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ABSTRACT

In recent years, significant effort has been placed into developing automated multi-physics simulation. The exchange of boundary conditions has lead
to more realistic as well as more complex simulations with usually slower convergence rate when the coupling is being performed between two
different codes. In this paper the equations of local sensitivities for element centered steady-state combined convection, conduction, and thermal
radiation problems are being derived. A numerical analysis on the stability of the solution matrix is being conducted. Partial uncertainties and the
relative importance of the heat transfer modes are investigated by their uncertainty factors and conclusions are being drawn.
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1. INTRODUCTION
Conjugate heat transfer (CHT) problems have been the focus of
research for many years. Often, various codes are being developed for
different physical phenomena. There are several products on the market
for Computational Fluid Dynamics (CFD) and thermal radiation,
respectively. Since those codes are optimized for their respective
models, segregated coupling becomes an interesting option. The
exchange of boundary values between those codes, hopefully, will lead
to a converged solution for all physical models involved. It is the skill
of the simulation engineer to employ the most appropriate models,
numerical schemes, and model parameters for those programs.
Unfortunately, when performing those couplings, which can be quite
time consuming, the engineer is left to decide, whether the results can
be trusted. Usually, this is done by comparing simulation results with
measurements. While finding an agreement with measurements is
necessary, it does not guarantee the correctness of all the models in the
whole parameter range. It might happen, that some model assumptions
are erroneous, but at the specific measurement points those errors
cancel out. This might cause accepted deviations in areas where
measurements are not available, or for erroneously employing the
models at different simulation settings where they could show
unanticipated and possibly uncorrected deviations. In order to give the
engineer more confidence in his results, a proper understanding of the
influence of the model parameters on the system to be investigated is
advisable. Sensitivity and uncertainty analyses are tools for providing
more insight into the system.

Local sensitivity and uncertainty analysis for thermal radiation has
not received as much attention as for conduction or convection.
Blackwell et al. (1998) investigated a control volume finite element
system with conjugate heat transfer, but they included only a simplified
radiation equation for the interaction with the environment without the
use of view factors and reflections within the geometry. To the best

knowledge of the author, the first paper on thermal radiation analysis by
uncertainty investigation with reflections between surfaces taken into
account was published by Taylor et al. (1993). There, they investigated
the sensitivities of view factors and emissivity when temperatures are
given as boundary conditions. In later works (Taylor et al., 1994;
Taylor et al., 1995), they expanded their research for changes in area
and boundary conditions and for the case when a heat flux is specified
instead of a temperature. One of their conclusions was that enforcing
reciprocity and closure for view factors greatly improved accuracy.
Taylor and Luck (1995) elaborated more on various methods of closure
and reciprocity correction methods.

Korycki (2006) formulated sensitivity factors for CHT problems,
including radiation in participating media, for the boundary element
method (BEM).

Significant research on sensitivity analysis has been conducted in the
area of structural mechanics. For example, Bhatia and Livne (2008)
formulated sensitivity factors for the Finite Element Method (FEM).
They employed those factors to estimate changing form factors due to
mechanical and thermal deformations. In a follow-up paper (Bhatia and
Livne, 2009) they presented a way of investigating temperature
dependant parameters in a transient setting by reformulating the
equations such, that those parameters were placed on the main diagonal.

This paper is a revised version published by Rauch and Almbauer
(2010a) and is concerned with deriving sensitivity equations for the
element-centered steady-state finite difference method. It can be
regarded as a continuation of Taylors’s work (Taylor et al., 1995) by
expanding his approach for conduction and convection. In a related
treatment, Rauch and Almbauer (2010) focused their work on
sensitivities of view factors in CHT problems.

The next section derives the coefficients for emissivity, fluid
temperature, and conductance followed by introducing the test case.
Then, the results are analyzed for stability of the solution and the
relative importance of heat transfer modes with and without partial
uncertainties. Finally, conclusions are being drawn.
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2. MATHEMATICAL FORMULATION
At this point it is advantageous to introduce the thermal system. A
thermal node k consists of a center and a virtual extension. The node
has an area Ak where it can exchange energy with the surrounding.
Optionally, the dashed line in Fig. 1 marks the border to the thermal
back node. Through that border exchange from the surface node
happens by conduction, only. The area Akt marks the area to the
neighboring node t, where heat is transferred from the surface node k to
t by conduction. The distance between two nodes is named lkt.

Fig. 1 Thermal Node

The formulation of local sensitivities is initiated by writing the
radiative energy balance from Poljak’s method (Siegel and Howell,
2002):
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Equation (1) states, that the thermal node k emits energy and receives
energy from all other nodes N of the system. Here, qo is the radiosity,
Fsk the view factor from s to k, and bk the boundary heat flux. For ease
of derivation the first radiosity term is drawn into the summation:
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In principle, another formulation without radiosity could be employed
but this would result in more difficulties in deriving the set of equations
for sensitivities.

2.1 Emissivity
Now, the total derivatives of the parameters, here the emissivity i, have
to be calculated:
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The partial derivatives for the area and the view factor with respect to
the emissivity can be ignored, as we do not consider changes in
geometry due to thermal stresses. The partial derivative of the
emissivity with respect to an emissivity is set to one when the two
nodes are identical and zero, otherwise.
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Though emissivity does not occur in Eq. (2), Eq. (16) will rely on Eq.
(3) and thus will need the aforementioned partial derivatives with
respect to emissivity. The radiosity will usually change with changing
parameter:
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Here, in the partial derivative of Eq. (3) with respect to the radiosity,
the simplification has been used, that when the indices s and k are
equal, the areas cancel. Substituting Eq. (6) into Eq. (3) with all the
aforementioned simplifications yields:
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Now, attention is turned to the boundary term bk. In Taylor’s work
(Taylor et al., 1995) a specified temperature or heat flux had been used.
When performing CHT calculations, the values of the heat transfer
modes change and, consequently, also the node temperature Tk.
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Here, hk stands for the convective heat transfer coefficient, Tf,k the
fluid temperature next to the solid node k, and kkt the thermal
conductivity from node k to t. Also other heat loads could be included
such as electrical heating or solar load. But in this work the emphasis is
placed on the convection and conduction term. The summation runs
over all neighboring nodes NCond.
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Again, the discussion is simplified by presuming the conductance Ckt
to be independent from temperature and emissivity:
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The convective heat transfer coefficient and the corresponding fluid
temperature are assumed to be constant inputs from a CFD code and are
thus treated as black box entries. Now, the two partial derivatives for Tk
and Tt are shown:
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Placing those last two equations into Eq. (9) one gets:
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Equation (13) can now be substituted into Eq. (7):

   
i

so
N

s
sk

k

s
kskkks

q
F

A
AF



















,

1
*11

i

t
N

t
kt

kt

kt

ki

k
N

t
kt

kt

kt

k
k

TA
l
k

A
TA

l
k

A
h

CondCond

 























 



*1*1
11

(14)

Taylor et al. (1995) in their work were able to calculate the radiosity
derivative, because there were no terms containing temperature
derivatives. In Eq. (14) there are the partial derivative of temperature
and radiosity as unknowns. Therefore, one needs a second equation,
relating temperature to radiosity. Poljak’s method provides one:
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This equation looks very similar to Eq. (1) except for the emissivity
term. Again, the first radiosity term is put into the summation:
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The same reasoning is applied as for Eq. (3) along with the
assumptions of Eqs. (4) and (5):
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The last derivation can be simplified to:
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Equations (17) and (19) are substituted into Eq. (3):
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The right hand side of Eq. (15) states:
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This term relates temperature to radiosity. Again, some partial
derivatives are needed for Eq. (21):
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When substituting Eqs. (23) and (24) into Eq. (22) along with the
assumptions of Eqs. (4) and (5) one obtains the following relation:
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Equaling Eq. (25) with Eq. (20) one gets:
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This is a second equation for the unknown derivatives in temperature
and radiosity with respect to emissivity. Eq. (26) is rewritten to
explicitly calculate the temperature derivative:
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When the index k is replaced with index t in Eq. (27) one gets:
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One can substitute Eqs. (27) and (28) into Eq. (14):
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After putting all the terms with the radiosity derivative on the left
hand side the following final relation has been derived as it was actually
implemented:
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Once the radiosity derivative has been calculated by Eq. (30), one
can simply multiply the results vector by Eq. (27).

If the node temperature is given as a boundary condition, Eq. (27)
can be taken instead of Eq. (30). Since the derivative of node
temperature with respect to emissivity will be zero in that particular
case the change of radiosity with respect to emissivity can be calculated
by the following equation:
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With the radiosity derivative with respect to emissivity known, Eq.
(7) can be used to calculate the change in net heat flux on that node.

2.2 Fluid Temperature
The mathematical derivation for the change in radiosity with respect to
the fluid temperature Tf is very similar. Instead of Eqs. (3) and (7), one
has:
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For the partial derivatives of Eq. (8) we now have to add a term for
the derivation in Tf
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The expressions in Eqs. (35) and (36) were derived under the
assumption, that heat transfer coefficients are treated as black box
entries. Therefore, only the value of Tf at node i has a derivation in the
form of the convective heat transfer coefficient. At all other nodes the
derivation is zero. When abandoning the black box assumption, one
could argue, that changing a fluid temperature at one node could change
the fluid temperatures at all other nodes. This could happen in a closed
cavity flow. In that case, the index on the right hand side of Eq. (35)
would hold the index k as was published in Rauch and Almbauer
(2010a). In this paper the assumption of general flow is followed and
Eq. (35) holds.

Along with Eqs. (11) and (12) one gets:
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Because the procedure for obtaining the radiosity and temperature
gradients follow the same procedure as for emissivity, only those
equations are reproduced as deemed necessary for use and
understanding of this text.

In the same way as for Eq. (27), the temperature gradient with
respect to fluid temperature is expressed as:
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The final relation is derived for the first order fluid temperature
gradient:
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Once the radiosity derivative has been calculated by Eq. (39), one
can simply multiply the result vector by Eq. (38).

If the node temperature and all neighboring node temperatures are
given as a boundary condition, Eq. (37) can be taken instead of Eq.
(39). Since the derivative of node temperature with respect to emissivity
will be zero in that particular case the change of radiosity with respect
to the fluid temperature can be calculated by the following equation:

    iik
if

so
N

s
sk

k

s
ksskks h

T
q

F
A
AF  














 ,

,

1
*11 (40)

With the radiosity derivative with respect to fluid temperature
known, Eq. (33) can be used to calculate the change in net heat flux on
that node.

2.3 Conductance
Finally, the equation for the conductance derivative shall be shown. The
conductance was defined in Eq. (10). The reason for using this lumped
property is the ease with which it can be retrieved from the thermal
radiation solver employed in this study. Starting from Eq. (2) one
derives with Eq. (6):
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Eq. (10) is substituted into Eq. (8):
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When changing a conductance from i to j the conductance from j to i
will also change. Otherwise, the derivation will be zero:
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Using the above reasoning and the same procedure as for emissivity
one arrives at the following equations:
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Eq. (45) is reformulated to express the temperature gradient and
finally yields the equation for the radiosity gradient with respect to
conductance:
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The reader should note that on the right-hand side (RHS) there will
be two entries as long as there is one neighboring node. Once the
radiosity derivative has been calculated by Eq. (46), one can simply
multiply the results vector by Eq. (45).

If the node temperature and all neighboring node temperatures are
given as a boundary condition, Eq. (44) can be used straight for
calculating the change of heat flux. For mixed boundary condition
settings Eq. (46) has to be used along with Eq. (41) for the fixed
temperature at node k.

2.4 Uncertainty
The combined standard uncertainty Uc can be formulated as follows:
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The values with square roots are uncertainty factors, which are
calculated by adding the sensitivity factors of the previous sections. It is
common practice to publish them in a dimensionless way. For
comparison purposes these factors are here normalized. This contrasts
to the work by Taylor et al. (1995) where view factors and emissivities
were not normalized because they are supposed to be no greater than
one. In the present author’s experience for view factors this is not
necessarily guaranteed. The standard uncertainty u uses either
measurements or reflects expert knowledge. As this is usually not
available for every node, this property is placed outside the square root.
Alternatively, one could determine those uncertainties for regions and
split the uncertainty factors accordingly.

2.5 Work Flow
The method proposed here is a posteriori because first, a conjugate

heat transfer case needs to be calculated. The results of this simulation
such as node temperature and radiosities need to be extracted along
with geometric information, boundary conditions, and view factors in
order to calculate the radiosity gradients as described in Eqs. (30), (39),
and (46). Because this has to be done for a change in every node, LU
factorization has been employed. In this way, all radiosity gradients are
obtained by vector matrix multiplication. Once those radiosity gradients
are known, temperature gradients described in Eqs. (27), (38), and (45)
can be calculated. These gradients are used in Eq. (47) after rendering
them dimensionless. Along with standard uncertainties actual
temperature ranges can be provided by multiplying the combined
standard uncertainty by the node temperature.

Fig. 2 Activity diagram for calculation procedure.

3. Test Case

Fig. 3 Muffler geometry.

A generic muffler without internals serves as an example. The
geometry consists of 260 quadrilaterals. The muffler is topped by a heat
shield which is insulated at the back.

The case is set up in the commercial radiation solver RadThermIR
9.1. A built-in heat transfer model was used to provide convective heat
transfer coefficients. The exterior boundary conditions were chosen in a
way that would be similar to a highway drive. They are shown in the
following table.
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The form factors were calculated with 512 rays per face. The exhaust
gas is modeled as air without soot formation and non-participating for
radiation. Though severe simplifications, the exhaust gas serves merely
as a heat source. The exhaust gas itself is held at a constant temperature.
Further details can be found in table 1.

Table 1 Boundary conditions for the muffler.

Entity Unit Heat Shield Muffler
Outside Inside

Emissivity [-] 0,6 0,22 0,9
Thickness [m] 0,002 0,001 0,001

Conductivity [W/m/K] 17,3056 52,019 52,019
Air Velocity [m/s] 20 20 20

Air Temperature [K] 303 303 413

Table 2 provides the resulting net heat fluxes for the thermal node
indicated in Fig. 3 by the red circle.

Table 2 Net heat fluxes for node 96.

Node 96
[W/m²]

Radiation -91,08
Convection -3.598,71
Conduction 3.688,99

The results indicate that conduction plays the most important role
for that node and radiation is insignificant.

4. Numerical Analysis
A numerical analysis has been conducted, because the author
experienced severe difficulties in convergence behavior when
employing an iterative solver. The Gerschgorin circle theorem helps in
estimating eigenvalues and thus stability of a solver because it gives
the maximum possible value of  by the Gerschgorin radius r. The
eigenvalue  assures stability if it is less than or equal to 1. This is
guaranteed when the radius r is less than or equal 0.5. In that case it can
be expected, that the set of equations can be handled by an iterative
solver without preconditioning.
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N

ij
j

ijar
1
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Here, aij is a matrix entry of row i and column j. It should be noted
that in Eqs. (30), (39), and (46) the RHS are all identical. They only
differ on their left hand side (LHS).

Figure 4 shows the diagonal aii and Gerschgorin radii r entries of the
solution matrix M, when all three heat transfer modes are included. In
Rauch and Almbauer (2010a) figures are shown with radiation only,
radiation and convection, and radiation and conduction terms included.

The figure presented here differs only marginally from the one with
radiation and conduction terms only. The first 60 nodes constitute the
heat shield. The next 200 nodes belong to the exterior of the muffler,
and the last 200 nodes are ascribed to the inside of the muffler.

Figure 4 shows, that the radii are not only exceeding 1, but also that
the node entries at the interior of the muffler are not diagonally
dominant. Thus, this system is ill-conditioned.

The infinity norm 
M of the matrix M is another indicator for

stability.
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
N

j
ijNi
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11
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The value of 49915.7 is again very large, hinting for instability. In
order to achieve a solution, the suggestion of Taylor et al. (1995) was
followed by implementing an LU factorization algorithm. For large
industrial models a parallelized distributed memory version would be
required. Otherwise, an iterative solver would be needed, and hence,
there would be a need for a suitable preconditioner.

Partial uncertainty calculation usually is practiced when calculating
certain differentials becomes too cumbersome. Though this is not
applicable in this case, it serves as a demonstration how interactions
between the parameters have been taken care of.

Fig. 5 Partial uncertainty calculation for node 96 of the muffler.
Conduction+Convection

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400 450 500

Node

M
at

rix
 E

nt
rie

s

r aii

Fig. 4 Matrix entries and Gerschgorin radii of the muffler with all three heat transfer modes.
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The first column in Fig. 5 has been calculated with the radiation
term, only. Emissivity exhibits a value well below one, indicating that
its influence might not be dominant. The second column deals with a
calculation including radiation and convection terms. Fluid
temperature clearly shows its prominent role for that node. Emissivity
dropped by two orders of magnitude. When considering the radiation
and conduction terms as shown in the third column of Fig. 5, the
uncertainty factor UF for emissivity dominates by two orders of
magnitude. Considering all heat transfer modes yields the last column
of Fig. 5.

Now, emissivity becomes insignificant by three orders of
magnitude compared to the fluid temperature. This result was
expected by the heat flux magnitude in Table 2. But the UF in fluid
temperature also dominates the one in conductance. This result
cannot be derived from heat flux analysis alone. The aim of
sensitivity analysis is the ability of a model to change its state. It is
noteworthy, that emissivity and, to some extent, conductance show a
large sensitive behavior. Without taking into account all three heat
transfer modes erroneous results are possible.

It should be mentioned, that the equations derived in this paper are
based on radiosity. Therefore, thermal radiation cannot be excluded
from consideration. In thermal radiation solvers it is usually possible
to exclude nodes from radiation as a means of speeding up
calculations. In that case, sensitivities in conductance and fluid
temperature cannot be treated with the equations presented.

Finally, Fig. 6 shows uncertainty factors for conductance of the
muffler.

Fig. 6 Uncertainty factor for conductance.

Plotting these values on the surface gives insight on where a
property change has a more profound effect, aiding the thermal
engineer in the choice of the appropriate parameters for change in
order to reduce deviations to measurements, or improving confidence
in results.

5. CONCLUSIONS
The equations for sensitive factors were derived for emissivity, fluid
temperature, and conductance, representing all three heat transfer
modes. With these formulations the effects of those parameters on the
total system can be explored. They can give better hints on what sub-
model needs to be refined in conjugate heat transfer problems. Partial
uncertainties should be avoided in order to not miss the interactions
of those parameters.
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NOMENCLATURE
a matrix entity
A area (m²)
C conductance (W/K)
F view factor (-)
h convective heat transfer coefficient (W/m²·K)
k thermal conductivity (W/m·K)
l distance between node centers (m)
M matrix
N number of elements
q heat flux (W/m²)
r radius of Gerschgorin theorem
T temperature (K)
u standard uncertainty (-)
U uncertainty (-)
UF uncertainty factor (-)
||.|| norm
|.| absolute value

Greek Symbols
δ Kronecker delta (-)
 eigenvalue (-)
ε total emissivity (-)
σ Stefan-Boltzmann constant (W/m2 ·K4)
Subscripts
b boundary heat flux
c combined
C conductance
Cond conduction
f fluid
i,j index from element i to j
k index of element
q heat flux specified
s,t running index
T temperature specified
ε emissivity
∞ infinity
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