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ABSTRACT

Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes
necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process
of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on
specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels
to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation.
Histopathology image texture data is used with the wavelet transform in this technique. The proposed method
comprises converting histopathological images from Red Green Blue (RGB) to Chrominance of Blue and Chromi-
nance of Red (YCBCR), utilizing a wavelet transform to extract texture information, and classifying the images with
Extreme Gradient Boosting (XGBOOST). Furthermore, SMOTE has been used for resampling as the dataset has
imbalanced samples. The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy
of 99.27% on the BreakHis 1.0 40X dataset, 98.95% on the BreakHis 1.0 100X dataset, 98.92% on the BreakHis
1.0 200X dataset, 98.78% on the BreakHis 1.0 400X dataset, and 98.80% on the combined dataset. The findings of
this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining
wavelet transformation with textural signals to detect breast cancer in histopathology images.
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1 Introduction

Cancer incidence continues to rise, making it the top cause of death worldwide. The fact that
breast cancer is the second most common disease in women makes it an important global health
concern. There is a worldwide problem with breast cancer. By the year 2020, the World Health
Organization predicted there would be an additional 2.3 million instances of breast cancer worldwide.
In terms of female fatalities, breast cancer ranks sixth. There appears to be no consistent breast cancer
mortality rate. Breast cancer rates are higher in wealthy countries than in less developed ones because
of differences in nutrition, exercise, and reproduction rates. With an estimated 284,200 new cases in
2021 and 44,130 deaths, breast cancer is the leading cause of death among American women [1]. Breast
cancer mortality rates in developed nations have been falling over the past few decades as the disease
has been better diagnosed and treated. Despite this, breast cancer remains a major health concern
worldwide, particularly in underdeveloped countries with scarce diagnostic and therapeutic options.
Mammography and other imaging screening should begin for women of average risk at 40 since breast
cancer survival rates are increased via early identification. Increased frequency of testing for breast
cancer may be necessary for women with a family history or other risk factors. Early breast cancer
staging is essential to increase the chances of successful therapy and rapid recovery. Accurate diagnosis
and staging, which permits prompt intervention with surgery, radiation therapy, chemotherapy, or any
combination thereof, are often the consequence of several factors contributing to improved treatment
outcomes.

Technology has made cancer detection more sensitive and accurate. X-rays, Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), ultrasound, biopsy, and lab testing are used to identify
cancer. The biopsy includes evaluating a small tissue sample from the suspected location under a
microscope for cancer cells. Blood and tumor marker testing can also detect cancer cells or cancer-
related chemicals. Conventional cancer detection technologies have drawbacks. Imaging may miss tiny
tumors, and biopsy and laboratory testing may give erroneous positive or negative results. Liquid
biopsy can detect cancer cells or DNA fragments in the blood. This non-invasive approach may
diagnose cancer earlier and assess therapy response. Common machine learning methods, including
Support Vector Machines (SVM), Random Forests, and K-Nearest Neighbors (KNN), have all been
used for breast cancer classification [2,3]. These algorithms’ statistical and mathematical foundations
allow for extracting useful insights from seemingly unconnected information. However, feature
engineering, the process of selecting and extracting pertinent qualities from the data, is typically
required when using traditional machine learning approaches. It might be lengthy when dealing with
extensive data like histopathology images. Automating various domains using machine learning and
deep learning is easy. Applications range from image forgery recognition and smart city infrastructure
to medical care and agricultural water distribution [4–7].

Classifying breast cancer histopathology images using deep learning models and other machine
learning approaches is an active study area. Deep learning models like Convolutional Neural Networks
(CNNs) have recently been used to classify breast cancer [8–10]. For instance, the effectiveness of SVM,
KNN, and CNN models was evaluated on breast cancer histopathological images. The CNN model
had the greatest accuracy (95.29%) of all the machine-learning methods. An interesting case in point is
the classification of breast cancer using histopathology images, where different deep-learning models
were compared, and the best model achieved an accuracy of 97.3% [11–15]. Combining histopathology
images with a cutting-edge deep learning model called Deep Attention Ensemble Network (DAEN)
[14] further demonstrates the superiority of deep learning models over conventional machine learning
algorithms for breast cancer classification. Several papers have investigated the feasibility of using
machine learning on histology images to categorize breast cancer better. Classifying breast cancer
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histopathology images using a combination of a support vector machine and a random forest resulted
in an accuracy of 84.23 percent. Several machine learning models, including SVMs, KNNs, random
forests, and CNNs, were tested and compared for their ability to classify breast cancer histology.
Compared to the other approaches, CNN had the highest accuracy (96.8%) [15].

Classifying cancerous images using machine learning has been the subject of numerous studies.
When contrasted to more conventional inspection techniques that use image processing and classifi-
cation algorithms, however, it is determined that these methods require refinement. First, there is a
significant gender gap in the data made public through competitions and other sources. Furthermore,
studies have yet to focus on analyzing a combined dataset consisting of all magnification levels, even
though most research has focused on analyzing histopathology images either on a single magnification
or separately on several magnification levels. Second, the current breast cancer classification methods
have poor performance on the best classification algorithms since they rely on statistical and textural
elements of an image to make their classifications.

The findings of this study combined wavelet transformation with Extreme Gradient Boosting
(XGBOOST) [16] to develop a technique for distinguishing between benign and malignant cancers.
This study offers a scale-invariant strategy for labeling images as benign or malignant, regardless
of their size, shape, or resolution. The suggested method classifies cancer as benign or malignant
using the BreakHis 1.0 [17] dataset comprising four types of magnification levels. Important sub-
sections include the preprocessing stage, during which images from various databases with varying
types, sizes, and dimensions are input and converted into YCBCR channels, and the feature extraction
and concatenation stages. The final step involves providing features to XGBOOST to classify them
and developing a model for use by image forensic specialists.

Some crucial findings from the study are as follows:

1. Even though there are many more benign images than malignant ones, Synthetic Minority
Oversampling Technique (SMOTE) has been utilized to balance the dataset so that more useful
insights can be gleaned from it using the BreakHis 1.0 dataset.

2. The images are classified as benign or malignant using XGBOOST, and texture features are
extracted using Wavelet transformation.

3. If a method maintains its effectiveness regardless of the size of the image, it is said to be scale-
invariant. Therefore, the scale invariance of the planned method is evaluated using images of
varied sizes, shapes, and types.

The remainder of this article is organized in terms of time: Section 2 details the pertinent studies
on breast cancer detection techniques. Section 3 provides a high-level overview of the steps involved
in the proposed methodology, including preprocessing, feature extraction, and classification. The
experimental data sets are discussed here as well. Section 4 presents experimental results and a
discussion of the proposed design. Results from computations using the proposed architecture are
tabulated and illustrated. The report finishes with a discussion of the results and recommendations
for future study in Section 5.

2 Literature Review

Breast cancer is a serious global public health issue that profoundly impacts patient outcomes
and healthcare systems. Early identification and accurate breast cancer diagnosis were crucial for
patients to have a greater survival rate and pay less for medical care. Recently, machine learning
algorithms have shown enormous promise in identifying and classifying breast cancer using images
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from histopathology. This literature review includes the most up-to-date findings on the limitations of
machine learning algorithms for breast cancer classification.

Breast cancer grading using deep learning was created by Wetstein et al. [18] and tested using
whole-slide histopathology images. The algorithm outperformed human pathologists at identifying
low and intermediate tumor stages, achieving an accuracy rate of 80% and a Cohen’s Kappa of
0.59. The work highlighted the possibility of deep learning-based models for automating breast
cancer grading on whole-slide images, which is important since accurate and consistent grading
improves patient outcomes. To determine the most common and productive training-testing ratios
for histological image recognition, Wakili et al. [19] quickly analyzed deep-learning-based models. A
training-to-testing ratio of 80/20 was shown to yield the highest accuracy. DenTnet, a new method
built on transfer learning and DenseNet, was also created by the authors to address the limitations
of prior methods. DenTnet achieved up to 99.28% accuracy on the BreaKHis dataset, outperforming
leading deep learning algorithms in computing performance and generalizability. DenTnet allowed us
to use fewer computational resources while maintaining our previous feature distribution. DenTnet
tested only whole slide images but it was not tested on different resolutions.

Kadhim et al. [20] used the Histogram of Gradients (HOG) feature extractor to quantify invasive
ductal carcinoma histopathology images. Area Under Curve (AUC), F1 score, specificity, accuracy,
sensitivity, and precision were used to evaluate the algorithms’ performance. With more than 100
images, the algorithms struggled to keep up with the data. Deep learning could help get over this
limitation. By reducing the scope for human error, machine learning (ML) can potentially improve
breast cancer detection and survival rates. Zhang et al. [21] developed BDR-CNN-GCN to detect
breast cancer in mammograms better. When a convolutional graph network (GCN) and a CNN are
combined with batch normalization (BN), dropout (DO), and rank-based stochastic pooling (RSP),
performance is improved. After being evaluated ten times on the breast miniMIAS dataset, the model
has a sensitivity of 96.202 percent, a specificity of 96.002 percent, and an accuracy of 96.101 percent.
Compared to 15 state-of-the-art breast cancer detection approaches and five neural network models,
BDR-CNN-GCN achieves better results regarding data augmentation and identifying malignant
breast masses.

The sliding window method for extracting features from Local Binary Patterns (LBP) charac-
teristics was developed by Alqudah et al. [22]. Overall, the proposed method achieves high accuracy,
sensitivity, and specificity, with a 91.12% rate of correct predictions, an 85.22% rate of correct positive
predictions, and a 94.01% rate of correct negative predictions. In comparison to other studies in the
literature, these outcomes excel. More information can be extracted using the suggested method,
and other machine-learning strategies can be compared. The technique can potentially enhance
breast cancer diagnosis and histological tissue localization. Clementet et al.’s support vector machine
classifier and four DCNN versions classified breast cancer histology images into eight categories [23].
A deep convolutional neural network (DCNN) was used to analyze images at many resolutions and
produce a highly predictive multi-scale pooling image feature representation (MPIFR), which was then
used by SVM to classify the images. Since it offers a fresh approach to reliably identifying various
breast cancer subtypes, the proposed MPIFR technology may greatly enhance patient outcomes and
breast cancer screening. Using the BreakHis histopathological breast cancer image dataset, we show
a precision of 98.45 percent, a sensitivity of 97.48 percent, and an accuracy of 97.77 percent.

The MPIFR method can improve the precision of breast cancer diagnosis and patients’ health.
Seo et al. [24] created a deep convolutional neural network (DCNN) that performs exceptionally
well in classifying breast cancer. On the BreakHis topology BC image dataset, the ensemble model
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achieved higher accuracy (97.77%), sensitivity (97.48%), and precision (98.45%) than the prior state-
of-the-art and an entire set of DCNN baseline models. To separate cells with and without nuclei,
Saturi et al. [25] introduced a superpixel-clustering strategy based on optimization. The proposed
method outperformed prior studies, resulting in an 8%–9% increase in classification accuracy for
identifying breast cancer. The improved segmentation results result from the method’s advantages,
which include searching for global optimization and using parallel computing.

In [26], Hao et al. suggested a deep semantic and Grey Level Co-Occurrence Matrix (GLCM)
based technique to image recognition in breast cancer histopathology. The suggested method outper-
forms the baseline models in Magnification Specific (MSB) and Magnification Independent (MIB)
classification, with recognition accuracies of 96.75%, 95.21%, 96.57%, and 93.15% at magnifications
of 40, 100, 200, and 400, respectively, and 96.33%, 95.26%, 96.09%, and 92.99% at the patient
level. At the individual patient level, MIB classification accuracy was 95.56 percent, and at the
individual image level, it was 95.54%. The suggested method’s accuracy is comparable to current
best practices in recognition. Rehman et al. [27] proposed a neural network-based, reduced feature
vector-and-machine learning framework to distinguish between mitotic and non-mitotic cells. The
suggested method could accurately capture cell texture, allowing for the creation of efficiently reduced
feature vectors to identify malignant cells. The proposed technique used ensemble learning with
weighted attributes to improve model performance. The proposed method for recognizing mitotic
cells outperforms state-of-the-art methods on the MITOS-12, AMIDA-13, MITOS-14, and TUPAC16
datasets. Different feature extraction methods (Hu moment, Haralick textures, and color histogram)
created by Joseph et al. allowed for successful multi-classification of breast cancer cases on the
BreakHis dataset. Histological images supported the multi-classification strategy recommended for
breast cancer, which outperformed the majority of other investigations. Histopathological images at
40X, 100X, 200X, and 400X magnifications were classified with accuracies of 97.87%, 97.60%, 96.10%,
and 96.84% using the proposed method [28].

Increasing patient survival rates and decreasing healthcare costs require early identification and
accurate breast cancer diagnosis. Machine learning algorithms have shown potential in detecting
and classifying breast cancer using histopathology images. Recent studies have investigated many
approaches to grading breast cancer, including superpixel clustering algorithms, sliding window fea-
ture extraction methods, and deep learning-based models. These studies have shown that the proposed
methods are superior to alternative procedures concerning accuracy, sensitivity, and specificity, all
contributing to improved breast cancer detection. These procedures have the potential to enhance
patient outcomes while decreasing healthcare costs. Among the many limitations and challenges that
must be surmounted are the interpretability of machine learning models and the requirement for
additional labeled data.

3 Material and Methods

The whole-slide classification machine learning pipeline has great potential for use in the detection
and treatment of breast cancer. We analyze high-resolution images from databases like BreakHis to
classify slides as cancerous or benign. The images were converted to YCBCR for optimal texture
feature extraction. After the first image processing, texture features were retrieved using wavelet
coefficients. A binary classifier was then given the extracted features. Any algorithm distinguishing
between cancerous and noncancerous slides can be the classifier. The dataset must be resampled before
classification can begin. Oversampling using SMOTE analysis is being used to rectify this inequitable
data set. XGBOOST is handling classification in this investigation. The pipeline then reports the
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classification results. Metrics like accuracy, precision, recall, and F1 score may be included in the
report. These indicators can be used to assess the pipeline’s efficiency and adjust the various stages
accordingly. The pipeline consists of four phases: preprocessing, feature extraction, classification, and
result reporting Fig. 1.

Figure 1: Workflow of proposed breast cancer classification method

3.1 Datasets

This section describes the data collecting and preprocessing methods used to train and assess the
models employed in the machine learning pipeline. Table 1 summarizes the features of BreakHis 1.0.
The BreakHis 1.0 database contains images of breast cancer tissue samples. The images are separated
into two categories: normal and malignant. The magnifications used to capture these images range
from 40X to 400X. The total number of images is 3,995, with 1,995 showing malignant growths and
2,000 showing noncancerous ones. Each image is a Portable Network Graphics (PNG) file of 7004603
pixels. The BreakHis dataset’s wide range of image sizes makes it perfect for teaching recognition
models to scale.

Table 1: Details of datasets used for experiments

Dataset No. of Images Image Type Image size

Magnification Benign Malignant Total

BreakHis 1.0

40X 652 1,370 1,995

PNG 700 × 460 × 3
100X 644 1,437 2,081
200X 623 1,390 2,013
400X 588 1,232 1,820

Total 2507 5429

Breast histopathology images from the BreakHis 1.0 dataset. The dataset includes 9,109 micro-
scopic images of both healthy and malignant breast tissue. These images were captured at four magni-
fications (40X, 100X, 200X, and 400X) with two distinct staining procedures (hematoxylin, eosin, and
picrosirius red). Studies have used the BreakHis 1.0 dataset to train and evaluate algorithms for breast
cancer diagnosis and prognosis. Thus, we have developed deep learning models for automatically
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classifying breast histopathology images, which has greatly improved the progress of CAD systems
[29]. Fig. 2 displays a few examples of the experimental database’s image content.

Figure 2: A breast cancer slide at four different magnifications: (a) 40X, (b) 100X, (c) 200X, and
(d) 400X

The data needed to be rebalanced, and many different approaches were studied. Under-sampling
would include decreasing normal slides to equal the number of cancer slides, but this would diminish
the already limited amount of data from the majority class and, as a result, may eliminate beneficial
features. If the minority class was oversampled using a method such as the synthetic minority over-
sampling technique (SMOTE) [30], the output classes would be more balanced, and the model would
have access to more useful information. However, this method is more computationally expensive than
the technique currently used, class weights, a simpler technique. Class weighting gives more weight to
the class under-represented in the training data when computing the loss function. Class weighting
does not involve further manipulation of the training data, given its capacity to meaningfully extend
the size of the training data set currently limited in BreakHis 1.0. Fig. 3 shows the results of resampling
using SMOTE.

Figure 3: Bar chart showing the output class distribution between the benign and malignant classes
within the training data. (a) Before Balancing (b) After Balancing

All datasets used for this inquiry were partitioned into K-fold cross-validation parts with their
corresponding ratios. When using XGBOOST, training images are used to build a model, while testing
images are utilized to evaluate the model and obtain information from the one that has been trained.
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3.2 Preprocessing

Digital image processing yields subtly diverse outcomes when applied to images in various color
modes. Converting an image from Red, Green, Blue (RGB) to Luminance, Chrominance (YCBCR)
offers many benefits. For image and video compression, transmission, and processing, YCBCR is
a color space that separates luminance (brightness) and chrominance (color). Converting an image
from RGB to YCBCR reduces color redundancy, which improves image compression. In YCBCR, the
luminance channel has the most visual information. Reducing chrominance resolution reduces file size
without affecting image quality. YCBCR also handles human-device color perception discrepancies.
Electronic gadgets see red, blue, and green equally, but humans see green more. YCBCR handles these
variances by segregating luminance and chrominance information. So, the RGB image is converted to
YCBCR using the OpenCV library in Python to separate all three components of YCBCR.

3.3 Feature Extraction

Signal processing, data compression, and image analysis are just a few of the many applications of
the wavelet transform, a mathematical technique. It takes a signal and breaks it down into a family of
wavelets, each of which is a scaled and translated version of the mother wavelet. The wavelet transform
can be applied to signals in either continuous or discrete time. Discrete wavelet transforms (DWT) are
frequently used for feature extraction and compression in image processing. The DWT breaks down
an image into coefficients representing various degrees of detail and approximation. The image is
convolved with a collection of filters known as the wavelet filters to extract these coefficients. The
DWT can be expressed mathematically as follows:

Wj,k =
n−1∑
n=0

xnϕj,k,n (1)

Vj+1,k = Wj,k =
n−1∑
n=0

xn∅j,k,n (2)

where ϕj,k,n and ∅j,k,n are wavelet and scaling functions, and xn is the original signal. At level j and index
k, the wavelet and scaling coefficients are denoted by Wj,k and Vj+1,k.

Image analysis software widely uses texture features and the grey-level co-occurrences matrix
(GLCM). Important details are laid out, and useful statistical interface formulas are also laid out
[31]. The image’s pixel intensities are ranked by counting how many of each kind there are. An image
set’s mean is calculated by:

M =
(

1
m

× n
)

m1∑
0=x

n1∑
0=y

f (x.y) (3)

The standard deviation may measure in-homogeneousness because it depicts the probability
distribution of the observed population [32]. Standard deviations with larger values publicly reflect
the high resolution of the boundaries of an image and are indicative of images with higher intensity
levels. Using the described formula, it determined:

S.D (σ ) =
√(

1
m × n

)
m1∑
0=x

n1∑
0=y

(f (x.y) − M)
2 (4)

A metric known as “skewness” [32] has been used to quantify the presence or absence of symmetry.
Skewness, denoted by Sk(x), is defined as follows for the X probability distribution.
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Sk (x) =
{

1
m

× n
} ∑ {F (x, y) − m}

S.D3
(5)

The term kurtosis [33] is used to characterize the curvature of the probability distributions of
random variables. Kurt of variable x, also known as the kurtosis of a random variable, is defined as:

Kurt (x) =
{

.1
m

× n
} ∑

(F (x, y) − m)

S.D4
(6)

A metric known as energy has been applied to the study of visual similarities. The energy variable
quantifies how many times the pixelated image may be replicated. The Horalicks’ definition of feature
energy in the GLCMs. The second angular moment is another name for it, and its full name is as
follows:

En =
√

m1∑
0=x

n1∑
0=y

F2 (x.y) (7)

By contrast, also known as the resolution of a pixel concerning its neighbors, it is a measurement
used to assess the quality of an image.

Con =
m1∑
0=x

n1∑
0=y

(
x(y)2f (x.y)

)
(8)

3.4 Classification

We rely on earlier studies to guide our classification method because feature extraction is more
important to our work than building a superior classifier. Our research confirmed the widespread
implementation of nonlinear XGBOOST for image classification and the successful attainment of
high-quality detection outcomes. For this reason, XGBOOST is our top pick. The DART amplifier is
being used. Training and testing are two of several steps in the categorization process. Fig. 1 illustrates
a functional breakdown of the system’s workflow. During its formation, the classifier draws heavily
on the texture features of the image databases. After wavelet-based feature extraction, we train a
classification model with XGBOOST. Every image in the experimental datasets had features extracted
for training data. The 10-fold cross-validation technique is employed for this purpose. In order to
analyze the data, it was split up into k-segments. On every experimental dataset, the proposed model
excels.

3.5 Experimental Setup

Python evaluated texture attributes, and XGBOOST classified counterfeit photos. Several
machine-learning methods and extraction parameters were evaluated to enhance accuracy. XGBOOST
classified images, and Python 3.11 preprocessed and extracted features. OpenCV and NumPy are
popular image-reading and preprocessing libraries. Robotics, autonomous cars, and computer vision
use these picture libraries. PyFeat extracts picture features using texture, shape, and color. These traits
help machine learning systems classify and recognize items. XGBOOST and Scikit-learn offer decision
trees, random forests, and support vector machines. SMOTE is used in machine learning to correct the
class imbalance. SMOTE generates artificial minority class samples to balance the dataset and improve
classification model accuracy. These Python packages process, extract, classify, and visualize pictures.
Matplotlib and Seaborn ease picture analysis and categorization. The DART booster’s default settings
use all training samples with a learning rate of 0.1, a maximum tree depth of 6, a subsample ratio of 1,
a regularization term of 1, a gamma value of 0.0 (no minimum loss reduction required for splitting), a
minimum child weight of 1, and no dropout. K-Fold cross-validation evaluates categorization models.
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XGBOOST’s cross-validated k-fold datasets were calculated using each fold’s testing set. A Jupyter
Notebook with a seventh-generation Dell I7 CPU, 16 GB of RAM, and 1 TB of storage ran all tests.

3.6 Evaluation Measures

Many distinct measures, such as testing accuracy, precision, recall, F1-score, and AUC, are used to
evaluate the classification process. When considering the proposed method, the assessment parameter
utilized most of the time is accurate. So, in this study, the proposed approach is quantitatively evaluated
using the following three parameters:

Accuracy = TP + TN
TP + TN + FP + FN

(9)

where Accuracy is the total number of correct guesses divided by the total number of correct forecasts,
then multiplied by 100 to get a percentage, the percentage of correctly identified samples in the true
positive rate is determined using.

Precision = TP
TP + FP

(10)

Recall = FP
TP + FN

(11)

In this model, true positive (TP) represents the number of diseases that were correctly recognized,
false positive (FP) represents the number of conditions that were misclassified, and false negative
represents the number of diseases that should have been discovered but were not (FN). The F1 score
is a popular measure for accuracy and recall.

F1 score = 2 × Precision × Recall
(Precision + Recall)

(12)

Cross-validation (CV) is a resampling methodology utilized to assess machine learning models in
a constricted dataset while safeguarding the prediction models against overfitting. On the other hand,
K-Fold CV embodies a technique where the given dataset is spliced into K segments or folds, where
each fold serves as a testing set at some point. Consider the case of 10-fold cross-validation (K = 10),
where the dataset is separated into ten folds, with the first fold testing the model in the first iteration
and the remaining folds trained on the model. In the second iteration, the second fold serves as the
testing set, whereas the rest function as the training set. This cyclic process repeats until each ten-fold
is utilized as the testing set.

4 Results and Analysis

The results of a large-scale experiment to test the proposed method for categorizing breast cancer
are presented here. We used the evaluation method mentioned in Section 3.6 to train and score the
models. Data was compiled from a wide range of performance assessment tools. The tests were
conducted in the following areas:

These areas were the focus of the experiments:

1. The effectiveness of the proposed framework is measured by XGBOOST for two-class classi-
fication across different magnification datasets individually available in BreakHis 1.0.

2. For two-class classification on the combined dataset, XGBOOST is used to evaluate the
efficacy of the suggested framework. Cross-validation uses different assessment metrics to rate
the proposed framework on the combined dataset for benign and malignant.

3. Analysis of how the proposed method stacks up against other, more advanced approaches.
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4.1 Evaluation of Proposed Method on 40X, 100X, 200X, and 400X Images from BreakHis 1.0

Table 2 summarizes ten rounds of cross-validation testing of a breast cancer classification model
on a 40X magnified dataset. Wavelet transformation and textural features of histopathological images
distinguish benign from malignant instances. The table below shows each fold’s benign and malignant
classification percentage. The AUC statistic and the number of images utilized in each iteration are
shown. All folds have good accuracy ratings of 96.35–99.27 percent. The model correctly classifies
benign and malignant cases with good precision, recall, and F1 score values. Wavelet transformation
and textural aspects of histopathology images may improve breast cancer classification accuracy and
patient outcomes.

Table 2: 10-fold cross-validation results on 40X magnified images of BreakHis 1.0

Fold Acc Benign Malignant AUC

Images Precision Recall F1 Images Precision Recall F1

1 99.27 139 0.99 1.00 0.99 135 1.00 0.99 0.99 0.99
2 98.54 147 0.99 0.99 0.99 127 0.98 0.98 0.98 0.99
3 98.18 125 0.99 0.97 0.98 149 0.97 0.99 0.98 0.98
4 97.81 143 0.99 0.97 0.98 131 0.97 0.98 0.98 0.98
5 98.54 132 0.98 0.98 0.98 142 0.99 0.99 0.99 0.99
6 97.45 127 0.96 0.98 0.97 147 0.99 0.97 0.98 0.98
7 97.81 146 0.97 0.99 0.98 128 0.99 0.96 0.98 0.98
8 97.45 152 0.99 0.97 0.98 122 0.96 0.98 0.97 0.98
9 96.72 134 0.98 0.96 0.97 140 0.96 0.98 0.97 0.97
10 96.35 125 0.95 0.98 0.96 149 0.98 0.95 0.97 0.96

When evaluating machine learning models, cross-validation is frequently used. The dataset is
partitioned into k folds, and the model is trained k times, with each fold serving as either the
validation or training set. The model can be put to the test on new data through cross-validation.
Model performance across each cross-validation fold is displayed in fold-wise confusion matrices. For
each category, they show the proportion of correct classifications, incorrect classifications, and false
negatives. Overfitting, class imbalance, and patterns in model performance can all be identified with
this information. Based on the fold-wise confusion matrices presented in Fig. 4, the model achieves
high-performance levels for both benign and malignant classes. Depending on the fold, performance
may change due to differences in the number of images used per class. Blue boxes in the confusion
matrix show samples that are correctly classified.

Table 3 displays the outcomes of a 10-fold cross-validation on the BreakHis 1.0 dataset using
the proposed approach and a 100X magnification. The table separately lists the accuracy, precision,
recall, and F1 score for each fold and benign and cancerous images. We also provide area under
the curve (AUC) values for each fold, quantifying the model’s ability to differentiate between benign
and cancerous images. The outcomes show that the automated approach is effective and accurate in
spotting breast cancer. The high accuracy ratings (95.83–98.95%) demonstrate that the system can
successfully categorize various images. The excellent precision, recall, and F1 score scores show how
well the system can distinguish between benign and cancerous images. The AUC values demonstrate
that the algorithm can distinguish between normal and cancerous images. These findings provide
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promising evidence for the potential utility of the automated approach in detecting invasive breast
cancer.

Figure 4: Confusion matrices of testing results on 40X magnified images of BreakHis 1.0

Table 3: 10-fold cross-validation results on 100X magnified images of BreakHis 1.0

Fold Acc Benign Malignant AUC

Images Precision Recall F1 Images Precision Recall F1

1 96.88 138 0.96 0.98 0.97 150 0.98 0.96 0.97 0.97
2 98.26 162 0.98 0.99 0.98 126 0.98 0.98 0.98 0.98
3 95.83 133 0.94 0.97 0.96 155 0.97 0.95 0.96 0.96
4 97.22 145 0.97 0.98 0.97 143 0.98 0.97 0.97 0.97
5 97.56 154 0.97 0.99 0.98 133 0.98 0.96 0.97 0.97
6 97.56 135 0.96 0.99 0.97 152 0.99 0.97 0.98 0.98
7 98.95 140 1.00 0.98 0.99 147 0.98 1.00 0.99 0.99
8 96.52 155 0.97 0.96 0.97 132 0.96 0.97 0.96 0.97
9 98.61 140 0.98 0.99 0.99 147 0.99 0.98 0.99 0.99
10 98.61 135 0.97 1.00 0.99 152 1.00 0.97 0.99 0.99

The confusion matrices shown in Fig. 5 can be used to perform a fold-wise evaluation of a
classification model. The model was trained and validated using many folds or data sets. The confusion
matrices show how well the model does on each fold. The model’s accuracy and AUC (Area under the
Curve) on that fold constitutes its total performance. True positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) are added up for each fold and displayed in the confusion
matrix. Metrics such as precision, recall, and F1score can be computed from this data to shed light
on the model’s efficacy. The model has performed well with few false positives and negatives, and the
accuracy and AUC values are sufficient for most folds. The model’s advantages and disadvantages
need more investigation in any case.
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Figure 5: Confusion matrices of testing results on 100X magnified images of BreakHis 1.0

Table 4 displays the outcomes of a 10-fold cross-validation study conducted on images from the
BreakHis 1.0 dataset that were magnified by a factor of 200. The cross-validation is represented by
“folds,” or rows. Values for accuracy, precision, recall, F1 score, and area under the curve (AUC) are
displayed in separate columns for benign and malignant images. Between 97.12% and 98.92%, the fold-
wise accuracy is quite high. Both benign and cancerous images have precision values between 0.96 and
0.99. Both healthy and cancerous images have recall values between 0.97 and 0.99. The F1 score values
are between 0.97 and 0.99 for healthy and cancerous images. The AUCs are between 0.97 and 0.99.
The results show that the model is highly accurate and performs well when identifying benign and
malignant breast histopathology images.

Table 4: 10-fold cross-validation results on 200X magnified images of BreakHis 1.0

Fold Acc Benign Malignant AUC

Images Precision Recall F1 Images Precision Recall F1

1 98.92 128 0.99 0.98 0.99 150 0.99 0.99 0.99 0.99
2 97.84 152 0.97 0.99 0.98 126 0.98 0.97 0.98 0.98
3 97.48 126 0.97 0.98 0.97 152 0.98 0.97 0.98 0.97
4 98.20 141 0.99 0.98 0.98 137 0.98 0.99 0.98 0.98
5 98.92 143 0.99 0.99 0.99 135 0.99 0.99 0.99 0.99
6 97.48 135 0.97 0.98 0.97 143 0.98 0.97 0.98 0.97
7 97.12 151 0.98 0.97 0.97 127 0.96 0.98 0.97 0.97
8 97.12 152 0.96 0.99 0.97 126 0.98 0.95 0.97 0.97
9 97.12 134 0.96 0.98 0.97 144 0.98 0.97 0.97 0.97
10 97.84 128 0.97 0.98 0.98 150 0.99 0.97 0.98 0.98

Ten iterations of cross-validation were run on a 200-fold-enhanced version of the BreakHis 1.0
dataset, and the findings are displayed in confusion matrices in Fig. 6. Each fold’s accuracy, AUC, and
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confusion matrix are shown independently. Members of a confusion matrix that fall on the diagonal
reflect correctly diagnosed events (benign and malignant), whereas those that fall off the diagonal
represent misclassified cases. The model has an adequate area under the curve (AUC). There is some
variation in the number of misclassified samples between the different folds. Each additional fold
results in a higher rate of false positives (three cases of benign disease misdiagnosed as malignant) and
false negatives (five cases of malignant disease misdiagnosed as benign). Areas under the curve that are
large are indicative of successful data classification. If there is a big discrepancy between the number
of benign and malignant events in this dataset, the class imbalance may be troublesome even if AUC
remains unchanged.

Figure 6: Confusion matrices of testing results on 200X magnified images of BreakHis 1.0

This research used XBOOST to correctly label benign and malignant breast cancer images in a
dataset comprising both types of cancer. Table 5 displays the outcomes of a 10-fold cross-validation
test conducted on 400X zooms of the BreakHis 1.0 dataset. The table shows each fold’s accuracy,
precision, recall, F1 score, and AUC. The table shows that for most folds, the proposed method
achieved good accuracy (between 94.31% and 98.78%). High precision and recall values show that the
method accurately separates benign from malignant samples. The high area AUC scores, ranging from
0.94 to 0.99, further prove that the proposed technique is a success. Table 5 shows that the proposed
approach is a potentially useful strategy for classifying breast cancer images, which can be implemented
in clinical settings for early detection and diagnosis.

Fold-wise confusion matrices for the provided classification model are displayed in Fig. 7. The
accuracy and AUC (area under the curve) values are presented for each fold, representing the model’s
performance on a different portion of the data. Each confusion matrix is a 2 × 2 table, with the first row
showing the number of false positives and the second showing the number of false negatives. Correctly
classified samples are denoted by items on the diagonal (top left and bottom right), while misclassified
samples are denoted by elements off the diagonal (top right and bottom left). The provided data
suggests that the model performs better, with accuracy scores between 0.94 and 0.99 and AUC scores
between 0.95 and 0.99 throughout the ten folds. It is worth noting that results may differ based on the
dataset used. Therefore, additional investigation into the model’s efficacy may be necessary.
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Table 5: 10-fold cross-validation results on 400X magnified images of BreakHis 1.0

Fold Acc Benign Malignant AUC

Images Precision Recall F1 Images Precision Recall F1

1 97.17 119 0.96 0.98 0.97 128 0.98 0.96 0.97 0.97
2 98.38 136 0.99 0.99 0.99 111 0.98 0.98 0.98 0.98
3 95.55 118 0.95 0.96 0.95 129 0.96 0.95 0.96 0.96
4 94.74 135 0.98 0.93 0.95 112 0.92 0.97 0.94 0.95
5 97.97 116 0.96 1.00 0.98 130 1.00 0.96 0.98 0.98
6 95.53 122 0.94 0.98 0.96 124 0.97 0.94 0.95 0.96
7 98.78 137 0.99 0.99 0.99 109 0.99 0.98 0.99 0.99
8 98.78 119 0.99 0.98 0.99 127 0.98 0.99 0.99 0.99
9 95.12 116 0.95 0.95 0.95 130 0.95 0.95 0.95 0.95
10 94.31 114 0.90 0.98 0.94 132 0.98 0.91 0.94 0.95

Figure 7: Confusion matrices of testing results on 400X magnified images of BreakHis 1.0

Tables 2 and 3, and Fig. 4 show that the proposed method can successfully identify breast cancer
in histological images. Wavelet transformation and textured features of histopathology pictures were
used in the suggested study to distinguish between benign and malignant breast cancer. High accuracy,
precision, recall, and F1 score results in cross-validation tests show that the models can correctly label
a sizable fraction of images. The AUC values also demonstrate that the models can distinguish between
normal and cancerous visuals. These results provide preliminary support for the automated invasive
breast cancer detection technique, implying that it may improve patient outcomes.

4.2 Performance Evaluation of Proposed Method on Combined Dataset

Table 6 summarizes the results of the BreakHis 1.0 dataset’s application of the XGBOOST
algorithm to classify breast cancer patients. Ten-fold cross-validation results show that the model is
quite accurate, with a mean of 97.84%. The model’s recall, F1, and accuracy were used to evaluate
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how well it distinguished between benign and malignant tumors. The F1 score, precision, and recall
all stayed in the 0.96 to 0.99 range for the harmless category. The malignant class’s F1 score, recall, and
precision were all between 0.97 and 0.99. These results show that the model can distinguish between
benign and malignant tumors in breast cancer images. The area under the curve (AUC) was also used
to evaluate the model’s performance in identifying benign from malignant tumors. The model has
excellent discriminatory power with an AUC in the range of 0.97 and 0.99. The results indicate that
the proposed method is a practical strategy for breast cancer categorization based on histological
images.

Table 6: 10-fold cross-validation results on combined images of BreakHis 1.0

Fold Acc Benign Malignant AUC

Images Precision Recall F1 Images Precision Recall F1

1 98.25 546 0.98 0.99 0.98 540 0.99 0.98 0.98 0.98
2 97.05 540 0.96 0.98 0.97 546 0.98 0.96 0.97 0.97
3 98.16 536 0.97 1.00 0.98 550 1.00 0.97 0.98 0.98
4 97.61 548 0.99 0.97 0.98 538 0.97 0.99 0.98 0.98
5 96.59 564 0.96 0.97 0.97 522 0.97 0.96 0.96 0.97
6 98.71 533 0.99 0.99 0.99 553 0.99 0.99 0.99 0.99
7 98.25 544 0.98 0.99 0.98 542 0.99 0.98 0.98 0.98
8 98.80 553 0.98 0.99 0.99 533 0.99 0.98 0.99 0.99
9 97.88 561 0.97 0.99 0.98 524 0.99 0.97 0.98 0.98
10 97.33 504 0.96 0.98 0.97 581 0.98 0.97 0.97 0.97

Fig. 8 displays the 10-fold cross-validation results for a breast cancer XGBOOST model’s classifi-
cation accuracy. Several different dataset folds exist for generating independent training and validation
datasets. After each cycle, we log the AUC and accuracy. The confusion matrix provides information
about the percentages of correct and incorrect results for each fold. The model has a respectable
accuracy of 0.94 to 0.99 across ten folds.

Figure 8: Confusion matrices of testing results on combined images of BreakHis 1.0
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Furthermore, the AUC values are rather satisfactory, between 0.95 and 0.99. These findings
indicate that the model may be able to distinguish between benign and aggressive breast tumors. The
confusion matrices demonstrate that the model correctly classifies occurrences as good or bad. False
positives and false negatives are possible, although only very rarely. When a model wrongly detects
a benign instance as malignant, this is known as a false positive (FP), and when a model incorrectly
identifies a malignant instance as benign, this is known as a false negative (FN). Clinical situations
are inherently high-risk, making accounting for this type of error imperative. The proposed method
appears to apply to classifying breast cancer. However, more research on larger datasets is required to
verify their clinical feasibility.

4.3 Comparative Analysis with State-of-Art Methods

Section 2 covers the many methods used to diagnose breast cancer. A few of them use machine
learning and deep learning. Different models can be compared using the same data to see how well they
perform. Our research included comparing our approach with others that produce comparable results.
We compare the suggested method’s accuracy to that of state-of-the-art methods. Table 7 compares
the accuracy of various techniques for detecting breast cancer at varying magnification levels. The
proposed method is just one of many that can be used; other options are Sliding Window + SVM
[13], ResNet50 + KWELM [28], Xception + SVM [29], and DenseNet201 + GLCM + SVM [17].
All measurements, including accuracy and area under the curve, suggest that the proposed strategy is
superior. At 40X magnification, the proposed method obtains an accuracy of 99.27%, while at 100X
magnification, it achieves an accuracy of 98.95%. Both at 200X and 400X, it gets a 98.92% accuracy
rate. Xception plus SVM consistently beats other methods, regardless of zoom level. ResNet50 +
KWELM performs moderately better from 40X to 100X but much worse from 100X to 400X. The
proposed method shows potential as a robust instrument for detecting breast cancer due to its higher
performance.

Table 7: Comparative analysis with state-of-the-art methods

Method Year Magnification level Accuracy AUC

ResNet50 + KWELM [34] 2021

40X 88.36 —
100X 87.14 —
200X 90.02 —
400X 84.16 —

Sliding Window + SVM [22] 2022

40X 81.71 —
100X 92.01 —
200X 93.21 —
400X 96.16 —

Xception + SVM [35] 2022

40X 96.25 0.99
100X 96.25 0.99
200X 95.74 0.99
400X 94.11 0.96

DenseNet201 + GLCM + SVM [26] 2022

40X 88.23 —
100X 90.38 —
200X 91.03 —
400X 89.23 —

(Continued)
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Table 7 (continued)

Method Year Magnification level Accuracy AUC

Wavelet Transformation +
XGBOOST Proposed

40X 99.27 0.99
100X 98.95 0.99
200X 98.92 0.99
400X 98.78 0.99
Combined 98.80 0.99

5 Conclusion

Recognizing malignant images is a vital study topic in the medical field. The purpose of this
research is to employ wavelet transformation and texture features in the diagnosis of breast cancer.
Our method eliminates the YCBCR channels from an image before extracting blocks of color data.
The proposed method is resilient against transformations (rotation, scaling, and distortion) applied
to the tumor region. However, we trained and tested our proposed technique on a larger collection of
images to increase its efficacy. The classification was performed using the XGBOOST classifier, and
feature extraction parameters were optimized for optimum accuracy. Maximum accuracy of 99.27%
was reached on the 40X dataset, 98.95% on the 100X dataset, 98.92% on the 200X dataset, 98.78% on
the 400X dataset, and 98.80% on the combined dataset using the suggested method. Our findings
show that wavelet modification can be used successfully for cancer image recognition. There are,
however, some restrictions that must be overcome. For instance, our dataset does not reflect the world
as it is because of the biases introduced by Smote. In addition, our approach might need help with
more advanced forms of image editing, such as sophisticated geometric transformations or semantic
changes at a higher level. In conclusion, our research has aided in advancing wavelet-based methods
for recognizing cancer images in medical imagery. To make our method more accurate and stable,
we intend to continue investigating this topic by increasing the size of our dataset and investigating
additional classification models. The goal is to create a system that can accurately and efficiently
categorize multi-class cancer images in real-world settings.
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