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ABSTRACT 

The present paper deals with the analytical investigation for the limiting value of Nusselt number, including the effect of viscous dissipation on heat 

transfer for a laminar shear driven flow between two infinite parallel plates, where the bottom plate is fixed and the top plate is moving in an axial 

direction at a constant speed. The study concentrates on hydro-dynamically fully developed flow of a Newtonian fluid of constant properties without 

considering the axial conduction in the fluid. To investigate the effect of viscous dissipation on heat transfer by defining the limiting Nusselt number, 

plates are kept at constant equal temperatures. Close form expressions for the limiting Nusselt numbers as a function of the Brinkman number and 

asymmetry parameter are evaluated. Focus is given to the viscous dissipative effect due to the shear produced by the movable top plate over and 

above the viscous dissipation due to internal fluid friction. The interactive effects of the Brinkman number and the degree of asymmetry on the 

limiting Nusselt number are investigated analytically. Specific to the cases considered for this study, the appearance of point of singularities due to 

the variation of Nusselt number with the Brinkman number is observed, and discussion has been made considering the energy balance, and second 

law analysis of thermodynamics. 

Keywords: analytical investigations, heat transfer, shear driven flow, degree of asymmetry, Brinkman number, axial conduction, second law of 

thermodynamics.  
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1. INTRODUCTION 

In the recent past, fluid flow in small devices and the corresponding 

heat transfer has received serious attention in view of the remarkable 

development in the field of microelectronics and MEMS. The 

dissimilarity in thermal behavior in small devices is mainly due to the 

rise in temperature, which is primarily attributable to the viscous 

dissipation effect. In small devices the effect of viscous dissipation that 

could play a vital role, results in inefficient heat dissipation leading to 

local overheating problems. The understanding of the fluid flow 

phenomena has been critically reviewed (Hak, 1999) through micro 

scale devices and explored the physics of the plow emphasizing the use 

of MEMS in different areas for flow control. In the domain of the 

macroflows, there are so many practical applications where heat 

transfer normally occurs in the fluid flow system involving moving 

boundaries. Particularly, in many material processing applications such 

as extrusion, hot rolling, drawing, and continuous casting, materials 

continuously move in a channel. In such industrial applications, it is of 

great importance to encounter the heat transfer from the moving 

boundary to the surrounding fluid and vice-versa. However, the moving 

boundary deforms the fluid velocity profile, and shears the fluid layer 

near the boundary, resulting in local changes in velocity gradient. Thus 

the viscous dissipation effects may not be neglected in heat transfer 

analysis associated with moving boundaries. The thermal energy 

generated due to the viscous dissipation is significant near the wall, 

which alters the heat transfer rates following the changes in the 

temperature profile. In order to obtain the actual heat transfer rate in the 

application of moving boundaries, it is important to take into account 

the effects of viscous dissipations using accurate velocity distribution. 

The first theoretical work (Brinkman, 1951) concerning the heat 

generation due to viscous dissipation has analyzed the effects of viscous 

heating for the flow of a single phase Newtonian fluid through a 

circular tube. The temperature distribution in the thermal entrance 

region has been examined considering the zero temperature of the wall 

and an insulated wall. The temperatures were found to be the highest, 

not surprisingly, within a small area near the wall region. The available 

literature in the area of convective heat transfer has, however, 

considered the effects of viscous dissipation to be important in two 

cases: flow of very viscous fluids and flow in capillary tubes. A 

numerical study (Cheng and Wu, 1976) reported the influence of 

viscous dissipation for the flow of a Newtonian fluid through a parallel 

plate channel. The numerical analysis explored the onset of the 

instability for longitudinal vortices in the entrance region of the channel 

with the thermal boundary condition of an isothermal heated lower 

plate, and cooled upper-plate. The effects of viscous dissipation on 

laminar forced convection through a pipe and channel have been 

studied (Pinho and Oliveira, 2000) for the flow of a Phan- Thien- 

Tanner fluid. The study has revealed that the viscous dissipation 

enhances the fluid elasticity. Performing an analytical study, using a 

functional analysis method, the effects of viscous dissipation on the 

heat transfer have been investigated (Lahjomri et al., 2003) for a 

thermally-developing laminar Hartman flow through a parallel plate 

channel with the aid of a magnetic field. In a study of thermal 

development of forced convection in a parallel plate channel filled by 

porous medium, an investigation of the effects of viscous dissipation 

has been done (Nield et al., 2003) with the thermal boundary condition 

of uniform wall temperature including axial conduction effects. 
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The analysis of laminar forced convection in a pipe for a Newtonian 

fluid of constant properties has been performed (Aydin, 2005) by taking 

the effect of viscous dissipation into account. In Part-1, both hydro-

dynamically and thermally fully developed convection has been 

studied, while Part-2 of the study has considered the hydro-dynamically 

developed but thermally developing case. In both cases, two different 

types of thermal boundary condition have been considered, namely, 

constant heat flux (CHF) and constant wall temperature (CWT). The 

variations of dimensionless radial temperature and Nusselt number have 

been obtained for different values of Brinkman number under both wall 

heating and cooling. The influence of viscous dissipation on heat 

transfer has been found to be strong for higher values of Brinkman 

number (Br >1), while the influence has been negligible for lower 

values of Brinkman number. In the thermally developing case, 

comparing the temperature distribution with that of the same obtained 

by neglecting the viscous dissipation, it has been observed that the 

temperature distribution increases in the axial direction, which is 

attributable to the effect of viscous dissipations. In their study, an 

important role of Brinkman number (for the case CWT) and modified 

Brinkman number (for the case CHF) has also been investigated on the 

development of the Nusselt number. The analytical work by Aydin and 

Avci, (Aydin and Avci, 2006) has dealt with the convective heat 

transfer problem for the plane Poiseuille flow with an emphasis given 

on the viscous dissipation effect. The energy equation has been solved 

for thermally developed and developing cases separately with the 

boundary condition of CWT and CHF, respectively. In both cases, the 

flow has been considered to be hydro-dynamically developed. It has 

been found from the study that with the increasing intensity of viscous 

dissipation (increase in Brinkman number), the heat transfer decreases 

up to a critical value, and that is attributed to the internal heat 

generation due to the viscous dissipation effect. In a recent study, 

(Sheela-Francisca and Tso, 2009) the effects of viscous dissipation on 

heat transfer between two fixed parallel plates with constant heat flux 

boundary condition has been reported. The work carried out represents 

an extended work of Aydin and Avci, (Aydin and Avci, 2006). Various 

analytical expressions of Nusselt number as a function Brinkman 

number have been obtained by several researchers as is apparent from 

the reported investigation. The survey shows the effects of viscous 

dissipation on laminar heat transfer on a Poiseuille flow in stationary 

parallel plates for Newtonian as well as non-Newtonian fluids. The 

steady state laminar heat transfer to a plane Poiseuille-Couette flow of a 

Newtonian fluid with simultaneous pressure gradient and axial 

movement of one of the plates has been investigated extensively in 

reference (Hudson and Bankoff, 1965; Sestak and Rieger, 1969; Bruin, 

1972; El-Ariny and Aziz, 1976). The laminar heat transfer in a Couette 

flow with imposed pressure gradient has been carried out (Lin, 1979) 

using the power-law model for a non-Newtonian fluid. In all these 

cases, the energy equation containing the viscous dissipation term has 

been solved numerically to obtain the effects of viscous dissipation on 

the heat transfer for the two different thermal boundary conditions of 

either temperature specified at either the plates, or a specified 

temperature at the stationary plate with moving plate insulated. 

Performing a numerical study, the influence of viscous dissipation on 

fully developed laminar heat transfer has been investigated (Dava et al., 

2004) for a non-Newtonian fluid flowing between two parallel plates 

with the axial movement of one of the plates. However, the study has 

concentrated on the boundary conditions of constant wall heat flux at 

one wall with the other insulated, where the focus has been on the 

viscous dissipation effects. 

All the researches mentioned above have dealt with the effect of 

viscous dissipation on convective heat transfer in a Poiseuille flow for a 

hydro-dynamically fully developed flow between two parallel plates, 

considering both the thermally fully developed and developing cases. 

No work has been reported so far, on the laminar forced convection in 

the limiting condition, giving the quantitative relation between the 

different performance index parameters of heat transfer including the 

viscous dissipation effect for a shear driven flow between two parallel 

plates kept at constant unequal temperatures.  

The objective of the present paper is to analytically probe the combined 

effects of the Brinkman number and the degree of asymmetry on the 

temperature profile. To this end, detailed analytical study is carried out 

to investigate the effect of viscous dissipation on the heat transfer for a 

shear driven flow for varying degree of asymmetry in the wall heating. 

Finally, the expressions of the limiting Nusselt numbers are determined 

from the temperature distribution for the above-mentioned condition. 

 

2. GOVERNING EQUATIONS AND ANALYSIS OF 

THE PROBLEM 
The fluid is flowing in the x-direction between two parallel plates 

where the upper plate is moving with a constant velocity 
p

U whereas 

the lower plate is fixed. The plates are 2H  apart, and the coordinate 

system is attached with the center line as shown in Fig. 1. 

 

 
 

Fig. 1 Schematic Diagram  

 

Following assumptions are made for the analysis: 

i) Newtonian fluid; 

ii) Incompressible fluid flow; 

iii) There is no heat source and thermo-physical properties are 

constant; 

iv) Hydro-dynamically fully developed flow; 

v) Axial conduction is neglected in the fluid and through the 

wall; 

vi) Plates are infinitely long in x and z directions. 

The governing equations are continuity, momentum and energy 

equations. To get the velocity and temperature distributions between 

two plates, the governing equations, namely continuity, momentum and 

energy equations have been derived based on the above-mentioned 

assumptions. 

Continuity Equation 

     0
u v

x y

∂ ∂
+ =

∂ ∂
     (1) 

From the assumptions, there is no velocity in the y-direction, 

i.e., 0=v , which gives  

     0
u

x

∂
=

∂
     (2) 

Eq. (2) implies that the velocity in the x-direction is a function of y 

only.  

X-momentum Equation: 

     

2 2

2 2

u u u p u u
u v

x y t x x y
ρ µ

∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂

  
  

   
  (3) 

where p  is the pressure. Using continuity equation and assumption 

(iv), one can write the x-momentum equation as follows: 

     

2

2

d u p u

x tdy
µ ρ

∂ ∂
= +

∂ ∂

 
 
 

     (4) 

Now, from y-momentum equation using the above assumptions, it can 

be shown that  
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     0
p

y

∂
=

∂
                                                                              (5) 

Energy Equation 

     
2 2

2 2p

T T T T T
C u v k

x y t x y
ρ µφ

  ∂ ∂ ∂ ∂ ∂
+ + = + +  

∂ ∂ ∂ ∂ ∂   
 (6) 

whereφ is the viscous dissipation term that contains only ( )2
yu ∂∂ . 

Based on the above assumptions, the energy equation reduces to 

       

22

2p

T T T u
C u k

x t yy
ρ µ

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂∂

  
   
   

  (7) 

2.1     STEADY ANALYSIS FOR THE MOVABLE      

        UPPER PLATE WITH A UNIFORM VELOCITY 

The fluid flow is assumed to be due to dragging of the upper plate only. 

Therefore, Eq. (4) reduces to  

     

2

2

d u
C

dy
µ =
 
 
 

                                      (8) 

where, C is a constant and this is equal to zero for shear driven flow. No 

slip condition is assumed at the plates, and thus the boundary conditions 

are as follows: 

     at y H= − , 0u =                                                 (9) 

and, 

     at y H= ,  
p

Uu =                                             (10) 

Solving Eq. (8) with above boundary conditions, the velocity profile is 

obtained as: 

       ( )1
2

p
U y

u
H

= +                                                                 (11) 

However, defining the non-dimensional quantities U
u

U
p

= and Y
H

y
= , 

the above velocity profile reduces to,   

     ( )
1

1
2

U Y= +                                                                      (12) 

The energy Eq. (6) is written under steady condition as follows:    

     

22

2p

T T u
C u k

x yy
ρ µ

∂ ∂ ∂
= +

∂ ∂∂

 
 
 

                                      (13) 

Now to analyze the energy equation in the conduction limit, the 

following case of unequal constant wall temperatures is considered 

while neglecting the convection term. 

 

2.1.1 CONSTANT WALL TEMPERATURE 
 

For unequal constant wall temperatures, the non-dimensional quantities 

used as Y
H

y
= , 

p

U
U

u
= , and defining the dimensionless temperature 

( )
( )f

T T

T T
θ =

−

−
 , where 

f
T  is the initial uniform fluid temperature, the 

average temperature
( )

1 2

2

T T
T

+
= , and the asymmetry of wall surface 

temperature, 
( )
( )

2

1

f

f

T T

T T
β

−
=

−
. Again the term ( )

2
u y∂ ∂ is equal 

to ( )
2

p
U H . Thus the governing equation for constant wall temperatures 

reduces to, 

    

( )

22

2

1
0

4

p

f

Ud

dY T kT

µθ
+ =

−
                                      (14) 

Defining the Brinkman number, 
( )

2

p

f

U
Br

k T T

µ
=

−
, Eq. (14) can be further 

expressed as 

    

2

2
0

4

d Br

dY

θ
+ =                                                                  (15)                                              

Eq. (15) is subjected to the following boundary conditions:  

  y H= , ( ) ( )2 f
T T T Tθ = − −   i.e. at 1Y = , Dθ =       (16a) 

and, 

   y H= − , ( ) ( )1 f
T T T Tθ = − −   i.e. at 1Y = − , Dθ = −    (16b) 

Where 
( )

( )

1

1
D

β

β
=

−

+
     (17) 

The dimensionless temperature profile is obtained by solving Eq. (15) 

with the above boundary conditions [Eqs. (16a,b].Therefore, Solving 

Eq. (15) with the above set of boundary conditions of unequal 

temperatures, the dimensionless temperature profile in the conduction 

limit is obtained as: 

    
1 2

2

8
c C Y C

Y
Brθ += − +                                                   (18) 

The constants 
1

C and
2

C of Eq. (18), obtained on applying the boundary 

conditions given in Eq. (16a,b) are as follows: 

1

2
8

C

C

D

Br=

= 



     (19) 

However, to obtain the expression of Nusselt Number, it is usual to 

define the mean temperature, mT , rather than the centerline temperature 

in a case of fully developed flow. The mean temperature is given by 

       
H

H

H

p c

y

m H

p

y

C uT wdy

T

C uwdy

ρ

ρ

−

−

=

=

=

∫

∫
                                         (20)  

where ‘w’ is the width of the channel.  

 

The non-dimensional mean temperature is given by 

    

( )
( ) 12 3

mc

mc

f

T T Br D

T T
θ

−
= = +

−

 
 
 

                                (21) 

The local heat transfer coefficient in the conduction limit at the lower 

plate can be evaluated using the equation 

( )
1 1 1c c mc

y H

q h T T
T

k
y

=−

= −
∂

= −
∂

   (22) 

Establishing the non-dimensional quantity, Nusselt number in the 

conduction limit is 
1

1

c

c

h H
Nu

k
=    (23) 

However, using Eqs.(19), (22) and (23), the expression for Nusselt 

number at the lower plate in the conduction limit is given by, 

 

( )[ ]1 1

1

1
c

mc

Y

cNu
Y

θ
θ θ

=−

∂
= − −

∂

 
 
 

   (24) 

Similar to Eqs.(22) to (24), the Nusselt number at the upper plate in the 

conduction limit can be found to be  
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( )[ ]2 2

1

1
c

c mc

Y

Nu
Y

θ
θ θ

=

∂
= −

∂

 
 
 

   (25) 

Where 
1

θ , 
2

θ used in Eqs. (24) and (25) are the dimensionless 

temperatures at the lower plate and the upper plate, respectively. 

Finally, using Eq. (21) for 
m

θ  and Eq. (18) for the derivative of
c

θ , the 

expression of Nusselt numbers on both the plates in the conduction 

limit are obtained as. 

( )

( )

( ) ( ){ }[ ]
( ) ( ){ }[ ]1

3 4 1 13 4

16 16 1 1
c

BrBr D
Nu

D Br Br

β β

β β

+ − ++
= =

+ − + +
  (26) 

( )

( )

( ) ( ){ }[ ]
( ) ( ){ }[ ]2

3 4 1 13 4

8 8 1 1
c

D Br

D Br Br

Br
Nu

β β

β β

− +−

− − +

−
= =

−
  (27)     

3. RESULTS AND DISCUSSION 
The Brinkman number is an important parameter governing the heat 

transfer and fluid flow in a channel between two parallel plates. The 

effects of viscous dissipation in a fluid flow and heat transfer is 

manifested by the representation of Brinkman number. Actually, it is a 

non-dimensional way of representing the effect of viscous dissipation. 

In this paper, the effect of Brinkman number for a hydro-dynamically 

fully developed flow has been analyzed. Figures (2) and (3) depict the 

variation of the dimensionless temperature profile for different 

Brinkman numbers for two different cases of asymmetric wall heating.  

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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-0.6
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θ
c

Y

 

 

Br = 0.0

Br = 1.0

Br = -1.0

 
Fig. 2 Dimensionless temperature profile for 0.5β = , for different 

values of Br  

 

It is observed from Fig. (2) that specific to the case of 0.5β = , the 

dimensionless temperature 
c

θ  strongly depends on the Brinkman 

number, Br . Viscous dissipation acts as a source of energy in the flow, 

and this severely influences the temperature distribution in the flow 

field as seen from Figs. (2) and (3). In the thermal entrance region, a 

linear trend of developing dimensionless temperature
c

θ  is observed for 

both the case of wall heating for 0Br = , which is a pure conduction 

profile. Therefore, in the absence of viscous dissipation, 
c

θ  varies with 

the specified values of wall surface temperature imposed on the plates. 

However, viscous dissipation always generates a distribution of heat 

source stimulating the internal energy in the fluid, and hence the 

temperature profile gets distorted as it is clear from the Figs. (2) and 

(3). A close look on the above figures also reveals that the cases 

with 0Br ≠ , the profile of the dimensionless temperature gets altered in 

comparison to that in the case of 0Br =  , though the imposed 

boundary condition on the plates remain invariant. The reason behind 

such a behavior of the dimensionless temperature profile obtained at 

different Brinkman numbers Br , is attributable to the effect of viscous 

dissipation coming into play due to the shear stress within the fluid 

layer induced by the movement of the upper plate. Positive values of 

Br  are compatible with the wall heating case, which resembles the 

situation of heat transfer to the fluid across the wall. Therefore, for the 

cases with positive values of Br , the fluid temperature increases in 

comparison to the cases where Br  is neglected as evident from Figs. 

(2) and (3). The reverse holds true for the negative values of Br .  

Equation (19) predicts the dimensionless temperature distribution in the 

conduction limit for different values of Br , which is shown in Figs. 

(2) and (3). The corresponding Nusselt numbers at both the plates are 

defined using Eqs. (24) and (25). 
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θ
c

Y

 

 

Br = 0.0
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Fig. 3 Dimensionless temperature profile for 0.5β = − , for different 

values of Br  

 

Figures (4) and (5) are the graphical representation of Nusselt number 

in the conduction limit on the bottom plate versus Brinkman 

number Br , specific to the case of asymmetry in the wall heating for 

0.5β = and 0.0β = , respectively. Equations (26) and (27) represent 

the expression of Nusselt number in the conduction limit on the lower 

plate and upper plate, respectively. It is observed from Equations. (26) 

and (27) that both the limiting Nusselt numbers are functions of two 

independent variables, e.g. the degree of asymmetry in wall heating, β  

and Br . However, both the Nusselt numbers will have parametric 

variation with Br  for 1β ≠ and with β for 0Br ≠ . As shown, the 

variation of Nusselt number with Br  is not continuous for the case 

of 0.5β = ; rather a singularity is observed at 5.33Br = − , which is very 

clear and expected from Eq. (26). At this point, the heat supplied by the 

wall balances the internal heat generation due to viscous dissipation. 

However, from this point of singularity with the increasing value of Br  

in the positive direction ( Br > 0 ), the Nusselt number decreases 

because of the decrease in the driving potential of the heat transfer, and 

finally reaches at 
1

3
c

Nu =  asymptotically (when Br → −∞ ). As 

explained the negative value of Br  represents the wall cooling problem 

and with the increasing value of Br  in the negative direction, Nusselt 

number decreases and an asymptote appears at 
1

3
c

Nu =  

(when Br → −∞ ). The result shows that the Nusselt number maintains 

a constant value as Br goes to infinity. The expression of Nusselt 

number in the conduction limit as derived in the study is given in Eq. 

(26). However, increasing Br will increase the temperature of the flow 

field, which, in turn, increases the driving temperature difference of the 

heat transfer, and hence the Nusselt number might alter. These changes 

may get reflected on the variation of Nusselt number if the convection 

term is included in energy equation to obtain the closed-form 
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expression for the same. In the limiting condition the effect of 

increasing Br  is not reflected on the variation of Nusselt number 

1c
Nu  for a particular degree of asymmetry. This, however, can also be 

argued mathematically, from Eq. (26). 

 Equations (26) and (27) also yield  that for any given value of β , 

Nusselt number depends on Br and the limiting values of Nusselt 

number are not equal (both in magnitude and sign) for given β . The 

reason behind such inequality is attributable to the movement of the top 

plate. The movement of the top plate induces additional shear stress, 

which enhances viscous heating produced by the internal friction 

between different fluid layers. However, it is very interesting to notice 

that when Br goes to infinity in either direction (i.e. the cold wall and 

hot wall case), the Nusselt number attains the same asymptotic 

value,
1

3
c

Nu = .  

Figure (5) also depicts the Nusselt number variation for 0.0β = . 

The trend observed here can be explained in the similar fashion as in 

the case with 0.5β = . The only difference noticed for this case is the 

onset of the point of singularity at 16Br = − , which can be attributed 

the effect of the degree in asymmetry in the wall heating. At the point 

of singularity, the limiting values of Nusselt number approaches a large 

value for both the cases of asymmetry in wall heating at and, 

respectively. This is because of the equality in the bulk mean 
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Fig. 4 The influence of Br , on the 
1c

Nu  for 0.5β =  
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Fig. 5 The influence of Br , on the 

1c
Nu  for 0.0β =  
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Fig. 6 The influence of Br , on the 

1c
Nu  for 0.5β =  

temperature of the fluid with the average wall surface temperature in 

the limiting condition. Figure (6) illustrates the effect of Br  on the 

Nusselt number at the asymmetry in wall heating for 0.5β = − . In 

contrast to the Figs. (4) and (5), a continuous variation of Nusselt 

number with Br  is noticed in Fig. (6). This is due to the degree of 

asymmetry considered in this case. However, the point of singularity is 

observed to appear at 48Br = − , which is an expected result, obtained 

from Eq. (26) on closely looking into it.  

In the present work, heat transfer characteristics in the limiting 

condition in a viscous dissipative environment are studied thoroughly. 

The volumetric rate of entropy generation can be expressed as:  

( )
2

.

2
gen

k T
S

T T

µ
φ

∇
= +     (28) 

The first term on the right side of the above equation is attributable the 

irreversibility due to heat transfer and the second term is the entropy 

generation due to viscous dissipation.  Irreversible energy conversion 

from frictional heating of viscous dissipation into the fluid has an 

important bearing on the temperature field of the fluid. In the second 

law analysis, fluid friction irreversibility arises as a result of viscous 

heating is of essential importance. 

Heat transfer dominates for 0 ≤ φ < 1 and fluid friction dominates 

when φ > 1. The contributions of both heat transfer and fluid friction to 

entropy generation are equal when φ = 1.  

In the present analysis, three different degrees of asymmetry 

parameters of wall heating have been considered in investigating the 

variation of 1c
Nu as evident from Figs. 4-6.  The irreversibility 

associated with the heat transfer for three different values of asymmetry 

parameter, β , however, is related to the irreversibility due to viscous 

dissipation, and hence different points of onset of singularities are 

observed for different β . 

4. CONCLUSIONS 

In the present study, the heat transfer problem for the shear driven 

laminar flow between two plane parallel plates has been studied. The 

analysis has been done in the conduction limit, when the plates are kept 

at unequal constant temperatures. The expression for the Nusselt 

numbers at both the plates in the conduction limit has been obtained for 

a hydro-dynamically fully developed flow. After finding the velocity 

distribution in the flow on solving the momentum equation, it is 

substituted into the energy equation to obtain the expression of Nusselt 

numbers. In addition to the effect of viscous dissipation due to the 

internal fluid friction, an emphasis on viscous dissipation is given to 

include the effect of shear stress induced by the movement of the top 

plate. A strong influence of viscous dissipation is observed that is quite 

significant for analysis of heat transfer in the conduction limit. The 
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interactive effects of the Brinkman number and the degree of 

asymmetry in the wall heating on the limiting values of Nusselt 

numbers have been investigated in the study. The points of singularities 

in the variation of Nusselt number versus Brinkman number are also 

observed. The onset of the points of singularities is seen to be affected 

by the degree of asymmetry in wall heating, and their sources of 

appearance have been explained in view of the energy balance, and 

second law of thermodynamics in the study. 

 

AKNOWLEDGEMENT 
 

The authors wish to thank Mr. Arijit Dutta, Assistant Professor, 

Department of Mechanical Engineering of Kalyani Government 

Engineering College, for his kind help during preparation of the 

manuscript.  

 

NOMENCLATURE 
 

Br  Brinkman number 

p
c  

1 2
C C−  

Specific heat at constant pressure (J/g K) 

 

Constants 

D  Parameter to characterize ( ) ( )1 1β β− +  

1c
h  Limiting heat transfer coefficient at lower plate (W/m2-K) 

2c
h  Limiting heat transfer coefficient at upper plate (W/m2-K) 

H  Half-channel height (m) 

k  Thermal conductivity (W/mK) 

Nu  Nusselt number 

1c
Nu  Nusselt number in the conduction limit at the lower plate 

2c
Nu  Nusselt number in the conduction limit at the upper plate 

t Time (s) 

p x∂ ∂  Pressure gradient in the x direction (N/m3) 

p y∂ ∂  Pressure gradient in the y direction (N/m3) 

1c
q  Lower plate heat flux in the conduction limit(W/m2) 

2c
q  Upper plate heat flux in the conduction limit (W/m2) 

genS�  Volumetric rate of entropy generation (W/m3K) 

T  Temperature (K) 

T  Average temperature (K) 

1
T  Upper plate temperature (K) 

2
T  Lower plate temperature (K) 

c
T  Temperature in the conduction limit (K) 

u  Velocity (m/s) 

U  Dimensionless velocity (m/s) 

P
U  Velocity of the moving plate (m/s) 

x  Axial coordinate direction (m) 
y  Vertical coordinate direction (m) 

Y  Dimensionless vertical coordinate  

 

Greek symbols 

β  Degree of asymmetry 

θ  Dimensionless temperature  

m
θ  Dimensionless bulk mean temperature 

mc
θ  Dimensionless mean temperature in the conduction limit 

µ  Dynamic viscosity (kg/m-s) 

ρ  Density (kg/m3) 

 

Subscripts 

c  Conduction limit 

f  Initial fluid 

m  Mean 
mc  Mean in the conduction limit 
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