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ABSTRACT 
A mathematical model is presented to analyse the steady boundary layer slip flow and mass transfer with nth order chemical reaction past a porous 
plate embedded in a Darcy porous medium. Velocity as well as mass slips are considered at the boundary. The governing PDEs are transformed into 
self-similar nonlinear ODEs by similarity transformations. The reduced nonlinear equations are solved numerically. The momentum boundary layer 
thickness is reduced for increase of permeability and suction parameters, whereas it increases with blowing parameter. The increase of velocity slip 
parameter reduces the momentum boundary layer thickness and also enhances the mass transfer from the plate. Importantly, due to increase of mass 
slip the concentration and mass transfer decrease.   
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1. INTRODUCTION 
The development of boundary layer due to the flow of viscous fluid 
past a flat plate is very important in fluid dynamics. The flow and heat 
transfer over a flat plate has been widely studied from both theoretical 
and experimental standpoint in the past few decades. The formation of 
the velocity boundary layer due to the flow on a flat plate was first 
discussed by Blasius (1908) and the heat transfer for this problem was 
investigated by Pohlhausen (1921). Howarth (1938) numerically 
studied the various aspects of the Blasius flat plate flow problem. The 
existence of a solution for the flow past a flat plate was established by 
Abu-Sitta (1994). Further some important aspects of flat plate flow 
were studied by Wang (2004), Cortell (2005) and Batallar (2008). 

Recently, considerable attention has been devoted to the study of 
boundary layer flow of a Newtonian fluid past a flat plate embedded in 
a fluid saturated porous medium because of its wide applications in 
engineering processes, especially in the enhanced recovery of 
petroleum resources and packed bed reactors and in chemical 
engineering. Cheng (1977) and Cheng and Minkowycz (1977) 
explained the free convective flow in a saturated porous medium. Vafai 
and Tien (1981) investigated the boundary and inertia effects on flow 
and heat transfer in porous media. Kumari et al. (1990) reported the 
non-Darcian effects on forced convective heat transfer over a flat plate 
in a highly porous medium. Mukhopadhyay and Layek (2009) 
presented the radiation effects on forced convective flow and heat 
transfer over a porous plate in a porous medium. Many important 
characteristics of Darcian and non-Darcian convection about a plate 
were discussed by Pop and Takhar (1983), Hsu and Cheng (1985), 
Hong et al. (1987) and Rashad (2008). 

In addition to the heat transfer, the mass transfer phenomenon in 
porous medium is also grabbed attention of researchers due to its huge 
applications in chemical industries, reservoir engineering and many 

other technological processes. Lai and Kulacki (1991) discussed the 
coupled heat and mass transfer by mixed convection from a vertical 
plate in a saturated porous medium. Postelnicu (2007) described the 
influence of chemical reaction on heat and mass transfer by natural 
convection from vertical surface in porous media by taking into account 
the Soret and Dufour effects. 

In every the investigations mentioned above, the no-slip condition 
at the boundary was assumed. The assumption of no-slip condition does 
no longer valid under certain circumstances and should be replaced by a 
partial slip boundary condition relating to the shear rate at the 
boundary. The partial slip condition had been used in studies of fluid 
flow past permeable wall by Beavers and Joseph (1967). Martin and 
Boyd (2006) considered the momentum and heat transfer in a laminar 
boundary layer flow over a flat plate with slip boundary condition. Aziz 
(2010) studied the boundary layer slip flow over a flat plate with 
constant heat flux condition at the surface and in this paper the local 
similarity was appeared in the slip boundary condition. Very recently, 
Bhattacharyya et al. (2011a) discussed the MHD slip flow over a flat 
plate. The effects of slip boundary condition on the flow of Newtonian 
fluid due to a stretching sheet ware explained by Andersson (2002) and 
Wang (2002). 

The aim of this paper is to study the steady boundary layer slip 
flow and mass transfer with chemical reaction past a porous plate 
placed in porous medium using the Darcy model. Mass slip condition in 
addition to the velocity slip is also considered which gives interesting 
features regarding such flow. The slip model of Andersson (2002) is 
taken here in some modified form (2011). A complete self-similar set of 
equations are obtained. No local similarity is appeared at the boundary 
conditions. The equations with the boundary conditions are then solved 
numerically using shooting method. Computed numerical results are 
plotted and the characteristics of the flow and mass transfer are 
thoroughly analyzed. 
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2. FLOW PROBLEM FORMULATION 
Consider the steady two-dimensional boundary layer flow of a viscous 
incompressible fluid and mass transfer with nth order chemical reaction 
past a porous flat plate in porous medium. The governing equations of 
motion and the concentration equation may be written in usual notation 
as 
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where u and v are velocity components in x- and y-directions 
respectively, υ (=µ/ρ) is the kinematic fluid viscosity, ρ is the fluid 
density, µ is the coefficient of fluid viscosity, U∞ is the free stream 
velocity, k is the permeability of the porous medium, C is the 
concentration, D is the diffusion coefficient, C∞ is the concentration in 
the free stream and n is the order of chemical reaction. R(x) is the 
variable reaction rate and is given by R(x)=R0(L/x), L is the reference 
length and R0 is a constant. The boundary conditions with partial slip 
for the velocity and the concentration are given by 
u=L1(∂u/∂y), v=vw at y=0; u→U∞ as y→∞ (4) 
and C=Cw+D1(∂C/∂y) at y=0; C→C∞ as y→∞. (5) 
Here L1=L*(Rex)1/2 is the velocity slip factor and D1=D*(Rex)1/2 is the 
mass slip factor with L* and D* being initial values of velocity and mass 
slip factors having same dimension of length and Rex being the local 
Reynolds number and Rex=U∞x/υ, Cw is the concentration of the plate 
assumed to be constants. Here vw is prescribed distribution of suction or 
blowing through the porous plate and is given by vw=v0/(x)1/2, v0 being 
constant with v0<0 suction and v0>0 blowing. 
We now introduce the stream function ψ(x,y) as 
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Now for relations in (6), the continuity equation (1) is satisfied 
automatically. Using (6), the momentum equation (2) and the 
concentration equation (3) take the following forms: 
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 The boundary conditions in (4) for the velocity components reduce to 
2
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Next, we introduce the dimensionless variables for ψ and C as given 
below: 

( ) and ( ) ( )wU x f C C C Cψ υ η φ η∞ ∞ ∞= = + − , (10) 
where η is the similarity variable and is defined as η=(y/x)(Rex)1/2. 
In view of relations in (10) we finally obtain following self-similar 
equations as 
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where Dax=k/x2=k0/x is the local Darcy number, k=k0x, k0 is a constant, 
Sc=υ/D is the Schmidt number and β=LR0(Cw−C∞)n−1/U∞ is the 
reaction rate parameter. It is to be noted that the chemical reaction is 
destructive if β>0 and the chemical reaction is constructive if β<0. 
Now the equation (11) can be written as 

*1 ( 1) 0
2

f ff k f′′′ ′′ ′+ − − = , (13) 

where k*=1/(DaxRex) is the permeability parameter of the porous 
medium [Mukhopadhyay and Layek (2009)]. 
The boundary conditions (9) and (5) reduce to the following forms: 
f(η)=S, f′(η)=δf″(η) at η=0;  f′(η)→1 as η→∞ (14) 
and φ(η)=1+γφ′(η) at η=0; φ(η)→0 as η→∞, (15) 
where S=(−2vw/U∞)(Rex)1/2=−2v0/(U∞υ)1/2 is the suction/blowing 
parameter, S>0 (i.e. v0<0) corresponds to suction and S<0 (i.e. v0>0) 
corresponds to blowing, δ=L*U∞/υ is the velocity slip parameter and 
γ=D*U∞/υ is the mass slip parameter. 

3. NUMERICAL METHOD FOR SOLUTION 
The nonlinear coupled differential equations (13) and (12) along with 
the boundary conditions (14) and (15) form a two point boundary value 
problem (BVP) and are solved using shooting method [Bhattacharyya 
(2011a,b,c), Bhattacharyya et al. (2011b,c)], by converting it into an 
initial value problem (IVP). In this method we have to choose a suitable 
finite value of η→∞, say η∞. We set following first-order system 
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2
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and 1,
2
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with the boundary conditions  
f(0)=0, p(0)=δq(0), φ(0)=1+γr(0). (18) 
To solve (15) and (16) with (18) as an IVP we must need values for 
q(0) i.e. f″(0) and r(0) i.e. φ′(0) but no such values are given. The initial 
guess values for f″(0) and φ′(0) are chosen and applying fourth order 
Runge-Kutta method a solutions is obtained. We compare the 
calculated values of f′(η) and φ(η) at η∞(=20) with the given boundary 
conditions f′(η∞)=1 and φ(η∞)=0 and adjust values of f″(0) and φ′(0) 
using “secant method” to give better approximation for the solution. 
The step-size is taken as ∆η=0.01. The process is repeated until we get 
the results correct up to the desired accuracy of 10−6 level. 

4. RESULTS AND DISCUSSION 
The numerical computations is performed for several values of 
dimensionless parameters viz., the permeability parameter k*, 
suction/blowing parameter S, Schmidt number Sc, the reaction rate 
parameter β, order of reaction n, the velocity slip parameter δ and mass 
slip parameter γ. For illustrating obtained data, some figures are plotted 
and are explained in detailed. 

 

 
Fig. 1 Velocity f′(η)  and shear stress f″(η) profiles for k*=0 and δ=0. 

   
At first, for the verification of the accuracy of the applied 

numerical method we compare our results corresponding to the velocity 
and shear stress profiles for k*=0 and δ=0 (i.e. in non-porous medium 



Frontiers in Heat and Mass Transfer (FHMT), 3, 043006 (2012)
DOI: 10.5098/hmt.v3.4.3006

Global Digital Central
ISSN: 2151-8629

    3 

and in absence of slip at the boundary) with the available published 
results of Howarth (1938) in Fig. 1 and are found in excellent 
agreement. 

 

 
Fig. 2 Velocity profiles f′(η) for various values of k*. 

 

 
Fig. 3 Concentration profiles φ(η) for various values of k*. 

 
Now, we see the influence of the permeability parameter k* on the 

velocity and concentration profiles. Fig. 2 shows the variation in 
velocity field for several values of k* and corresponding concentration 
profiles are depicted in Fig. 3. With increase of k* the dimensionless 
velocity f′(η) along the plate increases and consequently the momentum 
boundary layer thickness decreases. With a rise in permeability of the 
medium, the regime becomes more porous. As a consequence, the 
Darcian body force decreases in magnitude (as it is inversely 
proportional to the permeability). The Darcian resistance acts to 
decelerate the fluid particles in continua. This resistance diminishes as 
permeability of the medium increases. So progressively less drag is 
experienced by the flow and flow retardation is thereby decreased. Thus 
the permeability parameter enhances the fluid motion inside the 
boundary layer.  From Fig. 3, it is observed that the concentration φ(η) 
at a point decreases with k*. Increase in the permeability parameter k* 
causes to decrease the solute boundary layer thickness. The rate of mass 
transfer is enhanced with increase of k*. 

We now discuss deviation of velocity and concentration 
distribution for the variation of suction/blowing parameter S in porous 
medium. The velocity and concentration distributions for various values 
of S are shown in Fig. 4 and Fig. 5, respectively. With the increasing S 
(S>0), fluid velocity is found to increase [Fig. 4] i.e. suction causes to 
increase the velocity of the fluid inside the boundary layer. By sucking 
fluid particles through permeable plate the momentum boundary layer 
thickness is reduced and consequently, the velocity increases. But when 
fluid particles are injected i.e. for blowing case (S<0) the momentum 
boundary layer thickness becomes larger. Fig. 5 shows that the 

dimensionless concentration φ(η) decreases with the increasing suction 
parameter and the solute boundary layer thickness decreases with the 
suction parameter (S>0). Due to this the rate of mass transfer also 
increases. Whereas, the concentration increases with increase of 
blowing (S<0). 

 

 
Fig. 4 Velocity profiles f′(η) for various values of S. 

 

 
Fig. 5 Concentration profiles φ(η) for various values of S. 

 

 
Fig. 6 Concentration profiles φ(η) for various values of Sc. 

 
Figures 6 – 8 demonstrate the dimensionless solute profiles for 

various values of Schmidt number Sc, reaction rate parameter β and the 
order of reaction n in presence mass slip. The concentration at a point 
and the solute boundary layer thickness rapidly decrease with 
increasing values of Sc. Due to increase Schmidt number the diffusion 
coefficient decreases and consequently the thickness of solute boundary 
layer reduces. The destructive reaction (β>0) causes a decrease of 
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concentration and reversely the constructive reaction (β<0) results an 
increase of concentration. On other hand, the outcome of increase of 
reaction order is very small increment of concentration and when n 
increases continuously the concentration increment almost died out 
after certain level. 
 

 
Fig. 7 Concentration profiles φ(η) for various values of β. 

 

 
Fig. 8 Concentration profiles φ(η) for various values of n. 

 

 
Fig. 9 Velocity profiles f′(η) for various values of δ. 

 
Next, we shall pay our attention to notice how the velocity slip 

parameter affects the velocity and the concentration profiles. The 
velocity profiles f′(η) for various values of the velocity slip parameter δ 
are depicted in Fig. 9. With the increasing values of δ, the fluid velocity 
increases monotonically. Due to the slip condition at the plate the 
velocity of fluid adjacent to the plate has some positive value and 
accordingly the thickness of momentum boundary layer decreases.   

Fig. 10 exhibits the dimensionless concentration profiles φ(η) for 
different values of δ. The concentration decreases with the increase in 
velocity slip parameter δ. 
 

 
Fig. 10 Concentration profiles φ(η) for various values of δ. 

 

 
Fig. 11 Concentration profiles φ(η) for various values of γ. 

 

 
Fig. 12 Concentration gradient profiles φ′(η) for various values of γ. 

 
In Fig. 11 and Fig. 12, the effect of mass slip on concentration and 

concentration gradient are displayed. Due the mass slip, the mass 
transfer from the plate to the fluid reduces and the concentration 
decreases. Whereas, the concentration gradient at a fixed point 
increases with increase of mass slip parameter γ. In Fig. 13, the 
negative value of temperature gradient at the plate −φ′(0) which is 
proportional to the rate of mass transfer from the plate is plotted against 
γ for various values of velocity slip parameter. It is observed that the 
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mass transfer enhances with velocity slip and reduces with mass slip. 
These are physically realistic because in case of velocity slip, the fluid 
adjacent to the plate do not stick with the plate i.e. it has some positive 
velocity which boosts the mass transfer and in case of mass slip, the 
solute distribution adjacent to the plate slips which decelerated the mass 
transfer. 
 

 
Fig. 13 Concentration gradient at the plate −φ′(0) against γ for various 

values of δ. 
 

5. CONCLUSIONS 
The mass transfer with chemical reaction in boundary layer flow over a 
permeable plate embedded in porous medium with slip conditions at the 
boundary is studied. Using similarity transformation, the nonlinear self-
similar equations are obtained and are solved numerically by shooting 
method. In the analysis, the mass slip is introduced in addition with the 
velocity slip. The following observations can be made from the 
analysis: 
(a) Due to increase of the permeability of the medium velocity inside 

the boundary layer increases and the concentration decreases. 
(b) The concentration at a point decreases with the increase of velocity 

and mass slip parameter. 
(c) The mass transfer from the plate enhances with velocity slip and it 

reduces with mass slip. 
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NOMENCLATURE 

C concentration 
Cw  concentration of the plate 
C∞  concentration in the free stream 
D diffusion coefficient 
D1 mass slip factor 
Dax local Darcy number 
f dimensionless stream function 
f′ dimensionless velocity 
k permeability of the porous medium 
k* permeability parameter 
L reference length 
L1 velocity slip factor 
n  order of chemical reaction 
R variable reaction rate 
Rex local Reynolds number 

S suction/blowing parameter 
Sc Schmidt number 
U∞ free stream velocity 
u velocity component in x-direction 
v velocity component in y-direction 
vw distribution of suction or blowing 
x  distance along the plate 
y  distance perpendicular to the plate 
 
Greek Symbols  
β reaction rate parameter 
δ velocity slip parameter 
η similarity variable 
γ mass slip parameter 
µ  coefficient of fluid viscosity 
υ kinematic fluid viscosity 
φ dimensionless concentration 
ρ fluid density 
ψ stream function 
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