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ABSTRACT 

Thermal systems play significant roles in the engineering practice and our lives.  To improve those thermal systems, it is necessary to model and 
optimize the design and the operating conditions.  More importantly, the design uncertainties should be considered because the failures of the 
thermal systems may be very dangerous and produce large loss.  This review paper focuses on a systematic strategy of modeling and optimizing of 
the thermal systems with the considerations of the design uncertainties.  To demonstrate the proposed strategy, one of the complicated thermal 
systems, Chemical Vapor Deposition (CVD), is simulated, parametrically modeled, and optimized.  The operating conditions, inlet velocities and 
susceptor temperatures, are the most significant factors in the CVD and are chosen as the design variables.  Several responses - including the 
percentage of the working area, the mean of the deposition rate, the root mean square of the deposition, and the surface kurtosis - are chosen based 
on the physical needs and statistical foundations, and are utilized to represent the productivity and the quality of the thin-film deposition.  One of 
the Response Surface Method (RSM), the Radial Basis Function (RBF), is employed to formulate the objective and constraint functions for the 
optimization.  However, it is not until the design uncertainties are considered that the thermal system designs have high risk of the violations of the 
performance constraints.  The Reliability-Based Design Optimization (RBDO) algorithms are used to solve the optimization problems with the 
design uncertainties.  The most famous RBDO methods are the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA).  
In RBDO, probabilistic constraints are established with respect to either normally or non-normally distributed random variables.  The optimal 
solutions are found subjected to the allowable level of the failure probabilities.  The Monte Carlo Simulation (MCS) results can be used to evaluate 
the failure probabilities.  As a result, the proposed systematic strategy of parametrically modeling and optimizing with design uncertainties can be 
applied to either experiments or simulations of other thermal systems to quantitatively represent the performances, improve their productivity, 
maintain the quality control, and reduce the probability of the system failure. 
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1. INTRODUCTION 

Thermal systems not only are essential technologies in engineering 
practice but also play significant roles in our lives.  With the 
continuously growing needs of the thermal systems in many different 
applications, such as power systems, air conditioning, energy 
conversion, chemical processing, material processing, aerospace, and 
automobiles, the design and the optimization of the thermal systems 
have become very important research works in the engineering field. 

The thermal systems are often very complicated because of the 
complex physics and mechanics involved in the systems, including 
fluidic mechanics, heat transfer, mass transfer, and chemical reactions.  
It is nearly impossible to realize the closed-form relationships between 
the system performances and all the involved variables.  Therefore, it 
is important to firstly understand the basic characteristics of the thermal 
systems and subsequently determine the principal design variables 
which dominantly control the system performances. 

A systematic strategy is then desired to model and optimize the 
thermal systems.  This proposed strategy must be able to resolve the 
following questions: 

• How to model the system performances in terms of the design 
variables so that the system performances can be accurately 
described by the proposed models? 

• How to formulate the optimization problems in terms of the 
defined models for improving the system performances? 

In the aspect of the modeling, the mathematical models that are able to 
quantitatively and literally represent the physical behaviors of the 
system performances are necessary.  With the desired models, the 
optimization problems can then be formulated to achieve the goals of 
the thermal system designs. 

Unfortunately, the existence of the design uncertainties is 
unavoidable.  A traditional deterministic optimization algorithm often 
leads the optimal solution to the boundaries of the active constraints.  
Without the considerations of the design uncertainties, the optimal 
solution from the deterministic optimization formulation is unreliable 
and has high probabilities of violating the active constraints.  
Therefore, additional attentions should be drawn to the optimization 
problems with the design uncertainties and the following questions 
should be answered: 

• How to formulate a non-deterministic optimization problem 
when the design variables are uncertain? 
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• How to solve this non-deterministic optimization problem 
and how to solve it efficiently? 

2. THERMAL SYSTEMS 

As described earlier, the thermal systems are very important in various 
applications and our lives.  To design and optimize the thermal 
systems, the most fundamental step is to recognize their existence and 
classify them into different groups in terms of their functionalities.  A 
common classification of the thermal system is given as follows 
(Jaluria, 1998): 

• Manufacturing and materials processing systems. 
• Energy systems. 
• Cooling systems for electronic equipment. 
• Environmental and safety systems. 
• Aerospace systems. 
• Transportation systems. 
• Air conditioning, refrigeration, and heating systems. 
• Fluid flow systems and equipment. 
• Heat transfer equipment. 
• Other thermal systems. 

After understanding the physics and the mechanics behind the thermal 
systems, the control variables are chosen to determine the system 
performances.  Therefore, the decision of the design variables is the 
key factor of the modeling and the optimization of the thermal systems. 

Manufacturing and Materials Processing Systems: Heat 
transfer plays an important role in the manufacturing and materials 
processing systems, where the materials often change their mechanical 
properties due to temperature changes.  The controls of the 
temperature changes determine the productivity and the quality of the 
processes.  Examples include crystal growing, metal casting, metal 
forming, plastic injection molding, etc. (Jaluria, 1998)  One of those 
processes, the Chemical Vapor Disposition (CVD) process, will be 
considered in the later sessions.  A systematic strategy to design and 
optimize the CVD process with design uncertainties will be proposed 
and it can be applied to the design and the optimization of other thermal 
systems. 

Energy Systems have become one of the most important thermal 
systems in recent years in which the thermodynamics of the energy 
conversions are the issues of most concern.  Energy systems are often 
very complicated because they contain several subsystems, such as 
energy collector, steam generator, turbines, condenser, etc. (Van Wylen 
and Sonntag, 1986)  Numerous design variables should be considered 
to improve the thermal efficiency of the energy system. 

Cooling Systems are essentially important for electronic equipment 
where the operating temperatures are constrained within certain 
allowable temperatures (Steinberg, 1980).  Other constraints for the 
cooling systems include the spatial working space, the allowable noise, 
etc.  The objective of the cooling system design is often minimizing 
the ratio of used power to reduced temperature, while the design 
variables are often the geometries of the heat sink which differ the 
surface area of the heat transfer (Yang and Peng, 2008; 2009). 

Environmental and Safety Systems: Safety is an important factor 
for systems with extreme environmental conditions, such as high 
temperature and toxicity.  Environmental and safety systems include 
the applications for heat rejection to air or water, control of the 
temperature and the pollution of thermal systems, etc.  The heat 
rejection from a power plant is a good example while the heat is 
dumped to the river as a cooling pond.  The operation of the power 
plant will be under high risks if the safety systems fail.  Therefore, the 
safety system should be taken into careful consideration in the design 
of the systems with extreme environmental conditions. 

Aerospace Systems: Thermal systems are the most important 
components in aerospace systems, such as rockets, turbines, etc.  For 
an instance of the rocket system, the alcohol/water mixture is pumped 
into the combustion chamber to heat the fuel and cool the chamber.  
The balance between the high thrust for launching and the efficient 
cooling is the focus in the design of the rocket systems. 

Transportation Systems cannot operate without the existence of the 
thermal systems, including diffusion, compression, combustion, 
turbine, and nozzle systems.  In a turbine engine, the thrust energy 
comes from the combustion of the air/fuel mixture.  Thermodynamics 
is significant for the design of the transportation systems (Van Wylen 
and Sonntag, 1986), while they are often optimized in terms of 
maximizing the ratio of the generated power to utilized fuel. 

Air conditioning, Refrigeration, and Heating Systems are 
indispensable to our daily lives.  Detailed information about such kind 
of the thermal systems can be found in the references of (Stoecker and 
Jones, 1982; Kreider and Rabl, 1994).  Take the air conditioning 
system as an example, the physical phase, the temperature, and the 
pressure of the fluid change via the mechanisms of the condenser, the 
evaporator, and the compressor.  The optimization for such thermal 
systems often focuses on decreasing the power consumption and 
improving the efficiency of the temperature control. 

Fluid Flow Systems and Equipment include hydraulic 
components, such as pumps, turbines, compressors, fans, etc.  Fluid 
mechanics is of the major concern in the fluid flow systems and is 
closely related to the thermal systems with energy transmission, 
cooling, and mass transfer (Fox and McDonald, 1992).  One of the 
examples is a wastewater treatment system in which the waste water is 
transferred through several different fluid mechanisms, clarified, and 
delivered to the drainage system. 

Heat Transfer Systems contain heat exchangers (Kays and London, 
1984), furnaces, heaters, condensers, etc.  The most straightforward 
example is the heat exchangers where the heat is transferred to the 
water to increase its temperature for human usage.  The design of the 
heat exchanging mechanisms considers the transmission of the energy 
and the control of the heat loss. 

There is never a best way to classify all kinds of the thermal 
system but the most practical ones have been covered and discussed.  
In the later session, one of the materials processing systems, the CVD 
process, is taken into consideration.  The design and the optimization 
of the CVD process will be studied and a systematic strategy will be 
proposed to implement the modeling and the optimization of the CVD 
process with design uncertainties.  The proposed methodology is 
expected to have the capability of designing and optimizing of the other 
thermal systems. 

3. Chemical Vapor Deposition Processes 

Chemical Vapor Deposition (CVD) is a process that a solid crystalline 
or amorphous layer is formed on a heated substrate by chemically 
reacting premixed gases using the activation energy.  The Fig. 1 shows 
a schematic sequence of the steps of the CVD process.  The process 
involves the transport of reactants to the susceptor, the chemical 
reactions and generations of new species, the desorption of the reaction 
products, and their diffusion back to the main stream (Mahajan, 1996).  
Unlike the cold substrate in the Physical Vapor Deposition (PVD) 
process (Fraser, 1983; Foxon, 1994), the one in the CVD process has a 
higher temperature with a various range from 500 to 1500 K due to 
different applications and materials, different types of CVD processes, 
and different configurations of the CVD reactors.  The details about 
the applications of the CVD processes, different types of the CVD 
processes, and the configurations of the CVD reactors will be discussed 
in the following subsession. 
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Fig. 1 Schematic sequence of steps in CVD process (Mahajan, 

1996). 
 

3.1. Different Applications of the CVD Processes 

The CVD-based products have become more and more important in our 
daily lives because of the high quality of the deposited thin layers with 
various kinds of materials.  The CVD process is well utilized to 
produce highly uniform thin films deposited on different kinds of 
substrates (typically 0.01 to 10 μm ) (Mahajan, 1996).  It is used in a 
wide range of applications where thin coatings of high purity are 
required. 

The CVD processes can be utilized to produce high-quality 
microstructures in semiconductors, special materials with dielectric 
properties as insulators, and metallic conductors with different 
resistivities.  Furthermore, the CVD processes generate high-strength 
products such as protective coatings, anticorrosive coatings, and 
ceramic materials.  Besides the productions of thin layers, it is 
possible to generate powers and fibers of different materials by the 
CVD processes.  Other applications such as optical materials and 
synthetic diamonds have high qualities and purities of different 
materials.  The common materials in different applications of the CVD 
processes are listed in Table 1.  Most of the research interests in the 
later discussions is directed at the CVD of silicon because of its 
relevance to the semiconductor industry (Gardeniers et al., 1989; 
Breiland and Coltrin, 1990). 

3.2. Different Types of the CVD Processes 

CVD processes can be classified in terms of their operating conditions 
or different kinds of instruments.  With different operating pressures 
of the CVD reactors, the CVD processes include three different types: 

• Atmospheric Pressure CVD (APCVD). 
• Low-Pressure CVD (LPCVD). 
• Ultra-High Vacuum CVD (UHVCVD). 

The APCVD operates at the pressure of 0.1 to 1 atm while the LPCVD 
works at a lower pressure of 310− atm (Mahajan, 1996).  Other 
modern CVD processes reach high or ultra-high vacuum (below 

610− Pa) and have high-quality thin-film depositions. 
 

Table 1 Common materials in different applications of the CVD 
processes (Sherman, 1987; Gardeniers et al., 1989; Breiland 
and Coltrin, 1990; Fotiadis et al., 1990; Creighton and 
Parmeter, 1993; Gladfelter, 1993; Rebenne and Bhat, 1994; 
Cheng et al., 1995; Hintermann, 1996; Mahajan, 1996). 

Different CVD 
Applications 

Common Materials 

Semiconductors silicon (Si), gallium arsenide (GaAs) 
Dielectrics silicon dioxide (SiO2), silicon nitride (Si3N4) 

Metallic conductors 
tungsten silicide (WSi2), molybdenum 

silicide (MoSi2), tungsten (W), aluminum 
(Al), molybdenum (Mo), polysilicon (Si) 

Protective coatings 
titanium nitride (TiN), Tungsten (W), 

molybdenum (Mo), gold (Au), platinum (Pt) 

Ceramics 
aluminum oxide (Al2O3), titanium carbide 
(TiC), silicon carbide (SiC), boron carbide 

(B4C), titanium biboride (TiB2) 
Anticorrosive 

coatings for turbine 
blades 

boron nitride (BN), molybdenum disilicide 
(MoSi2), silicon carbide (SiC), boron carbide 

(B4C) 
Powers for sintering 

and hot pressing 
silicon nitride (Si3N4), silicon carbide (SiC) 

Fibers for 
composite materials 

boron (B), boron carbide (B4C), silicon 
carbide (SiC) 

High-purity 
monolithic 

materials for 
infrared optics 

zinc selenide (ZnSe), zinc sulfide (ZnS), 
cadmium sulfide (CdS), cadmium telluride 

(CdTe) 

Synthetic diamonds carbon (C) 
 
Table 2 Different types of the CVD processes. 

Different 
Types 

Descriptions 

Plasma-
Enhanced 

CVD 
(PECVD) 

A CVD instrument with plasma enhancement where 
higher density of reactant species are produced to the 

substrate due to the high-energy electron impact.  
Higher activity of the gaseous species allows 

deposition at comparatively low temperature (450 to 
650 K). (Sherman, 1987; Mahajan, 1996) 

Metal-
Organic 

CVD 
(MOCVD) 

Also known as Organo-Metallic Vapor Phase Epitaxy 
(OMVPE).  An epitaxial growth of materials from 
the surface chemical reaction of organic or metal-

organic compounds and an important process for the 
manufacturing of solar cells and LEDs. (Stringfellow, 

2001; Kurtz et al., 2007) 

Laser CVD 
(LCVD) 

A laser-assisted instrument that locally heat the 
substrate to activate the CVD reaction with precise 

control. (Allen, 1981) 

Photo CVD 
(PCVD) 

A photo-assisted deposition technique where UV or 
visible photon energies are used for gas 

decomposition.  The deposition at very low 
temperature (300 to 450 K) is allowed but having a 

low deposition rate and poor uniformity. (Eden, 1991; 
Mahajan, 1996) 

Chemical 
Vapor 

Infiltration 
(CVI) 

A variant CVD device that deposits within a porous 
body and is widely used for the fabrication of 

ceramic materials. (Naslain and Langlais, 1986) 

Hot Wire 
CVD 

(HWCVD) 

A special instrument for producing high-temperature 
gas decomposition but room-temperature deposition 

on the substrate. (Lau et al., 2001) 
Atomic 

Layer CVD 
(ALCVD) 

A technology to produce ultrathin layers of 
crystalline materials (typically 1 to 50 nm). (Nilsen, 

2003) 
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Another method to classify the CVD processes considers the 
operating wall temperature of the CVD chamber.  They are: 

• Cold-Wall CVD. 
• Hot-Wall CVD. 

Most of the CVD processes operate with the hot-wall reactors and the 
gaseous temperature is distributed uniformly inside the reactor.  The 
advantage of the hot-wall setting is higher deposition rate and better 
uniformity of the deposition.  On the other hand, the cold-wall setting 
allows higher throughput and easier cleaning but has lower speed of the 
deposition and poor uniformity of the thin film. 

In the consideration of different instruments, a wide variety of 
CVD processes have been developed, listed in Table 2.  Plasma-
assisted CVD processes operate at low pressure and allow the cold-wall 
setting because the plasma bombards the gas mixture and decompose 
into active species for deposition at low temperature.  Photo CVD is 
another instrument that works at low temperature and uses the 
activation energy from ultraviolet or visible photons to achieve the 
gaseous decomposition.  Laser CVD is a device that provides higher 
activation energy and, furthermore, very accurate control of the local 
deposition.  Other CVD instruments like Metal-Organic CVD 
(MOCVD) and Chemical Vapor Infiltration (CVI) have specific 
applications.  The epitaxial growths of III/V materials from MOCVD 
have become very important in the manufacturing of solar cells and 
light-emitting diodes (LEDs), and the semiconductors with organo-
metallic compounds.  CVI is the specific instrument for the growth of 
ceramic materials in a porous body. 

3.3. Different Configurations of the CVD Reactors 

For different operating conditions and applications, several different 
configurations of the CVD reactors have been developed.  The Fig. 2 
illustrates some common CVD reactors.  Typically, the reactors in 
Fig. 2 (a), (b), and (c) are utilized for cold-wall settings and the ones in 
Fig. 2 (d), (e), and (f) have higher wall temperatures of the CVD 
chambers.  The barrel reactor has been greatly used for the huge-
amount production of the silicon epitaxial wafers.  The vertical reactor 
with rotating susceptor is often utilized for single-wafer depositions; on 
the other hand, the one in Fig. 2 (e) has higher area of uniform 
deposition and is used for the depositions of multiple wafers.  The 
tubular reactor is usually used to deposit films with polysilicon and 
dielectric materials.  In the later discussion, the modeling and the 
optimization of the CVD processes focus on the configuration of the 
vertical impinging reactor with the stationary susceptor in Fig. 2 (e). 

In the design and optimization of the CVD processes, different 
design variables should be taken into consideration for different 
configurations.  For example, the horizontal reactor in Fig. 2 (a) has a 
tilt angle of the susceptor for uniform deposition with horizontal 
gaseous flow of the reactant species.  The rotation speeds of the 
reactors in Fig. 2 (c) and (d) differ the quality of the deposition.  The 
directions of the reactant flow above the susceptor certainly provide 
different characteristics of the fluidic mechanics and heat transfer.  
Among all configurations of the CVD reactors, there are some common 
variables that dominate the performance of the thin-film deposition, 
including the concentration of the gaseous reactant in the inlet flow, the 
velocity of the inlet flow, the temperature of the susceptor, the 
temperature of the chamber wall, the operating pressure in the CVD 
chamber, etc.  The review about the design of the CVD processes will 
be given in the next subsession. 

4. Design of the CVD Process 

Different designs of the CVD processes have a wide variety of the film 
thickness, generally ranges from a few nanometers to tens of microns.  
As described previously, the film formation process is highly dependent 
on the flow and the heat transfer between the gas and the heated 
substrate.  Therefore, in order to produce thin films with higher 
deposition rates and quality, the operation conditions must be studied.  

There are two major aspects to be considered in the design of the CVD 
processes: 

• Experiments or simulations of the CVD processes. 
• Modeling of the responses. 

Reviews about those aspects are given in the following. 
 

 

 

 
Fig. 2 Different configurations of the CVD reactors: (a) horizontal 

reactor, (b) pancake reactor, (c) barrel reactor, (d) vertical 
impinging reactor with rotating susceptor, (e) vertical 
impinging reactor, and (f) tubular reactor. (Mahajan, 1996) 

 
 
Table 3 Typical design variables and responses in the CVD designs. 

(Dimitrios et al., 1987; Fotiadis et al., 1990; Jensen et al., 
1991; Mahajan, 1996; Chiu and Jaluria, 2000; Chiu, Richards 
et al., 2000) 

Design Variables Responses 
Hardware 
settings 

 Susceptor size 
 Shape of CVD chamber 
 Angle of susceptor vs. 

the flow direction 
 Orientation of 

susceptor vs. gravity 
 Buoyancy driven / 

force driven flow 
 Diffusivity of susceptor 

material 

 Deposition thickness 
 Deposition rate 
 Deposition uniformity 
 Nusselt number 
 Temperature 

distribution of the 
susceptor 

 Purity of the deposition 
 Composition of the 

deposition 
 Adhesion to the 

substrate 
 Surface morphology 
 Grain structure in the 

deposition 
 Distance of flow 

separation 

Operating 
conditions 

 Velocity of inlet flow 
 Susceptor temperature 
 Operating pressure 
 Rotation speed of the 

susceptor 
 Concentration of the 

reactant species 
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4.1. Design Variables and Responses of the CVD 
Processes 

Once the reactant species, the type of the CVD process, and the CVD 
configuration have been determined for the desired thin-film production 
on the susceptor, several operating parameters should be chosen to 
perform the experiments or the simulations of the CVD process.  
Among those parameters, some of them dominate the control of the 
deposition performance and are selected to be the design variables.  
The typical design variables are categorized into two different types, 
including hardware settings and operating conditions, and listed in 
Table 3.  The hardware settings vary the boundary conditions and the 
mechanical properties of the fluid mechanics and the heat transfer in 
the CVD processes.  On the other hand, the operating conditions are 
the quantitative variables to control the behavior of the reactant fluid 
and the performance of the deposition.  Besides the hardware and 
operating design variables, the rest of the parameters remain constant 
because of either their minor impacts to the deposition or the simplicity 
of the CVD design.  In this research work, the inlet velocity and the 
susceptor temperature are chosen as the design variables because their 
quantities can be easily controlled by the designers. 

The merit of the deposition performance requires several 
quantitative responses to judge, where those responses typically have 
physical meanings and provide numerical measures.  Table 3 points 
out several common responses from either the experiments or the 
simulations of the CVD processes.  Among those typical responses, 
some of them still lack of numerical measures to decisively quantify its 
degree of intensity.  For example, the deposition uniformity itself is a 
subjective scale of the quality of the CVD production.  George 
(George, 2007) utilized a weighted sum of the local slopes of the 
deposition to quantify its uniformity.  Lin et al. (Lin, Jaluria et al., 
2009) used some standard statistical measures, including the root mean 
square and the kurtosis, as the responses of the uniformity factors.  
More details about the chosen design variables and the significant 
responses will be discussed in the later session. 

4.2. Experiments or Simulations of the CVD Processes 

The mechanics of the CVD process, in which the flow, the heat transfer, 
and the chemical reaction are involved, is very complicated.  The flow 
in the CVD process has firstly been visualized by seeding micro-scale 
titanium dioxide (TiO2) particles in the reactant gas and illuminating by 
laser (Wahl, 1977; Giling, 1982; Wang et al., 1986).  However, the 
holography observation using the laser provided poor resolution of the 
lowly concentrated reactants.  On the other hand, numerical 
simulations provide relatively better understanding of the fluid 
mechanics and have become very important to study the complex flow 
in CVD process. 

Numerous researchers have been devoted to investigate the flow 
and heat transfer in CVD reactors.  Some of them focused on the 
simulations of the horizontal CVD reactors (Moffat and Jensen, 1986; 
Fotiadis et al., 1990; Karki et al., 1993; Chiu, Richards et al., 2000; 
Chiu et al., 2001), while many other important studies have been 
conducted to the vertical configurations (Sugawara, 1972; Dimitrios et 
al., 1987).  Among all the numerical analysis in CVD reactors, three 
major governing equations are considered – continuity, momentum, and 
energy conservations (Patankar, 1980).  Generally, parabolic 
governing equations (Moffat and Jensen, 1986; Quazzani and 
Rosenberger, 1990) are utilized to predict the flow pattern in CVD 
reactors.  However, extreme conditions, such as low Reynolds 
numbers and high density gradients, lead to reverse flow (Visser et al., 
1989) which required elliptic governing equations for better predictions 
(Quazzani and Rosenberger, 1990; Karki et al., 1993). 

Simulations of the CVD processes are very complicated because 
of huge amount of controlling variables (Raja et al., 2000), complicated 
analysis of the fluidic dynamics and the kinetics of the chemical 
reactions, and all the variable properties (Jensen et al., 1991) to be 

considered.  Numerical models with constant properties (Eversteyn et 
al., 1970; Gebhart et al., 1988; Spall, 1996) and Boussinesq 
approximations (Gray and Giorgini, 1976; Gebhart et al., 1988) have 
been utilized to simplify the complex simulations.  Wang et al.. (Wang 
et al., 2003) and Chiu et al. (Chiu, Jaluria et al., 2000) demonstrated 
that the constant-property models are acceptable for most practice but 
variable-property models give more accurate predictions for extreme 
operating conditions.  The Buoyancy effect has been neglected when 
the ratio of Grashof number and square of Reynolds number is less than 
two (Quazzani et al., 1988; Chiu and Jaluria, 1997).  The geometry of 
the reactor is also a factor in the fluid dynamics of the CVD process but 
it is negligible in a large aspect ratio (Chiu, Jaluria et al., 2000).  The 
temperature distribution of the susceptor is approximated to be 
isothermal for some CVD configurations (Chiu and Jaluria, 1997). 

Thorough comparisons between the experiment and simulation 
results are provided by Dimitrios et al. (Dimitrios et al., 1987) and Chiu 
et al. (Chiu et al., 2001).  Comprehensive reviews on CVD reactor 
studies are given by Mahajan (Mahajan, 1996) and Jensen et al. (Jensen 
et al., 1991).  Kee et al. (Kee et al., 1995; Raja et al., 2000) 
demonstrated that model simulations have much greater flexibility and 
versatility as compared to experimental counterparts.  Experimental 
studies have also been carried out on the flow in channels for CVD 
applications (Jensen et al., 1991; Chiu, Richards et al., 2000; Chiu et 
al., 2001; Chiu et al., 2002). 

4.3. Optimization of the CVD Processes and Existence of 
the Design Uncertainties 

Simulation and optimization of CVD systems have been studied by 
many researchers (Mouche et al., 1995; Southwell et al., 1996; Chiu, 
1999; Raja et al., 2000; Chiu et al., 2002; Ly and Tran, 2002; George, 
2007; Lin, Jaluria et al., 2009).  However, design uncertainties can 
found everywhere in the CVD process.  Even if an optimal design is 
obtained from the optimization models, the irresistible uncertainties 
will cause unstable responses of the CVD process.  For example, the 
compositions of the deposition species have errors of 15 % (Mitchell et 
al., 1997).  Several researchers have estimated the randomness of the 
operating parameters in the CVD process.  The rate constant of the 
chemical reaction may have a wide variance; for example, 1310  to 

1410 cm3/mol-s (Goodwin, 1993).  In this research work, the existence 
of the design uncertainties is considered at the design variables, the 
inlet velocity and the susceptor temperature of the CVD process. 

The main contribution of this research includes 
• The development of the performance responses in the CVD 

process. 
• The parametric modeling of those responses in terms of the 

chosen design variables.  
• The optimization formulations of the operating operations for 

the CVD process. 
• The realization of the convergence problem in a traditional 

RBDO algorithm, the TRIA. 
• The development of the MRIA to solve optimization 

problems with normally distributed design uncertainties. 
• The development of the MRIA for the non-normally 

distributed random variables. 
• The application of the MRIA on the RBDO problems of the 

CVD process. 
The Fig. 3 schemes the systematic strategy to parametrically model the 
responses from the experiments or the simulations of the thermal 
systems and optimize the operating conditions with design uncertainties 
using the proposed RBDO algorithm. 

At the beginning of the productions of any thermal systems, 
several trials of the experiments or the numerical simulations are 
necessary to determine the operating conditions and examine the 
system performances.  A Response Surface Method (RSM) model 
helps the engineers or the designers recognize the behavior of the 
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responses with respect to the design variables.  Optimization problems 
are formulated in terms of the RSM models and are utilized to provide 
the operating conditions for higher productivity and quality of the 
productions.  Due to the existence of the design uncertainties, the 
traditional deterministic optimization formulation is no longer reliable 
to generate safe designs because it may lead to a design with high risk 
of system failure.  The development of the Reliability-Based Design 
Optimization (RBDO) algorithm evaluates the probabilities of the 
system failures and provides a more conservative design which reaches 
to the optimality as the failure probabilities are subject to some 
acceptable level.  Finally, the productions of the thermal systems are 
executed based on the optimal design variables.  If any design 
uncertainties are found in the experiments, the simulations, or the mass 
productions, the information of the uncertainties are fed back to the 
formulation of the RBDO problems and new optimal conditions can be 
generated by the proposed strategy. 
 

Simulations

Performance Responses

Respond Surface Method

Reliability-Based
Design Optimizations

Convergence?
NO

YES

Project of Productions

Optimal Solutions

Uncertainties

Experiments                                   

Executions of Productions

Proposed Methodology

 
Fig. 3 Flowchart of the proposed systematic strategy. 
 

5. SIMULATION AND RESPONSES OF THE CVD 
PROCESS 

This session is directed at the simulation of the CVD process and the 
responses of to represent the productivity and the uniformity of the 
deposition.  The effect of different operating conditions on the 
deposition rate and the film quality are identified from the numerical 
simulations performed using a commercial software, FLUENT.  The 
simulation of the thin-film growth of silicon from the reactant of silane 
in a vertical impinging CVD reactor is discussed.  The design 
operating conditions focus on the velocity of the inlet flow and the 
temperature of the susceptor.  Four different responses are defined in 
terms of the design variables and measured from the simulated 
deposition profiles to represent the performances of the silicon 
deposition. 

5.1. Simulation of the CVD Process 

A schematic of the vertical impinging CVD reactor is shown in Fig. 4.  
The reaction gases are introduced at the top in a vertical impinging 
reactor, while the flow is assumed to be two-dimensional steady 
laminar flow (Chiu and Jaluria, 1999).  The flow with a dilute 
precursor concentration of silane in hydrogen as the carrier gas deposits 

silicon onto the susceptor.  Silane decomposes to silicon and hydrogen 
on the susceptor following a one-step reaction mechanism.  The 
conservations of continuity, momentum, and energy are considered, 
shown by Eqs. (1), (2), and (3) respectively.  Furthermore, the 
species conservation, shown by Eq. (4), is studied where there are three 
species, silane, silicon, and hydrogen, in the CVD chamber. 
 

0v∇ ⋅ =  (1) 

( ) ( )v v v F pρ μ⋅∇ = ∇ ⋅ ∇ + − ∇
  

 (2) 

( ) ( )P TC vT k T Qρ∇ ⋅ = ∇ ⋅ ∇ +   (3) 

( ) ( )vm D m Rρ ρ∇ ⋅ = ∇ ⋅ ∇ +
 (4) 

 
where v


 is the velocity of the flow, T  is the temperature, m  is the 

mass fraction of species, ρ  is the density, μ  is the dynamic 

viscosity, PC  is the specific heat, Tk  is the thermal diffusivity, D  

is the mass diffusivity, F


 is the body force, p∇  is the pressure 

difference, Q  is the heat source, and R  is the production rate of 
species. 
 

Reaction gases entering reactor
(Silane + Hydrogen) 

Reaction gases entering reactor
(Silane + Hydrogen) 

SiH4(g) Si(s) + 2H2(g)

H2(g) H2(g)
H2(g) H2(g)

Isothermally heated susceptor

2cm 6cm 2cm

2cm

 
Fig. 4 Vertical impinging CVD reactor (George, 2007; Lin, 2010). 
 

Simulations are carried out employing the commercial software 
FLUENT using the laminar finite-rate model, which computes the 
chemical source terms using Arrhenius expressions and ignoring the 
effects of turbulent fluctuations. (Lin, 2010)  In the FLUENT model, 
both gas phase and wall surface reactions are considered, while the 
reaction rate is given by an Arrhenius expression, shown as follows 
 

( )exp a gAT E R Tακ = −  (5) 

 
where κ  is the rate constant, 0.334A =  is the pre-exponential 

factor, T  is the temperature, 51 10aE = ×  is the activation energy, 

0.5α =  is the temperature exponent, and gR  is universal gas 

constant.  The material properties are given by the FLUENT database.  
The usage of FLUENT can accommodate different geometries and 
boundary conditions, providing more flexibility and saving more 
research time. 

In the discretization scheme of the vertical CVD simulation, the 
power-law discretization scheme (Patankar, 1980) is used.  For the 
solver, a efficient strategy (Lin et al., 2008) of using the Coupled and 
the PISO algorithms is used to approach the convergences of the 
governing equations of continuity, momentum, energy, and species 
transport simultaneously.  The boundary conditions are shown in 
Fig. 5, where the walls are non-slip, impermeable, and thermally 
insulated at 300 K.  The susceptor is isothermally heated at 
temperature, T .  The temperature of the reaction gases entering the 
reactor is 300 K.  The mass fraction of silane is kept at 0.1 because it 
ensures sufficient amounts of precursor gas in the mixture (Rebenne 
and Bhat, 1994).  The inlet flow velocity, V , and susceptor 
temperature, T , contributes a lot in the flow and the deposition profile 
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so they are considered as the design variables in this case study.  The 
velocity and temperature bounds are taken from 0.1 to 1 m/s and 400 to 
1500 K respectively.  Only half of the fluid domain is considered in 
the simulation due to the geometrical symmetry while four-node quad 
meshes are utilized – totally 320 139×  nodes.  Node density is 
chosen such that the solution is independent to the number of elements.  
For one typical simulation, it takes around 10 minutes to converge in an 
Intel® Pentium® M processor 2.0 GHz with 2.0 GHz of RAM. 
 

Outflow

Inflow; T = 300 K;
Fraction of SiH4 = 0.1;
Vin (m/s)

Non-slip wall; Tsus (K) Non-slip wall; T = 300K

Non-slip wall; T = 300K

 
Fig. 5 Boundary conditions of the vertical CVD simulation. 
 

Velocity
(m/s)

Vin

Velocity
(m/s)

Vin

 
(a) 

 
Tsus

Temperature
(K)

Tsus

Temperature
(K)

 
(b) 

 

Deposition Rate of Si (kg/m2s)

Position of Susceptor (m)
 

(c) 
 

Fig. 6 Typical results of the vertical CVD simulation: (a) 
streamlines of the flow, (b) temperature distribution, and (c) 
scheme of silicon deposition profile (Lin, 2010). 

 
The Fig. 6 (a) shows a typical numerical result of the streamlines 

in the CVD reactor where the inlet has uniformly distributed velocity, 
V , and the stagnation point at the center of the susceptor has zero 
velocity.  The subfigure (b) illustrates the corresponding temperature 
distribution in the CVD chamber where the susceptor is isothermally 
heated at the temperature of T  and the walls remain room 
temperature following the boundary conditions.  The subfigure (c) 
shows a scheme of the deposition profile of silicon while the red area 
has poor uniformity of the deposition rate.  The red area is highlighted 

when its local slope of the deposition profile is too oblique; on the other 
hand, only the green area has local slopes very close to zero and the 
corresponding uniformity is acceptable uniformity. 

5.2. Validation 

To validate the correctness of the numerical simulations with the 
developed settings in FLUENT, the deposition rate of the silicon in a 
horizontal CVD reactor is compared with experimental and numerical 
results from other researchers (Eversteyn et al., 1970; Mahajan and 
Wei, 1991; Chiu and Jaluria, 2000; Yoo and Jaluria, 2002; George, 
2007).  The Fig. 7 illustrates the configuration of the horizontal CVD 
reactor and its dimensions.  The reactant, the silane, is mixed in the 
hydrogen carrier flow, with the inlet velocity of 0.175 m/s.  The partial 
pressure of the silane is 124.1 Pa under the atmospheric pressure, 
providing the information of the mass fraction of the silane.  The 
operating temperature is 300 K and the susceptor is isothermally heated 
at 1323 K.  The material properties and the kinetics of the chemical 
reactions are given from (George, 2007) otherwise from the FLUENT 
database.  The rest of the settings and the utilized solvers remain the 
same as the previous discussion. 
 

Reaction gases entering reactor
(Silane + Hydrogen) 

SiH4(g) Si(s) + 2H2(g)

Isothermally heated susceptor

5cm 30cm 15cm

2cm

 
Fig. 7 Horizontal CVD reactor (George, 2007). 
 

The results from the simulation of a horizontal CVD reactor using 
FLUENT are compared with the experimental results obtained by 
(Eversteyn et al., 1970) and the numerical results from (Mahajan and 
Wei, 1991; Chiu and Jaluria, 2000; Yoo and Jaluria, 2002), shown in 
Fig. 8.  A detailed comparison between experimental and numerical 
results has been made and fairly good agreements has been found 
(Chiu, 1999).  The numerical results using the settings described in the 
previous discussion is almost identical to George‘s simulation results 
(George, 2007) with the mass diffusivity in the FLUENT database, 
which is given by a polynomial equation of the temperature as follows: 
 

8 10 2 14 37.234 10 4.569 10 8.016 10D T T T− − −= × + × − ×  (6) 
 

George (George, 2007) has also shown the numerical results are 
very close to the experimental results in (Eversteyn et al., 1970) if 
higher mass diffusivity is utilized.  Eversteyn et al. (Eversteyn et al., 
1970) utilized a power law to describe the mass diffusivity which is 
given by 
 

( )0 300D D T
γ=  (7) 

 
where 0D  is the pre-exponential factor, γ  is the temperature 

exponent, and the temperature, T , is normalized by the operating 
temperature, 300 K.  Considering the pre-exponential constant in (Yoo 
and Jaluria, 2002), 5

0 6.24 10D −= × m2/s, and varying the temperature 

exponent from 1.7 to 2.0 as Eversteyn et al. (Eversteyn et al., 1970) 
suggested, different levels of the mass diffusivity of the silane are 
obtained and shown in Fig. 9.  With the higher temperature exponent, 
the corresponding mass diffusivity increases as well as the growth rate 
of the silicon along susceptor in the horizontal CVD reactor increases, 
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shown in Fig. 10.  In this research work, the mass diffusivity is chosen 
from the FLUENT database. 
 

Simulation (Yoo & Jaluria)
Diffusion-Controlled Simulation (Yoo & Jaluria)
Experiment (Eversteyn et al.)
Simulation (Mahajan & Wei)
Simulation (Chiu & Jaluria)
Simulation with Increased Mass Diffusivity (George)
Simulation with FLUENT Database (George)
Present

Simulation (Yoo & Jaluria)
Diffusion-Controlled Simulation (Yoo & Jaluria)
Experiment (Eversteyn et al.)
Simulation (Mahajan & Wei)
Simulation (Chiu & Jaluria)
Simulation with Increased Mass Diffusivity (George)
Simulation with FLUENT Database (George)
Present

 
Fig. 8 Deposition rate of silicon in the horizontal CVD reactor 

compared with others (Eversteyn et al., 1970; Mahajan and 
Wei, 1991; Chiu and Jaluria, 2000; Yoo and Jaluria, 2002; 
George, 2007). 

 

γ
γ
γ
γ

 
Fig. 9 Mass diffusivity of silane with different temperature 

exponent compared with FLUENT database. 
 

γ
γ
γ
γ

 
Fig. 10 Growth rate of silicon in the horizontal CVD reactor with 

different mass diffusivity. 
 

5.3. Function Formulations of the Responses in CVD 
Process 

Some quantitative measures are needed to justify the performance of 
the deposition profile to achieve higher deposition rate and better film 
quality on the susceptor during the CVD process.  Four responses 
have been defined in (Lin et al., 2008), including the Percentage of the 
Working Area (PWA) and three mathematical functions – Mean of 
Deposition Rate (MDR), Root Mean Square (RMS) and Surface 
Kurtosis (KUR).  The PWA is used because the quality of deposition 
close to the edge of the susceptor and the working area excludes all un-
usable areas.  In the working area, the other three response functions 
represent the productivity and the uniformity of the silicon deposition. 

Percentage of Working Area (PWA) is defined as the ratio of the 
Effective Working Area (EWA) and the total area in the deposition 
profile and it is given by 
 

EWA
PWA 100%

Total Area
= ×  (8) 

 
where the EWA is determined based on the local uniformity check and 
the continuity of the working area.  A local area is considered as 
workable only when the local slope, S , is very close to zero or it is 

smaller than an uniformity threshold, US .  In the study of the vertical 

CVD, the quantity of US  is chosen as a small value, 0.00055 .  

Normally, regions with higher slopes occur around the edges of the 
susceptor due to the dramatic temperature drop.  However, there are 
some cases that the uniform areas are located far from the edge and 
result in discontinuous working areas.  Those isolated uniform area 
cannot be utilized to produce micro-structures.  Hence, the EWA is 
given as the largest set of the working area at the middle of the 
deposition profile excluding the rest of the isolated working areas.  
The rest of the responses should be measured within the EWA instead 
of the entire area of the susceptor because only the deposition 
performance in the working area is of concern and the non-working 
area will be dumped. 

Mean of Deposition Rate (MDR) is measured inside the EWA as 
the key criteria to represent the performance of CVD process.  It is 
given as 
 

1

1
MDR

Q

q
q

D
Q =

=   (9) 

 
where Q  is the number of uniformly distributed sampling nodes 

within the EWA, and qD  is the deposition rate at the sampling node.  

The higher MDR represents better CVD productivity.  A deposition 
profile with a larger PWA along with higher MDR is very desirable; 
however, these two objectives sometimes conflict with each other.  In 
the later session, two different kinds of the optimization formulations 
will be studied – one maximizes the PWA and the other one maximizes 
the MDR. 

Root Mean Square (RMS) and Surface Kurtosis (KUR): The 
PWA only provides a local measure for uniformity, therefore it is 
essential to determine the global uniformity mathematically and 
represent the global physical behaviors of the deposition profile within 
the EWA.  Two statistical measures, the Root Mean Square (RMS) and 
the Surface Kurtosis (KUR), are utilized to quantify the global 
uniformity. 

The Root Mean Square (RMS) is used to measure the magnitude 
of the varying deposition rate, shown as 
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( )2

1

1
RMS MDR

Q

q
q

D
Q =

= −  (10) 

 
which is the standard derivation of the deposition rate of all sampling 
nodes within the EWA.  A deposition profile with large RMS 
represents un-even uniformity of the thin-film formation even all 
regions are considered as workable from the PWA point of view.  
Therefore, the RMS is an important global indicator for the film 
quality, which is complementary to the local indicator, PWA. 

The KUR is the forth statistical moment of the deposition profile 
and it mathematically implies the existences of the sharper peaks in the 
deposition profile which cannot be recognized by the RMS.  It is 
measured by 
 

( )
( )4

4
1

1
KUR MDR

RMS

Q

q
q

D
Q =

= −  (11) 

 
where the terms of MDR and the RMS are defined in the Eqs. (9) and 
(10) respectively.  The deposition profile with a higher KUR has 
greater peakedness or higher variance due to infrequent extreme 
deviations.  A silicon deposition with allowable KUR is desired.  
Also, the skewness is not considered because the configuration of the 
vertical CVD reactor is symmetric about the centerline of the inlet flow 
and the skewness is always zero.  For other geometrical 
configurations, the skewness is also an important factor to study the 
global uniformity and symmetry. 

The percentage of the EWA in the susceptor has been defined to 
quantify the production yield of the CVD process.  The MDR is 
measured within the EWA to represent the productivity, while the RMS 
and the KUR are utilized as the indicators of the uniformity inside the 
EWA.  Several samples of the CVD simulations under different 
operating conditions have been utilized to show the importance of four 
responses in the quantifications of the productivity and the uniformity 
of the CVD process.  Both RMS and KUR are global measures for the 
quality of deposition uniformity whereas the PWA and MDR are direct 
local measures.  These four functions are greatly influenced by the 
inlet velocity and the susceptor temperature.  However, the true forms 
of these functions are not available.  Therefore, we will establish 
response surface models of these functions with respect to the design 
variables. 

5.4. Parametric Modeling Using Response Surface 
Method (RSM) 

The best way to represent the behavior of the responses in the CVD 
processes and model them in terms of numerical functions with respect 
to the design variables is to use the technique of curve fitting, also 
known as metamodeling or Response Surface Method (RSM).  RSM 
provides a parametric equation in terms of the design variables and 
some coefficients to be determined by substituting the experiment / 
simulation data into the parametric model.  Instead of using the 
common RSM tool, Polynomial Response Surface (PRS), the Radial 
Basis Function (RBF) is used to model the deposition rate and the 
uniformity of the deposition profile.  These obtained parametric 
models of the four responses will be validated before being utilized to 
formulate the optimization problems of CVD process. 

Response Surface Method can be divided into two different types 
(Jaluria, 1998): 

• Exact fitting. 
• Best fitting. 

The exact fitting is the technique that generates a smooth curve that 
passes through all the data points.  It typically is a function with M  
parameters to be determined by the known information from M  data 

points.  Therefore, it is very accurate and useful for small amount of 
data.  On the other hand, the best fitting does not necessarily pass 
through any of the data points but provides a best prediction of the 
behavior of the responses.  It is very useful when the amount of data 
points is very large (i.e. There are only K  parameters to be 
determined for M  sampling points while K M< .) or the obtained 
responses are not accurate enough.  Several methods have been 
developed to achieve either exact or best fitting with single variable, 
two variables, or multiple variables.  Table 4 lists different kinds the 
RSM methods and their characteristics. 
 
Table 4 Different RSM methods (Jaluria, 1998; Van Beers and 

Kleijnen, 2003; Van Beers and Kleijnen, 2004; Mortenson, 
2006). 

Methods Available Dimensions Exact 
Fitting 

Best 
Fitting 

Polynomial 
fitting 

Multiple variables ○ ○ 

Hermite curve 
/ surface 

Curve for 1D; surface for 2D ○ ╳ 

Bezier curve / 
surface 

Curve for 1D; surface for 2D ╳ ○ 

B-spline curve 
/ surface 

Curve for 1D; surface for 2D ╳ ○ 

Kriging Multiple variables ○ ○ 
Radial basis 

function 
Multiple variables ○ ○ 

Thin plate 
spline 

Multiple variables ○ ○ 

 
Polynomial Response Surface (PRS) is the most common and 
simple technique to interpolate or extrapolate the obtained responses 
with M  sampling points.  For small-scale models, a regression 
formulation is given as follows: 
 

( ) ( )F ≅ ⋅x w B x  (12) 

 
where w  is a vector of the K  regression coefficients to be 

determined and ( )B x  is a linear combination of the modeling 

monomials, shown in Table 5. 
 
Table 5 Typical coefficients for PRS. 

Different PRS K  ( )B x  

Linear regression 2 [ ]11
T

x  

Planar regression 3 [ ]1 21
T

x x  

Coupling 2-D fitting 4 [ ]1 2 1 21
T

x x x x  

Independent 2-D quadratic 
fitting 

5 2 2
1 2 1 21

T
x x x x    

Coupling 2-D quadratic 
fitting 

6 2 2
1 2 1 2 1 21

T
x x x x x x    

 
For exact fitting, K M=  and the coefficients, w , can be 

obtained by the following equation: 
 

( ) ( )1 S S S−= ⋅w A x F x  (13) 

 

where ( )S SF x  is a 1K ×  vector of the responses in terms of the 

K  sampling points and ( )SA x  is a K K×  matrix whose ths  row 
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is ( )s

T SB x .  For best fitting, K M<  and ( )S SF x  is a 1M ×  

vector and ( )SA x  is a M K×  matrix.  Instead of using Eq. (13), 

the coefficients of w  need to be obtained by Least Square 
Approximation (Myers et al., 2009) shown as follows: 
 

( ) ( ) ( ) ( )1
T S S T S S S

−
 = ⋅ ⋅ ⋅ w A x A x A x F x  (14) 

 
Geometric Modeling Curves and Surfaces: There are several 
famous geometric modeling methods that can be utilized for the 
purpose of RSM (Mortenson, 2006).  Those include Hermite, Bezier, 
and B-Spline curves for single-variable RSM and Hermite, Bezier, and 
B-Spline surfaces for two-variable RSM.  A Hermite cubic curve 
contain multiple continuously connected cubic curves which are 
parameterized by polynomial functions in terms of four sampling 
points.  The parametric equation is a single-variable polynomial fitting 

function in Eq. (12) with ( ) 2 3
1 1 11

T
x x x =  B x .  The advantage 

of using a known parametric function like Hermite curve is that the 
coefficients, w , are given already and no further calculation is needed 
for the determination of w .  However, it is generally used for exact 
fitting.  Bezier and B-spline curves are utilized for best fitting of the 
responses with different set of coefficients, w .  More details are 
included in (Mortenson, 2006). 

Kriging is a general method to predict the responses from the 
experiment or simulation data with minimum error variance estimation 
(Lebensztajn et al., 2004).  It is constructed by an inner product of a 

vector of coefficients, w , and a covariance vector, ( ), S
xC x x , shown 

as follows: 
 

( ) ( ), S
xF ≅ ⋅x w C x x  (15) 

 
Table 6 Common covariance functions for different Kriging 

techniques. 

Different Kriging Techniques ( ),S S
r sCov x x  

Gaussian covariance function 
(Simpson et al., 2001; Van Beers 

and Kleijnen, 2004) 
( )2 2

, ,exp ,S S S
h h r h s

h

x xσ θ −   † 

Exponential covariance function 
(Van Beers and Kleijnen, 2004) 

( )2

, ,exp ,S S S
h h r h s

h

x xσ θ −   

Product-form covariance function 
(Van Beers and Kleijnen, 2004; 

Den Hertog et al., 2006) 
( )2

, ,exp ,S S S
h h r h s

h

x xσ θ − ∏ ‡ 

Radial basis function (Giesl, 
2007) 

,S S
r sx x  

Pseudo-cubic spline (Duchon, 
1977) 

3
,S S

r sx x  

Weighted distance function (Van 
Beers and Kleijnen, 2003; Jeong 

et al., 2004) 
, ,,

hS S
h h r h s

h

x x
λ

θ § 

Thin plate spline (Lebensztajn et 
al., 2004) 

2
, log ,S S S S

r s r sx x x x  

 

                                                                 
† Sσ  stands for the known standard deviation of the responses and 

hθ  is the unknown correlation parameter to be determined by 

maximizing the likelihood estimates. 
‡ h  denotes the index for the important sampling points and there 
exists more than one important sampling points. 
§ hλ  controls the smoothness of the distance function. 

where the covariance vector contains 1M ×  components of the 
covariance functions and is given by 
 

( ) ( ) ( ),
1 1

, , ,
M M

S S S
x x s s s s s

s s

C Cov
= =

= = C x x x x e x x e  (16) 

 
and se  is the ths  normal basis.  The coefficients of w  can be 

obtained by 
 

( ) ( )1 S S S− ⋅w = C x F x  (17) 

 
where 
 

( ) ( )
1 1

,
M M

S S S
r s r s

r s

Cov
= =

=C x x x e e  (18) 

 
is a M M×  symmetric matrix with zero diagonal terms and non zero 

off diagonal terms of covariance functions, ( ),S S
r sCov x x .  Many 

different covariance functions have been utilized for the predictions of 
the response surfaces and they are listed in The RBF has no 
approximation error at all sampling points and is expected to provide 
better approximations of the responses with non-linear behaviors than 
the simple PRS..  Besides, other available covariance functions are 
constructed in a class of polynomial functions in terms of the basis 

function, ,S S
r sx x , shown in (Wendland, 1995).  This kind of Kriging 

technique is utilized for exact fitting.  On the other hand, a linear 
combination of the polynomial fitting function in Eq. (12) and the 
Kriging function in Eq. (15) makes best fitting possible for Kriging 
(Simpson et al., 2001).  The polynomial term provides the global 
shape of the response surface, while the Kriging term provides local 
predictions of the responses. 

5.5. Parametric Modeling of the CVD Responses 

Radial Basis Function (RBF) (Giesl, 2007) is a special kind of 
Kriging, where the covariance function is  the Euclidean distance 
between two corresponding vectors, namely, 
 

( ), ,S S S S
r s r sCov =x x x x  (19) 

 
It is preferred because the approximation of PRS may not be very 
accurate if the response is highly nonlinear.  The RBF approximates 
the response, F , as a weighted summation of covariance functions: 
 

( )
1

,
M

S
s s

s

F w Cov
=

≅ x x  (20) 

 
where sw  is the weighting factor to be determined.  Two CVD 

operation parameters are studied, inlet velocity, V  and susceptor 
temperature, T .  The four functions described previously are 
approximated using the RBF in the design domain which contains M  

sampling points, 
TS S S

s s sV T =  x  for 1,2, ,s M=  .  Therefore, 

the Eq. (19) is given as 
 

( )
2 2

,
S S

S s s
s

m m

V V T T
Cov

V T

   − −= +   
   

x x  (21) 

 
where V  varies from 0.1 to 1 m/s and T  varies from 400 to 1500 K.  
The velocity and temperature differences are normalized by 
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mV = 1.0 m/s and mT = 1500 K.  The RBF has no approximation error 

at all sampling points and is expected to provide better approximations 
of the responses with non-linear behaviors than the simple PRS. 

Model Validation: The RSM needs to be validated before the 
formulation of the optimization problems.  Lin et al. (Lin, Jaluria et 
al., 2009) studied the RBFs with three different kinds of sampling sets – 
uniformly distributed 9-point, 13-point, and 25-point designs.  In this 
case study, uniformly distributed sampling is considered but another 
famous sampling method is the Latin Hypercube Sampling (Stein, 
1987).  A 437-point response was considered as a benchmark of the 
true responses.  The detailed information of the 437 sampling points 
can be found in (Lin, 2010).  The difference between the studying 
sample set and the 437-point response is quantified by an error function 
give as 
 

( )
437 2

1

1

437 p p
p

err F G
=

= −  (22) 

 
where pF  and pG  denote the nodal values of the approximate 

function and the simulation respectively.  The results showed the 25-
point design has low errors (less than 4 %) while a 25-point polynomial 
response surface has less accuracy due to the nonlinearity of the 
responses.  For simplicity, the following sessions will use the 25-point 
RBF. 

The Fig. 11 demonstrates the 25-point RBFs of the PWA, MDR, 
RMS, and KUR of the silicon deposition profiles.  Due to the 
occurrence of the isolated working areas at high inlet velocity and low 
susceptor temperature, a sudden drop of PWA is found around that 
region.  This sudden decrease of the PWA causes non-smooth 
behaviors during the transition.  Unlike the models of PWA, the MDR 
behavior is very smooth because the MDR is an averaged value in the 
EWA and any non-linear behavior is blended into the entire function. 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Fig. 11 25-Point RBFs of (a) PWA, (b) MDR, (c) RMS, and (d) KUR. 
 

The proposed RBF can be utilized to parametrically model the 
responses in any other thermal systems.  It is especially useful when 
the responses are highly nonlinear; otherwise, the polynomial response 
surface is less complicated and good enough for less nonlinear 
functions.  In the next session, those response surface modeled are to 
be utilized to formulate optimization problems for enhancing the 
productivity and the quality of the silicon deposition.  Besides 
obtaining a best set of the operating parameters of the CVD processes, 
the system reliability at the optimal setting is also an important study.  

In practice, the optimal setting is only useful only when the 
corresponding system reliability is acceptable. 

6. OPTIMIZATION OF THE CVD PROCESS 

The response surface models are used to formulate the optimization 
problems of the CVD process while better operating conditions are 
expected to be found to improve the performance of the CVD process 
in this session.  The objective and constraint functions are formulated 
by the RBF models of the CVD responses.  For higher productivities, 
one of the objective functions is to maximize the PWA while another 
one is to maximize the MDR.  On the consideration of the uniformity 
of the deposition, the RMS and the KUR are subject to certain 
quantitative levels.  Both constraints of the deposition uniformity are 
very significant to the locations of the optimal operating conditions.  
Furthermore, the system reliability with respect to the optimal solution 
is of another significant concern.  Without the consideration of the 
randomness of the system, there exists high risk of system failure when 
operating the system with the optimal parameters.  To overcome this 
problem, a systematic method is desired to provide more conservative 
designs than the traditional ones. 

6.1. Problem Formulations 

In a general CVD process, the PWA and the MDR should be maximized 
in order to obtain the highest productivity, and two global uniformity 
factors, the RMS and the KUR are required to satisfy some desirable 
guidelines.  Therefore, two optimization formulations (Lin et al., 
2008) are proposed.  The first one is to maximize the PWA with 
uniformity constraints on the RMS and the KUR while the deposition 
rate is subjected to a minimum level.  The second one is to maximize 
the MDR with the same uniformity constraints while the PWA must be 
larger than an acceptable level.  The detailed information about the 
optimal solutions is given later.  Other possible formulations are 
shown in (Lin, 2010). 

Example 1a - Maximizing the PWA Subject to Constraint of 
Deposition Rate: The first formulation is to maximize the working 
area on the susceptor subject to the constraints of the global uniformity 
factors described previously and an additional constraint on the 
deposition rate.  It is expressed as follows: 
 

,

U

U

L

PWA

. . RMS RMS

KUR KUR

MDR MDR

V T

L U

L U

Max

s t

V V V

T T T

≤
≤

≤
≤ ≤
≤ ≤

 (23) 

 
where the limit states of the constraints are taken as 

6
URMS 1.35 10−= × , UKUR 2.62= , and 4 2

LMDR 1.5 10 kg/m s−= × .  

The chosen bounds are 0.2LV =  m/s, 0.9UV =  m/s, 400LT =  K, and 

1400UT =  K because the interior of the responses surface model has 

better approximation than its edges (Lin, 2010).  The Fig. 12 shows 
the feasible regions in white background color and the infeasible ones 
in three different colors, where red color is used for the first constraint, 
purple area indicates the infeasible domain of the second constraint, 
and the blue one is for the third MDR constraint.  Multiple starting 
points are used to find the global optimal due to the disjoint feasible 
regions.  The optimal solution, listed in Table 7, has been verified by 
the FLUENT simulation as well as the 437 samplings. 

Example 2a - Maximizing the MDR Subject to Constraint of 
Working Area: The other formulation maximizes the MDR subject 



Frontiers in Heat and Mass Transfer (FHMT), 1, 013003 (2010)
DOI: 10.5098/hmt.v1.1.3003

Global Digital Central
ISSN: 2151-8629

  12

to the constraints of the uniformity factors and an additional constraint 
of the PWA, which is written as follows: 
 

,

U

U

L

MDR

. . RMS RMS

KUR KUR

PWA PWA

V T

L U

L U

Max

s t

V V V

T T T

≤
≤

≤
≤ ≤
≤ ≤

 (24) 

 
where the PWA is desired to exceed the lower bound of 

LPWA 85 %= .  The Fig. 13 demonstrates the feasible region and the 

optimal design.  Multiple starting points are also used to guarantee the 
solution is the global optimal.  The optimal solution is listed in Table 7 
and verified by the FLUENT simulation and the 437-point samplings. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Optimal Solution

 
Fig. 12 Optimal solution of example 1a. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Optimal Solution

 
Fig. 13 Optimal solution of example 2a. 
 
 
Table 7 Monte Carlo Simulations at the optimal solutions for 

examples 1 and 2. 

Ex. 
Optimal 
Solution 

Distribution 
of Uncertainty 

MCS1 MCS2 MCS3 

1a (0.75, 1009) 
Normal 42.90 % 0 % 0 % 

Lognormal 43.02 % 0 % 0 % 

2a (0.90, 1079) 
Normal 50.10 % 0 % 0 % 

Lognormal 50.33 % 0 % 0 % 
 

The deposition process of silicon from silane in a vertical 
impinging CVD reactor has been modeled and studied.  Two quality 
factors, the Percentage of Working Area and the Mean of Deposition 
Rate were defined and two global uniformity factors, the Root Mean 
Square and the Surface Kurtosis, were modeled.  The responses were 
approximated using the Radial Basis Function with respect to the two 
operation parameters – the inlet velocity and the susceptor temperature.  
Using the RBF models, two optimization formulations were proposed 
to maximize the productivity while maintaining a specific minimum 
level of the global uniformity factors.  The obtained optimal solutions 
of the design variables have been verified by the simulations at the 
optimal points, and the solutions were found to be all feasible.  Good 
agreements have been found between the optimization with 25 point 
models and 437 samplings.  Therefore, not only the 25 point RBF 
models have fairly good approximations of the responses of the CVD 
process, but they are capable of providing correct optimal solutions.  It 
is expected that the same methodology can be used in the deposition of 
many other materials such as titanium nitride (TiN), gallium nitride 
(GaN), silicon carbide (SiC), etc. 

Optimization with Design Uncertainties: If the design 
uncertainties exist in the design variables, they can be mathematically 
described by some statistical distributions.  Theoretically, the design 
with 100 % system reliability does not exist.  That is to say, the 
probability of system failure is non-zero; therefore, an optimal solution 
with zero failure probabilities does not exist.  A lower bound is needed 
for these probabilistic constraints where the failure probabilities are 
subject to some allowable level.  For most engineering practice, the 
allowable failure probability is less than 1 %. 

Suppose that the inlet velocity and the susceptor temperature are 
normally distributed random variables with the standard deviations of 
0.02 m/s and 20 K respectively.  The mean of the distributions are 
located at the optimal solutions obtained from the previous 
optimization problems.  Monte Carlo Simulations show that the 
optimal designs in Examples 1a and 2a have high risks of system 
failures.  The Table 7 shows the failure probabilities of each constraint 
at the optimal solutions with normally distributed random variables.  
For Example 1a and 2a, the optimal designs have high probabilities of 
42.9 % and 50.1 % respectively to violations of the first constraints.  
Without the considerations of the design uncertainties, the thermal 
systems have high risks of the constraint violations resulting in massive 
defective productions.  Additionally, the MCS results of the failure 
probabilities with lognormally distributed operating conditions are 
shown in Table 7.  Unacceptable results are also found as some of the 
constraints have failure probabilities far larger than 1 %. 

The optimal design of the thermal system becomes unreliable if 
the uncertainties exist in the design.  As the traditional optimization 
algorithm pushes the design variables to the optimality, they are often 
on the limit state of the performance constraints or very close to them.  
The existence of the design uncertainties gives high probabilities of that 
the constraint limits are violated at the optimal solutions.  Thus, an 
improved strategy is highly necessary to optimize the thermal system 
with design uncertainties. 

6.2. Reliability-Based Design Optimization (RBDO) 

Instead of using the traditional optimization formulations and 
neglecting the design uncertainties, many Reliability-Based Design 
Optimization (RBDO) algorithms have been developed to formulate 
probabilistic constraints while the probability of system failures is 
subjected to an acceptable level.  Under the framework of RBDO, a 
more conservative design is expected to be determined based on the 
optimality and the feasibilities of the probabilistic constraints. 

General RBDO Formulation: Consider the random design 
variables, X , where the thj  random design variable, jX , has an 



Frontiers in Heat and Mass Transfer (FHMT), 1, 013003 (2010)
DOI: 10.5098/hmt.v1.1.3003

Global Digital Central
ISSN: 2151-8629

  13

expected value of jd  and a standard deviation of jσ .  The general 

probabilistic design optimization is formulated as follows: 
 

( )
( ) ,. . 0 1...i f i

L U

Min z

s t P g P i n >  ≤ = 
≤ ≤

d
d

X

d d d

 (25) 

 
where ,f iP  is the thi  allowable probability of the system failure.  

Mathematically, probability of the system failure, ( ) 0iP g >  X , can 

be calculated by an integral of its Joint Probability Density Function 
(JPDF), ( )if x  , within the infeasible domain and it is given as 

 

( )
( )

( ) 10
0

i
i i Ng

P g f dx dx
>

 >  =    
X

X x  (26) 

 
However, it is very computationally expensive to evaluate the JPDF 
and the failure probability in Eq. (26).  Instead, two famous RBDO 
algorithms, Reliability Index Approach (RIA) (Hasofer and Lind, 1974; 
Lin, Gea et al., 2009) and Performance Measure Approach (PMA) (Tu 
et al., 1999), have been developed to generate linear approximate 
probabilistic constraints.  They are widely utilized to solve RBDO 
problems because the approximate constraints have deterministic forms 
and are solvable by any general optimization algorithms. 

Reliability Index Approach (RIA): Hasofer and Lind (Hasofer 
and Lind, 1974) defined a reliability index as the shortest distance from 
the origin to the constraint in the standard normal space yielding a 
point-searching sub-problem: 
 

( ). . 0

i

i i

Min

s t g =

u

u
 (27) 

 
The optimal solution of the Eq. (27) is called the Most Probable 
Failure Point (MPFP), *

iu , for the thi  constraint.  A modified 

reliability index (Lin, Gea et al., 2009), Mβ : 
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i i

M i i
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∇
= ⋅
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u

u

u
u

u
 (28) 

 
provides the appropriate evaluations of the failure probabilities 
anywhere in the design domain and it is constrained by the following 
inequality equation: 
 

( ), ,M i f iβ β− ≤ −d  (29) 

 
where fβ  is the allowable reliability index.  Using the first-order 

Taylor expansion and the sensitivity analysis in (Lin, Gea et al., 2009), 
the probabilistic optimization problem is transformed to the following 
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 (30) 

 

Initially, the design variables, ( )1d  and ( )1u , are given.  For the 
thk  iteration, the MPFP is found by solving the Eq. (27) and updated 

to ( )1k +u .  In sequel, the Eq. (30) is solved to find the solution, 
( )1k +d .  The iteration terminates when the absolute difference, 
( ) ( )1k k +−d d , is smaller than a small value, i.e. 310−  in this study, or 

k  is larger than an allowable iteration number, i.e. 5 iterations (Yang 
and Gu, 2004). 

Performance Measure Approach (PMA):  Alternatively, the 
failure probability can be evaluated by an inverse reliability analysis 
(Tu et al., 1999), while a target performance measure is given by 
 

( ) { }1
,1

ii g f iFζ β−  = − Φ − d  (31) 

 
where ( )

igF ζ  is the probability of the event of ( )ig ζ≤X .  

Accordingly, the inequality constraint in Eq. (29) is transformed to the 
following equation 
 

( ) 0iζ ≤d  (32) 

 
The target performance measure can be found at the maximum value of 
the performance constraint with the allowable reliability.  Thus, a 
Most Probable Target Point (MPTP), #

iu , is found by solving a sub-

problem 
 

( )
,. .

i i

i f i

Max g

s t β=

u

u
 (33) 

 
With the linear approximation of the Eq. (32), the solvable probabilistic 
formulation of the RBDO problem is then given as 
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L U
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 (34) 

 
A similar optimization scheme is found in the PMA, while the 

MPTP must be firstly found by solving Eq. (33) for thk  iteration and 

updated to ( )1k +u .  The Eq. (34) is then solved to find the better 

solution, ( )1k +d , and the optimal solution is determined while the 
iteration terminates with the same convergence criterion.  In this 
research, we mainly focus on the RIA from Eqs. (27) to (30).  The 
optimization of the CVD processes using the PMA is discussed in 
(George et al., 2009). 

RBDO with Non-Normally Distributed Random Variables: 
Not only can the MRIA be utilized to solve the typical RBDO problems 
with normally distributed random variables, but the methods to solve 
the ones with non-normally distributed random variables are 
investigated in this session.  Famous non-normal distributions include 
lognormal, Weibull, Gumbel, and uniform distributions (Youn and 
Choi, 2004).  For simplicity, the random variable, X , is now 
considered to be independent and lognormally distributed and its thj  

component follows ( )~ ,j j jX LogN d σ .  Using the transformation of 

exp=X Y , an independent and normally distributed random variable, 

Y , is obtained where its thj  component follows ( ), ,~ ,j Y j Y jY N d σ  

and these two equations: 
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2

, 2
ln 1 j

Y j
jd

σ
σ

 
= +  

 
 (35) 

2
, ,

1
ln

2Y j j Y jd d σ= −  (36) 

 
Using Y Y= + ⋅Y d Uσ , the transformation from the lognormal space to 

the standard normal space is established as ( )exp Y Y= + ⋅X d Uσ .  

The sub-problem in Eq. (27) is then solved to obtain the MPFP and the 
modified reliability index is given by the Eq. (28).  The original 
probabilistic optimization problem with lognormally distributed 
random variables now becomes a solvable deterministic optimization 
problem as follows: 
 

( )
( ), ,. .

Y
Y

M i Y f i

Min z

s t β β− ≤ −
d

d

d
 (37) 

 
Notice that the nonlinear conversion from the lognormal design 

space to the standard normal space includes design-dependent 
parameters in Eqs. (35) and (36).  These two parameters should be 
updated prior to the MPFP-searching sub-problem using the following 
two iterative schemes: 
 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
Optimal Solution
Beta Contour

 
Fig. 14 Optimal solution of example 1b. 
 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
Optimal Solution
Beta Contour

 
Fig. 15 Optimal solution of example 2b. 
 
 

( ) ( ) ( )( )2
1 1

, ln 1k k k
Y j j jdσ σ − − = +  

 (38) 

( ) ( ) ( )( )2
1

, ,ln 0.5k k k
Y j j Y jd d σ−= −  (39) 

 
These updating schemes do not cost any additional function calls of the 
performance constraints; however, the varying standard deviations do 
decrease the convergence efficiency of the RIA. 
 

6.3. RBDO of the CVD Process 

The described RBDO strategy, RIA with both normally and 
lognormally distributed random variables, are applied to the 
optimization formulations of the CVD processes in this session.  The 
resultant failure probabilities will be verified by the Monte Carlo 
Simulations. 

Example 1b - Maximizing the PWA Subject to Constraint of 
Deposition Rate with Normally Distributed Random 
Variables: Alterative to the Example 1a in Eq. (23), the failure 
probabilities of all the constraints are subjected to the 3σ  criteria.  
The problem is given as 
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The standard deviations of the velocity and temperature are 0.02 m/s 
and 20 K respectively and other problem settings remain the same. 

Example 2b - Maximizing the MDR Subject to Constraint of 
Working Area with Normally Distributed Random 
Variables: Similarly, the Example 2a is reconsidered as the following 
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The Figs. 14 and 15 show the probabilistic constraints in Eq. (30).  
The resultant solutions are more conservative than the traditional 
deterministic optimization problems and the MCS results verify the 
acceptance of the failure probabilities of all the constraints, shown in 
Table 8. 

Example 1c - Maximizing the PWA Subject to Constraint of 
Deposition Rate with Lognormally Distributed Random 
Variables: The optimization now maximizes the working area subject 
to the constraints of the uniformity and the deposition rate with the 
lognormally distributed random variables.  The RBDO problem is 
formulated in Eq. (40) and the same considerations about the failure 
probabilities continue.  The Fig. 16 demonstrates the probabilistic 
constraints and optimal solution in both the original space and the 
transformed normal space.  The MCS results are shown in Table 8. 
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Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
Optimal Solution
Beta Contour

 
(a) 

 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
Optimal Solution
Beta Contour

 
(b) 

 
Fig. 16 Optimal solution of example 1c in (a) original lognormal and 

(b) transformed normal design space. 
 
Example 2c - Maximizing the MDR Subject to Constraint of 
Working Area with Lognormally Distributed Random 
Variables: The final example is to maximize the MDR subject to the 
constraints of the RMS, the KUR, and the PWA with the lognormally 
distributed inlet velocity and susceptor temperature.  The problem 
formulation is shown in Eq. (41) and it is solved by the proposed 
updating scheme in Eqs. (38) and (39).  The Fig. 17 shows the 
optimal solution in both lognormal and normal spaces and the MCS 
results are listed in Table 8. 

Comparing the optimal solutions in both Tables 7 and 8, the MCS 
results have shown that the optimal solutions for the deterministic 
optimization formulations suffer from high probabilities of the system 
failures even though they are theoretically the best operating conditions 
for the CVD process without the design uncertainties.  After 
considering the RBDO formulations and solving them by the RIA, 
more conservative operating conditions are found and the failure 
probabilities of all the constraints are satisfied within certain allowable 
range.  The optimization problems of the CVD process with two 
different kinds of design uncertainties have been studied, including the 
normally and the lognormally distributed random variables.  For the 
normally distributed random variables, the RBDO problem is solved 
directly by the RIA.  On the other hand, the conversion to the normal 
space and the updating scheme of the varying standard deviations are 
necessary for non-normally distributed random variables. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
Optimal Solution
Beta Contour

 
(a) 

 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
Optimal Solution
Beta Contour

 
(b) 

 
Fig. 17 Optimal solution of example 2c in (a) original lognormal and 

(b) transformed  normal design space. 
 
Table 8 The Monte Carlo Simulations for examples 1 and 2 with 

normally and lognormally distributed random variables. 

Ex. 
Distribution 

of Uncertainty 
Optimal 
Solution 

MCS1 MCS2 MCS3 

1b Normal (0.74, 1069) 0.112 % 0 % 0 % 
1c Lognormal (0.74, 1067) 0.118 % 0 % 0 % 
2b Normal (0.90, 1148) 0.120 % 0 % 0 % 
2c Lognormal (0.90, 1147) 0.110 % 0 % 0 % 

 
The RIA has been successfully applied to solve the RBDO 

problems of the CVD process with both normally and lognormally 
distributed random variables, the inlet velocity and the susceptor 
temperature.  For normally distributed variables, the MPFPs are firstly 
found in the standard normal space and then utilized to approximate the 
probabilistic constraints.  Those approximate probabilistic constraints 
are iteratively updated by the latest MPFPs with respect to the mean of 
the random variables.  The global optimal operating conditions are 
found with the updated probabilistic constraints and the multiple 
starting points due to the concave feasible domains. For the non-
normally distributed random variables, the original design space is 
converted to the normal space and the variant standard deviations are 
iteratively updated before the RBDO problems are solved by the 
MRIA.  The MCS results are utilized to verify the acceptance of the 
failure probabilities. 
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The proposed systematic strategy of the optimization with 
consideration of design uncertainties can be applied to other thermal 
systems.  For normally distributed random variables, the designer 
needs to measure the standard deviations and use the mean as the 
design variable.  Transforming to the standard normal space, the 
MPFPs are determined for the constructions of the approximate 
probabilistic constraints.  The optimal solution with acceptable 
reliability can then be found.  Additionally, the standard deviations are 
updated iteratively for the non-normally distributed random variables. 

7. CONCLUSIONS 

A systematic strategy to parametric model and optimize of the thermal 
systems with design uncertainties has been proposed in this research 
work.  The CVD has been chosen as an example, where the inlet 
velocity and the susceptor temperature are the design variables.  The 
CVD process is simulated and the responses, the PWA, the MDR, the 
RMS, and the KUR, are utilized to represent the productivity and the 
uniformity of the thin-film deposition of silicon from silane.  The RBF 
is utilized to model those responses.  Then, the response surface 
models are used to formulate the optimization problems for finding the 
better operating conditions.  The RIA is introduced to solve those 
optimization problems with both the normally and non-normally 
distributed random variables.  In the optimization process of the RIA, 
the MPFPs are found and utilized to formulate the approximate 
probabilistic constraints.  The optimal solution is finally found with 
the acceptable reliability.  As a result, not only the proposed strategy 
can be utilized to model and optimize the CVD process with design 
uncertainties, but also it can be applied to other thermal systems. 

The proposed strategy to simulate the thin-film growth of silicon, 
parametrically model the responses of the deposition, and optimize the 
operating condition with uncertainties is also very useful for other thin-
film fabrications in semiconductors.  One of the examples is the spin-
coating process of polymers on the silicon wafer, which is a critical 
post-process of photolithography (Jaeger, 2002).  The design variables 
include the velocity of the spin-coater, the position of the silicon wafer, 
and the amount of the applied polymers.  The responses include the 
thickness and the uniformity of the polymer thin-film, which can be 
modeled by the RBF in terms of experiment data.  The proposed 
method can be utilized to find the optimal operating conditions for the 
desired thickness with the allowable uniformity in terms of the root 
mean square and the surface kurtosis.  In the optimization process of 
the thin-film growth, the design uncertainties in the design variables, 
including the spin velocity and the position of the water, should be 
considered.  The RIA provides the evaluations of the failure 
probabilities and generates the approximate probabilistic constraints.  
The optimization problems with design uncertainties can then solved 
and the optimal operating condition can be obtained.  Similarly, the 
proposed strategy can be directly applied to any other thin-film growth 
of the thermal systems. 

Besides the thermal systems with thin-film growth, the proposed 
method can also be applied to other thermal systems, such as the 
cooling design of the heat sink on the CPU chip of a computer.  In the 
example of the cooling design of the heat sink, the fluid mechanics and 
heat transfer is different from the CVD process.  Either experiments or 
numerical simulations should be designed with the different hardware 
parameters or operating conditions.  The hardware parameters include 
the dimension of the heat sink, the dimension of the fin, the orientation 
of the heat sink, and the working space of the desktop case; on the other 
hand, the operating conditions include the temperature of the CPU chip 
and the velocity of the cooling fan in the case.  Collecting the data 
from the experiments/simulations, some responses need to be defined to 
quantitatively describe the performance of the design.  The responses 
are then modeled parametrically by the Radial Basis Functions and 
utilized to formulate the optimization problems.  The recognitions of 
the design uncertainties and the distributions of the random variables 

are also important for the RBDO formulations.  Once the probabilistic 
optimization problems are formulated, the RIA can be used to find 
optimal designs with allowable failure probabilities.  To sum up, the 
following summarize the key steps for applying the proposed method to 
design and optimize other thermal systems with design uncertainties: 

• The design and execution of the experiments or the 
simulations. 

• The definition of the responses. 
• The formulation of the optimization problems. 
• The recognition of the design uncertainties. 

With the achievements of the above four key steps, the proposed 
system strategy can be applied to the specific thermal systems and find 
the optimal design variables with design uncertainties. 

The proposed strategy of parametric modeling and optimization 
with design uncertainties can be applied to many other thermal systems.  
In the other study of the CVD process, the proposed methodology can 
be applied to find the optimal operating conditions for the depositions 
of different materials, such as the high-hardness materials – boron 
nitride (BN), silicon carbide (SiC), boron carbide (B4C), and titanium 
nitride (TiN).  Different reaction kinetics of the deposition should be 
studied.  Different configurations of the CVD processes also can be 
considered with different hardware variables, such as the shape of the 
CVD chamber, the orientation of the susceptor, and the direction of the 
reactant flow.  Alternatively, the thermal systems that are related to the 
safety of human lives, the energy crisis, and the biotechnology are very 
important.  Especially for the system that requires high performance 
and cannot afford system failures, the operating conditions of the 
thermal systems should be determined by the proposed method.  One 
of the examples is the next-generation design of the carbon fuel cells 
(Steinberg et al., 2002), where the efficiency for electricity production 
may be possibly higher than the traditional hydrogen fuel cells.  The 
operating conditions of producing the carbon fuel cells differ the 
disorderedness of the carbon atoms, which is much related to the 
electricity yield. 
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NOMENCLATURE 

A  The pre-exponential factor for Arrhenius rate. 
A  A M K×  matrix of monomials for the RSM; 

( ) ( )
1 1

M K
S S

t s s t
s t

B
= =

=A x x e e . 

B  A combination of the monomials for the RSM; 

( ) ( )t tB=B x x e . 

PC  Specific heat in the governing equations. 

xC  A vector of the covariance functions for Kriging; 

( ) ( )
1

, ,
M

S S
x s s

s

Cov
=

=C x x x x e . 

C  A matrix of the covariance functions for Kriging; 

( ) ( )
1 1

,
M M

S S S
r s r s

r s

Cov
= =

=C x x x e e . 

d  The expected value of X ; [ ] j jE d= =d X e . 

Yd  The expected value of Y ; [ ] ,Y Y j jE d= =d Y e . 

D  Mass diffusivity in the governing equations. 
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0D  The pre-exponential factor in the power law of the mass 

diffusivity. 
Dι  Deposition rate at the thι  sampling node. 

e  Normal basis of the design variables. 

aE  The activation energy for Arrhenius rate. 

( )f x  The JPDF of ( )g X . 

F


 Body force in the governing equations. 

( )F x  An approximate function by RSM. 

Fη  The function value of a RSM model at ηx ; ( )F Fη η= x . 
SF  A vector of the responses in terms of the sampling points; 

( ) ( )
1

M
S S S

s s
s

F
=

=F x x e . 

( )gF γ  The CDF of the event of g γ≤ . 

Gη  The simulated response in terms of ηx . 

g  Performance constraint; ( ) 0g >X  is considered as the failed 

design and ( ) 0g ≤X  represents the feasible domain. 

k  The iteration number of the global optimization loop. 

Tk  Thermal diffusivity in the governing equations. 

K  The number of the parameters to be determined in a best fitting 
model; K M< . 

m  Mass fraction of species in the governing equations. 
M  The number of the sampling points. 
n  The number of the constraints. 
N  The number of the design variables. 
p  Pressure in the governing equations. 

P  The probability of an event. 
Q  The number of the uniformly distributed sampling nodes within 

the effective working area. 

Q  Heat source in the governing equations. 

R  Production rate of species due to chemical reactions. 

gR  The universal gas constant. 

S  The local slope between two nodes in the deposition profile 
from the numerical simulation. 

T  Temperature in the governing equations; the susceptor 
temperature in the optimization of CVD processes. 

u  The deterministic standard normal design variable; j ju=u e  

and ( )j j j ju x d σ= − . 

*u  The MPFP; * *
j ju=u e . 

#u  The MPTP; # #
j ju=u e . 

U  The random standard normal design variable; j jU=U e . 

v


 Fluid velocity in the governing equations. 
V  The inlet velocity of the CVD process. 
w  The coefficients of the RSM models; r rw=w e  for the exact 

fitting and t tw=w e  for the best fitting. 

x  The deterministic design variable; j jx=x e . 

X  The random design variable; j jX=X e . 

y  The deterministic design variable; j jy=y e . 

Y  The random design variable; j jY=Y e . 

z  The cost function. 
err  The error measurement for the model validation. 
EWA  The effective working area. 
KUR  The Surface kurtosis of the deposition profile in the EWA. 

MDR  The mean of the deposition rate in the EWA. 
PWA  The percentage of the working area. 
RMS  The root mean square of the deposition profile in the EWA. 

( ),p qCov X X  Covariance between pX  and qX . 

( ),r sCov x x  Covariance between two vectors: , N
r s R∈x x . 

( ),LogN μ σ  A lognormal distribution with the mean, μ , and 

the standard deviation, σ . 

( ),N μ σ  A normal distribution with the mean, μ , and the 

standard deviation, σ . 
Greek Symbols 
α  The temperature exponent for the Arrhenius rate. 
β  Reliability index. 
γ  The temperature exponent for the mass diffusivity of the silane. 

θ  Unknown parameters for the Gaussian correlation functions. 
κ  The Arrhenius rate. 
λ  The parameter for the smoothness of the distance function. 
μ  Dynamic viscosity in the governing equations. 

ζ  Performance measure. 
ρ  Density in the governing equations. 

σ  The standard deviation of X ; 
1

N

j j j
j

σ
=

= e eσ . 

Yσ  The standard deviation of Y ; ,
1

N

Y Y j j j
j

σ
=

= e eσ  

Φ  The Standard Normal CDF. 
Superscripts 

( )k  thk  Iteration of the global optimization loop. 

S  Quantities evaluated at the sampling points. 
*  Optimal solution. 
Subscripts 
f  Allowable level of a quantity. 

h  The index of the important sampling points; 0 < size of 
h N< . 

i  The dimensional index of the constraint; 1,2, ,i n=  . 

j  The dimensional index of the design variable; 1,2, ,j N=  . 

L  Lower bound. 
M  Modified reliability index. 
m  Maximum value. 
p  The index of the design variable for the model validation; 

1,2, ,437η =  . 
q  The index of the uniformly distributed sampling nodes; 

1,2, ,q Q=  . 

r  A dummy index; 1,2, ,r M=  . 

s  A dummy index; 1,2, ,s M=  . 

t  A dummy index; 1,2, ,t K=  . 

U  Upper bound. 
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