�
2

,𝐶3 =
1
𝑅�1
�
𝐿1
𝐻1
�
1/2

�
𝑅1
𝑅2
�
2

,  

𝐶4 = �1 +
1

𝑅�1𝐶2
�
𝐿1
𝐻1
�
1
2

+
1
𝐶2
��
𝑅2
𝑅1
�
2
− 1��

1/2

 (31) 

Substituting Eq. (30) into Eq. (27) and nondimensionalizing it, 
the thermal resistance for this region can be expressed as, 

𝑇�2(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) =
𝑇𝑐 − 𝑇0
𝑞′′′𝐴1/𝑘0

  

= �
2
𝛼� �

𝑅1
𝑅2
�
2 𝐶1𝐶2𝐶42

2𝑘�(𝜙 − 𝐶3𝜙1)
×  

[�𝑅�12 �
𝛼
2� �

𝑅2
𝑅1
�
2
�1 − �

𝑅1
𝑅2
�
2
� + 𝑛� sin−1 �

1
𝐶4
�  

+ �
𝐴0
𝐴1
��sin−1(1/𝐶4) − �

𝐶42

2 �𝐶1∗�] (32) 

where 𝐶1∗ is the conjugate of  𝐶1.     

Furthermore, the global thermal resistance for branching pattern, 
𝑇�𝐺𝐵,𝑜𝑝𝑡, can be written as, 

𝑇�𝐺𝐵,𝑜𝑝𝑡 =
𝑇𝑚𝑎𝑥 − 𝑇0
𝑞′′′𝜋𝑅22/𝑘0

= �
𝑇�

𝜋𝑅�12
� �
𝑅1
𝑅2
�
2
 (33) 

 
4. RESULT AND DISCUSSION 

Thermal resistance of radial and fractal configurations are analyzed 
in this section. For each structure, more attention is paid to the width 
of the highly conductive insert cross-section. Moreover, the thermal 
resistance of variable cross-section is compared with that of constant 
cross-section configuration for different conditions. In a nutshell, it is 
concluded that variable cross-section always decreases the thermal 
resistance but when the complexity of the control volume increases, 
the percentage of decrease in thermal resistance diminishes. Worth to 
mention that even in the latter case, the result is significant in the 
event that expense of highly conductive material comes to picture.  
 
4.1 Radial pattern 
The optimum width of cross-section for radial pattern is obtained 
using Eq. (12) as a function of the length of the insert keeping other 
parameters as constants, Fig. 4. This figure is sketched for different 
𝑅1/𝑅2 ratios. Since the amount of highly conductive material 
allocated to the element is assumed to be constant (𝜙 = 𝑐𝑡𝑒), it is 
obvious that the mean 𝐷𝑜𝑝𝑡(𝑟) decreases as 𝑅1/𝑅2 increases.  

Figure 5 shows the thermal resistance of constant-D and D=D(r) 
configurations for different 𝑅1/𝑅2 ratios. A similar behavior can be 
observed in this figure, i.e.  in both cases, constant and variable 
cross-sections, there is an optimum point due to aspect ratio of the 
elemental construct, 𝐻1/𝑅1. Also, as 𝑅1/𝑅2 increases, the decrease in 
thermal resistance is more obvious.  

 

 
Fig. 4 𝐷𝑜𝑝𝑡(𝑟) at different 𝑅1/𝑅2. 

 
Because of the complexity of Eq. (2) plus (7) and Eq. (2) plus 

(14), it is hard to obtain an analytic relation for optimum thermal 
resistance. Thus, optimum aspect ratios and optimum thermal 
resistances are determined by solving the equations numerically as 
shown in Fig. 6 (a,b). These figures illustrate that the decrease in 
both of the optimum values intenifies as 𝑅1/𝑅2 increases and 𝑘�𝜙 
decreases. The reason for this behavior lays in the fact that by 
increasing the 𝑅1/𝑅2 ratio, the difference between optima of variable  

𝒌�𝝓 = 𝟑𝟎 

𝑨𝒆𝒍𝒆𝒎𝒆𝒏𝒕 = 𝟎.𝟏 

𝒓 

𝑫𝒐𝒑𝒕(𝒓) 
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Fig. 5 Thermal resistance for different values of 𝑅1/𝑅2  

�𝑘� = 300,𝜙 = 0.1�. 
 

 
(a) 

 
(b) 

Fig. 6 (a) Optimum aspect ratio and (b) optimum thermal resistance 
for different values of 𝑘�𝜙. 

and constant cross-section inserts grows and the increment of 𝑘�𝜙 
causes the optimum thermal resistance to become less dependent 
upon the shape of the inserts. Also, it is clear from Fig. 6 that as 𝑘�𝜙 
and 𝑅1/𝑅2 increase, the optimum aspect ratios and thermal 
resistances decrease, expectedly. 

 
4.1.1. Comparison 
In this section, we try to compare the global thermal resistances of 
configurations with incomplete and complete inserts while cross-
section of highly conductive inserts is considered variable. Also, 
decrease in global resistance by using of variable cross section highly 
conductive inserts instead of constant one is investigated. Figure 7 
shows the percentage of difference in optimum global thermal 
resistance between complete and incomplete variable cross-section 
inserts for different 𝑘�𝜙 defined as, 

𝛿 = 100 × �
IITR − CITR

CITR � (34) 

 
where IITR and CITR are incomplete and complete insert thermal 
resistances, respectively. This figure illustrates that there exists a 
range of 𝑅1/𝑅2 where the global thermal resistance of incomplete 
inserts is less than that of complete one; but this range decreases as 
𝑘�𝜙 increases. The possible reason is at smaller 𝑘�𝜙s and 𝑅1/𝑅2 ≈ 1.0 
the cooling power is not efficient enough to change the direction of 
heat flux considerably to inserts instead of heat sink. Therefore, the 
optimized condition will be when 𝑅1/𝑅2 < 1.0 and as a result, 
because of the constraint of the problem, the thickness of inserts is 
proper enough to affect on heat flux, efficiently.  
 

 
 
Fig. 7 Difference in optimum global thermal resistance between 
incomplete and complete inserts �𝐷 = 𝐷𝑜𝑝𝑡(𝑟)�. 
 

Figure 8 shows the percentage of decrease in optimum global 
thermal resistance using variable cross-section highly conductive 
insert defined as, 

𝜀 = 100 × �
𝑉𝐺𝑅 − 𝐶𝐺𝑅

CGR � (35) 

where VGR and CGR are global thermal resistances of variable and 
constant cross-sections, respectively. This figure illustrates that the 
percentage of decrease rises as 𝑅1/𝑅2 increases and 𝑘�𝜙 reduces. As a 
matter of fact, 2 factors, 𝑅1/𝑅2 and 𝑘�𝜙, play significant role here. 

𝑻� 

𝑯𝟏/𝑹𝟏 

𝑹𝟏/𝑹𝟐 = 𝟏 

𝑹𝟏/𝑹𝟐 = 𝟎.𝟖 

𝑹𝟏/𝑹𝟐 = 𝟎.𝟗 

𝑹𝟏/𝑹𝟐 

𝒌�𝝓 = 𝟏𝟎 

𝒌�𝝓 = 𝟑𝟎 

𝒌�𝝓 = 𝟏𝟎𝟎 

𝑹𝟏/𝑹𝟐 

𝑻�𝒐𝒑𝒕 

𝒌�𝝓 = 𝟏𝟎 

𝒌�𝝓 = 𝟑𝟎 

𝒌�𝝓 = 𝟏𝟎𝟎 

�
𝑯𝟏

𝑹𝟏
�
𝒐𝒑𝒕

 

𝟏𝟎𝟎 

𝟑𝟎 

𝟏𝟎 

𝒌�𝝓 = 𝟑 

𝑹𝟏/𝑹𝟐 
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Fig. 8 Difference in optimum global thermal resistance between 
incomplete inserts; 𝐷 = 𝑐𝑡𝑒 and 𝐷 = 𝐷𝑜𝑝𝑡(𝑟). 
 
In small 𝑅1/𝑅2s, with increasing 𝑘�𝜙, the shape of inserts doesn’t 
change the thermal resistance, considerably. In other words, in small 
𝑅1/𝑅2s, the factor of 𝑘�𝜙 has the dominant impact on performance. 
Furthermore, at this amount of 𝑅1/𝑅2s, the freedom of maneuver is 
limited and the shape of inserts doesn’t have considerable change, 
compared with constant D.   
In larger 𝑅1/𝑅2s, the shape of inserts has the dominant impact due to 
the fact that the insert length is stretched enough and its shape is 
completely different from constant conducting path. In this condition, 
heat resistance difference corresponding to disc with variable and 
constant inserts is going to be independent of  𝑘�𝜙.  
The maximum percentage of decrease in global thermal resistance is 
about 7.4 % which occurs at 𝑅1/𝑅2 = 1 independently from 𝑘�𝜙. 

 
4.2. Branching pattern 
The optimum width of highly conductive insert for stem 𝐷0(𝑟) and 
tributary 𝐷1(𝑟) which were determined in Eqs. (18) & (30) are 
plotted in Fig. 9 for different 𝑅�1. This figure illustrates that 𝐿0 
increases with 𝑅�1, while 𝐿1 is not so sensible.  

 

 
Fig. 9 Optimum width of highly conductive inserts for stem 𝐷0(𝑟) 
and tributary inserts 𝐷1(𝑟) (𝑘�𝜙 = 30, 𝑅1/𝑅2 = 0.8, 𝐴1 = 0.1). 

Figure 10 shows the thermal resistance for variable and constant 
cross-section highly conductive inserts using Eqs. (20), (21), (26) & 
(32). For all the values of 𝜙1, thermal resistance corresponding to 
constant D configuration is greater than that of variable cross-section 
configuration and also they have a behavior similar to the radial 
pattern. 
 

 
Fig. 10 Thermal resistance for variable and constant cross-section 
highly conductive inserts at 𝑘�𝜙 = 30, 𝑅1/𝑅2 = 0.9. 
 

It is demonstrated from Fig. 10, the thermal resistance has an 
optimum due to 𝜙1 but because of the complexity of the equation 
derived for the thermal resistance at section 3.2, the optimum thermal 
resistance is determined numerically for both cases, constant and 
variable cross-sections.  

As shown in Fig. 11, for two different 𝑘�𝜙s, variable and 
constant cross-section configurations have a similar trend and both 
decrease as 𝑅1/𝑅2 increases.  

 

 
Fig. 11 Optimum thermal resistance for variable and constant cross-
section highly conductive inserts at 𝑅�1 = 5. 
 

Figure 12 shows the percentage of decrease in optimum global 
thermal resistance when variable cross-section highly conductive 
inserts are utilized. This figure illustrates that the decrease in this 

𝟑𝟎 𝟏𝟎 𝒌�𝝓 = 𝟑 

𝑹𝟏/𝑹𝟐 

𝟏𝟎𝟎 

𝑫𝟎(𝒓),𝑫𝟏(𝒓) 
 

𝑫𝟏(𝒓) 

𝑫𝟎(𝒓) 

𝑹�𝟏 = 𝟏𝟎 𝑹�𝟏 = 𝟕 𝑹�𝟏 = 𝟓 𝑹�𝟏 = 𝟒 

𝒓 

𝒌�𝝓 = 𝟓𝟎 

𝒌�𝝓 = 𝟑𝟎 

𝑻�𝒐𝒑𝒕 

𝑹𝟏/𝑹𝟐 

𝑹�𝟏 = 𝟓 

𝑻� 

𝝓𝟏 
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value is less in compare with radial patterns and it is concluded that 
increasing the complexity of the shape when volume is specified, 
cannot decrease the optimum global resistance anymore. Moreover, it 
is evident that the decrement of optimum global thermal resistance 
increases with 𝑅�1. It is physically logical; in fact, with increasing the 
dimension of disc, the shape of inserts plays more contribution in 
reducing the thermal resistance, compared to disc with constant 
thickness of inserts. 
 

 
 
Fig. 12 Decrease in global thermal resistance using variable cross-
section highly conductive insert for 𝑘�𝜙 = 30. 

 
4.3. Numerical results and comparison 
Numerical results presented in this section can be used to validate the 
analytical solution provided beforehand. Because there is no 
approximation for the numerical scheme and that the conduction 
equation is solved in its two dimensional format throughout the 
whole domain. On the other hand, since the optimum thermal 
resistances are obtained based on constructal theory, here is a suitable 
opportunity to examine validity of this strategy. Because, the 
absolute optimal thermal resistance is obtained here, numerically. 
Besides, since the speed of numerical method in solving a certain 
case is considerably less than analytical one, conscientiously thus it is 
preferred to use the analytical method if there is an acceptable 
agreement with the numerical one.  

There are two different domains to be solved and an interface 
between them: the region with high conductivity material and the low 
conductivity region with volumetric heat generation, 𝑞′′′. Thus, the 
steady state conduction equations for these two different regions can 
be solved, respectively: 
𝑘𝑝∇2𝑇 = 0 (36) 
𝑘0∇2𝑇 = −𝑞′′′ (37) 

Because of the symmetry existed in the geometry, a sector of the 
disc is solved, numerically. 𝜕𝑇/𝜕𝑛 = 0 is the boundary condition for 
all the boundaries except the tip of the sector where a condition of 
constant temperature is specified which in fact is the temperature of 
the heat sink. Also, n is the normal vector to each boundary. For the 
interface, it is assumed that the heat flux is conserved while the 
temperature is equal for both domains at common nodes. 

The equations of 2D conduction are solved numerically using 
MATLAB partial differential equations toolbox code (MATLAB) 

with unstructured triangular elements. The appropriate mesh size is 
obtained by satisfying the convergence criterion of Eq. (38): 

𝛿 = �
𝑇�𝑚𝑎𝑥
𝑗 − 𝑇�𝑚𝑎𝑥

𝑗+1

𝑇�𝑚𝑎𝑥
𝑗 � < 0.001 (38) 

where 𝑇�𝑚𝑎𝑥
𝑗+1  is the maximum thermal resistance by means of using 

quadrupled elements relative to 𝑇�𝑚𝑎𝑥
𝑗 . Table. 1 shows the results of 

the above grid study. It is found that refining three steps is enough to 
satisfy the convergence criterion and the results would be 
independent from the mesh size. 
 
Table 1 Grid independency test for 𝑅�1 = 4, 𝑁 = 10.94, 𝑘� = 300,

𝐿�0 = 1.98, 𝜙 = 0.1, 𝑅1/𝑅2 = 0.9 𝑎𝑛𝑑 𝐴1 = 0.05 
Number of elements 𝑇�𝑚𝑎𝑥 𝛿 

3720 0.664703 0.001882 
14882 0.665954 0.000544 
59528 0.666316 0.000178 

238112 0.666435  
 

 
(a) 

 
(b) 

Fig. 13 Temperature distribution contours for cases (a) without 
conductive insert 𝑇�𝑚𝑎𝑥 = 26.01 (b) with variable cross-section 
highly conductive insert 𝑇�𝑚𝑎𝑥 = 0.666 at 𝑅�1 = 4, 𝑁 = 10.94, 𝑘� =
300, 𝐿�0 = 1.9767, 𝜙 = 0.1,𝑅1/𝑅2 = 0.9 & 𝐴1 = 0.05. 
 

Figure 13 shows the temperature distribution for a sector (a) 
without highly conductive material (b) with these inserts 
incompletely distributed through the sector with two branches. The 
figure demonstrates that there is a considerable decrease in maximum 
temperature when highly conductive inserts are used which shows 
the effectiveness of such a cooling system. To compare these results 
with analytical solution, all of the parameters are non-
dimensionalized like section 3. 

Figure 14 shows a comparison between numerical results and 
analytical solution for two 𝑅1/𝑅2 cases. This figure portrays similar 
behaviours for two cases.  

𝟏𝟐 

𝑹�𝟏 = 𝟓 

𝟖 

𝑹𝟏/𝑹𝟐 
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Fig. 14 Numerical results and analytical solution at 𝑘� = 300. 

 
Moreover, it is observed from this figure that there is a good 

consistency between the results specially for the case with 
𝑅1/𝑅2 = 0.8. The present difference between the numerical and 
analytical results are completely logical as in the analytical solution 
we assumed a one-dimensional conducting equation for the region 
with highly conductive material. These consistent results present the 
validity of this assumption and also efficiency of constructal theory 
in optimizing the flow resistances. 
 

5. CONCLUSION 
Incomplete variable cross-section highly conductive networks for 
radial and tributary configurations are investigated in this paper. The 
width of inserts is determined using variational calculus. The thermal 
resistance for constant and variable cross-section cases is solved 
analytically and it is shown that there is a decrease in thermal 
resistance for all conditions when variable cross-section inserts are 
used. But this increase in the complexity of the problem in tributary 
case is not as effective as in radial configuration in decreasing the 
thermal resistance. However, incomplete highly conductive inserts in 
some specific conditions have an advantage over the complete inserts 
which gives the same and even lower thermal resistance. Finally, as 
some approximations were used in analytical solution which the most 

important of them was the assumption of solving one-dimensional 
conduction equation for the region with highly conductive material 
and also the optimization process was carried out based on 
constructal theory, a numerical solution was performed to validate 
the analytical results where an acceptable consistency was observed. 
 
NOMENCLATURE 
𝐴 area (m2) 
𝐷 width of insert (m) 
k0 thermal conductivity of heat generating material (W/m K) 
kp high-thermal conductivity (W/m K) 
𝑘�  conductivity ratio (kp/k0) 
𝐿 length of the insert (m) 
n number of peripheral elements 
N number of sectors 
q heat current (W) 
𝑞′′′ volumetric heat generation rate (W/m3) 
R radius (m) 
R1 inner radius (m) 
R2 outer radius (m) 
𝑅� dimensionless radius (𝑅1/𝐴1

1/2)  
t thickness of the disc (m) 
T temperature (K) 
T0 sink temperature (K) 
Tc corner temperature (K) 

 
Greek symbols 
𝛼 tip angle of the sector 
𝜙 volume fraction of high-conductivity material 
𝜃 angle  
𝜃0 angle of sector 
𝜆𝑛 characteristic values 

 
Subscripts 
max Maximum 
opt Optimum 
0 central position 
1 position near periphery 
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